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1. Datasets Used for Evaluation
To demonstrate the versatility of our method, we use

six datasets confounded with various types of sensitive at-
tributes for evaluations. For clarity, we summarize the
statical characteristics of the datasets in Tab. 1. Among
them, the first four datasets, i.e., MNIST-USPS 1, Reverse
MNIST, Office-31 [8], MTFL [11] are with visual modal-
ity and the last two (HAR [1] and Mouse Atlas [4, 5]) are
signal-vector datasets. Notably, some existing works [2, 3]
could only handle the dataset with bi-sensitive-attribute
(group number is two), whereas our method is generaliz-
able to the case of arbitrary group numbers, e.g., HAR with
30 groups.

Table 1. Datasets used for evaluations.

Dataset #Samples #Clusters Semantic #Groups Sensitive Attributes

MNIST-USPS 67,291 10 Digit 2 Domain Source
Reverse-MNIST 120,000 10 Digit 2 Background Color

HAR 10,299 6 Activity 30 Subject
Office-31 3,612 31 Category 2 Domain Source

MTFL 2,000 2 Gender 2 w/ or w/o Glass
Mouse Atlas 6,954 11 Cell Type 2 Sequence Technique

2. Algorithm Implementation Details for
FCMI

To elaborate on the working flow of our FCMI, we pro-
vide its pseudo code below. While the previous works [7,
9, 10] resort to some techniques such as layer-wise pre-
training, pre-clustering and data augmentation, our method
achieves state-of-the-art performance with end-to-end train-
ing initialized by a simple warm-up step.
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1http://yann.lecun.com/exdb/mnist, https://www.
kaggle.com/bistaumanga/usps-dataset

Algorithm 1 Deep Fair Clustering via Minimizing and
Maximizing Mutual Information.

Input: Samples X = {xi}Ni=1 with sensitive attributes
G = {gi}Ni=1, warmup epoch = 20, max epoch =
300.

1: for epoch < max epochs do
2: Extract low-dimensional features via h = θ(X)
3: Compute cluster centers U by applying k-means on

h
4: for sampled mini-batch x = {xj}nj=1 do
5: if epoch < warmup epochs then ▷ Warmup
6: Compute the overall loss L = Lrec by

Eq. 11 in our main paper.
7: else ▷ Train
8: Compute soft cluster assignments cik by

Eq. 1
9: Compute Lrec, Lclu and Lfair by Eq. 11,

Eq. 7 and Eq. 8 in our main paper.
10: Compute the overall loss L by Eq. 12 in our

main paper.
11: end if
12: Update encoder θ and decoder Φ to minimize L

via Stochastic Gradient Descent (SGD).
13: end for
14: end for

The remaining problem is how to compute the soft clus-
ter assignments cik. To prove the effectiveness of the pro-
posed unified information theory itself, without bells and
whistles, we adopt the vanilla k-means to compute cik,
namely,

cik =
exp(cos(hi, uk)/τ)∑
j exp(cos(hi, uk)/τ)

, (1)

where U = {u1, u2, ..., uK} are obtained cluster centers
and τ = 0.1 is the temperature to control the softness. In
our implementation, we apply K-means at the beginning of
each epoch to update the clustering centers U . This would
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Figure 1. Visualizations of the hidden representation on MNIST-
USPS and Color Reverse MNIST learned by our FCMI and two
most competitive baselines.

only additionally introduce approximately 15% computa-
tional burden if we use the GPU implementation provided
by faiss [6].

3. Visual Comparisons
To better show the superiority of the proposed FCMI,

we conduct visualization on MNIST-USPS and Color Re-
verse MNIST in Fig. 1, comparing with two most compet-
itive baselines, i.e., AE (a standard clustering method) and
DFC (a fair clustering method).

From the visualizations, one could see that the standard
clustering method AE fails to eliminate the influence of sen-
sitive attributes, leading to unfair data partition. DFC is
able to hide sensitive attributes from the clustering assign-
ment. However, it fails to capture the intrinsic semantics
accurately. Namely, it fails to distinguish digits 4 and 9 in
MNIST and USPS, and it mixes all digits despite digit 8 on
Color Reverse MNIST. In contrast, our FCMI successfully
clusters data based on the digits except for digits 4 and 9
on Color Reverse MNIST. Moreover, our FCMI hides the
sensitive attributes more thoroughly, as shown in the better
mixing of digits from MNIST and Color Reverse MNIST
(the last row).

4. Broader Impact Statement
The fairness problem hinders the utilization of cluster-

ing in a wide range of real-world applications such as im-

age segmentation, biological analysis, and information re-
trieval since the real-world data might be confounded with
sensitive attributes, e.g., color, gender, race, and RNA-
sequencing technique. Thus, it is crucial to achieve fair
clustering and could bring many benefits, e.g., preventing
discrimination against certain individuals; reducing the cost
of human labor to discover samples with similar semantics
without prejudice. However, we should not ignore the po-
tential negative impact of this work. More specifically, our
method is based on a deep neural network, which inher-
its the black-box nature of artificial neural networks, thus
would hinder its wide adoption in mission-critical applica-
tions.
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