Appendix

We provide additional information about our method,
experiment settings and supporting qualitative visual-
izations. Below is a summary of the sections in the
supplementary:

 Section A reports the details of 3D points construction
algorithm.

* Section B reports the details of simultaneously running
exploration and identification policies.

* Section C reports the computational cost of the pro-
posed method.

¢ Section D reports the details of datasets used in our
experiments.

* Section E reports additional experiments.

 Section F shows detailed progressive results of the pro-
posed method on Matterport3D.

A. 3D Point Fusion Implementation Details

We introduce the 3D point construction algorithm [53]
utilized in our paper (Figure 9). The inputs of the construc-
tion algorithm are a sequence of posed color image Ic(t) and
depth images I U(lt) at time step t. First, we can obtain the 3D
points p via back-projection. Then, we dynamically allocate
3D blocks {8}, which are composed of the occupied 3D
points. To be specific, we divide the 3D world space into
a set of adjacent 3D blocks { By}, where each block By
is defined by the boundary of constant length 7, along the
X, Y and Z axes, e.g., [Xmin(Bk), Xmaz(Br)]. Two adja-
cent blocks By, B; along the X axis meet the requirement,
Xmin(Bk) = Xmax(Bj) or Xmam(Bk) = szn(BJ) The
same requirement holds for Y and Z axes. Given the scene
point cloud PE=1) at time step t — 1, we allocate all the 3D
points into each of the 3D blocks { By }, hence a block-wise
point retrieval can be easily achieved.

After constructing the blocks, we can achieve efficient
point searching and neighborhood retrieval for any given
3D point p. However, the points within blocks are still un-
structured. To obtain the fine-grained relationship of points,
we further build a one-level octree O; for each point p; € P.
Specifically, for each 3D point back-projected from the in-
stant sensor reading, we perform its nearest neighbor search
only among its occupied 3D block and adjacent blocks.
Then, we connect the point with the nearest points in the
eight quadrants of the Cartesian coordinate system. Now,
given any point, we can search the nearest points in eight
directions and expand the search region as large as we want.
In our implementation, we randomly sample 512 points for

Online Organized 3D points

(top-down view)

Figure 9. Illustration of online 3D point fusion. (Left) dynami-
cally allocated blocks BB based on coordinate intervals . (Right)
The points p are organized by blocks B and per-point octrees O,
which can be used to query neighborhood points of any given
point.

Algorithm 1: Simultaneous Exploration and Identifica-
tion for 3D-Aware ObjectNav

Input : Existed reconstructed points Pl(yt:)c, RGB image [, ét), Depth
image [((it), Agent Pose o;to)se, Target category index o p at
time step t.
Output: Agent action a®.
// Output a low-level action to drive the agent
I a'? € {move_forward, turn_left, turn_right and stop}
1 PL(,? +BackProject (Ic(it),SemanticPredictor (Iét)))
// Obtain the location and semantic prediction of observed points
2 Pl(’t;) <+PointFusion (Pl(;s), PL(.tS))i
3 Péts) <UpdateConsistency (Pl(’t:));
/I Fuse the new captured points and update the consistency
4 ggt) +<ExplorationPolicy (Pl(f:)c,Project (Pl(,t:,)c))
5 T(t) <—IdentificationPolicy (PL(,t:,lN
6 ifp € Py s c satisfy ps > 7 and
ConsistencyCheck (p,0orp,P; s,.) then
7 L g}t’) <Location(p);
/I Simultaneously run the exploration and identification polices
s if g;f) exists then
9 L a® <Planning (g}t’))3
10 else
11 L a(t'> <Planning (géf’))

12 return a(");

each frame. And we only connect the points with distance
range in [4em, 15em).

B. Pipeline Implementation Details

In Algorithm 1, we describe the the details of simultane-
ously running exploration and identification policies. Here,
we reuse the notions in the main paper.

B.1. Policy Implementation Details

Our corner-guided exploration policy takes the 3D ob-
servation ng(t), 2D observation ng(t) and extra infor-
mation as inputs. The extra information comprises the

(6
X2p
—) =
Cnnsi;::tv ® v
‘ - 5= - O - F ©
ENS o
Point Fusion Semantic N =) g
RGB-D
Embeddin,
Extra Information 8
(Step/ Pose/ Category ID)

Figure 10. Network architecture of our exploration policy

Observation

\ ¥ p 0}
5 o | *3p,
E Semantic & # # o # # ()
ﬂ i
RGB-D
Extra Information Embedding
(Step/ Pose/ Category ID)

Figure 11. Network architecture of our verification policy

Observation

agent’s pose, the number of steps, and the target category
ID. The proposed exploration policy predicts a discrete cor-
ner goal ggt) to navigate the robot (Figure 10). Specifically,
the policy uses a PointNet [33] to encode the 3D points

information (position pl(t), semantics pgt), and consistency

pg)) to obtain a global feature (256D). The 2D top-down
map will be passed to a fully convolutional network [25]
and flattened to a feature vector (256D). And the extra infor-
mation is embedded into a feature vector (24D). Note that
the processing of the 2D top-down map and extra informa-
tion has also been reported in other existing methods [8, 9].
Then, the three feature vectors are concatenated and sent
to linear networks, which will output the final target cor-
ner goal g((f). The category-aware identification policy
takes 3D observation $3D(t) and extra information as in-
puts, and uses the same 3D observation and extra informa-
tion branches as exploration policy. The identification pol-
icy outputs the threshold 7(*) for target goal selection (See
algorithm 1).

C. Computational Cost

Due to the fact that there are always significant overlaps
between consecutive frames, when we perform point fusion,
we can reuse most of the constructed 3D blocks (~ 60%).
Our algorithm for constructing the 3D scene representation
runs at 15 FPS. The memory requirement of one scene can
range from 200MB to 500MB during navigation.

We have implemented our core algorithm in python, Py-
Torch and PyCUDA. Both the point construction and poli-
cies run on a workstation with an Intel® Xeon® Gold 6240
CPU CPU @ 3.50GHz x 12 with 64GB RAM and an Nvidia
V100 GPU with 32GB memory.

Method ‘SPL(%) Improvement

(1.a) 4 corner goal heuristics w/o iden. policy 13.1 -
(1.b) 4 corner goal heuristics w/ iden. policy 13.9 6.1% 1
(2.a) learn continuous goal policy w/o iden. policy| 10.1 -
(2.b) learn continuous goal policy w/ iden. policy | 12.7 25.7% 1
(Ouwrs) learn 4 corner goal w/o iden. policy 13.7 -
(Ouwrs) learn 4 corner goal w/ iden. policy 14.6 6.6% 1

Table 6. More ablations on exploration and identification policies.

Noise Setting ‘SPL (%) Succ. (%) DTS (m)

(1) Ours (noiseless) 14.6 34.0 4.74
(2) w. Noisy Pose 13.5 33.1 5.51
(3) w. Gau. Noisy Depth 14.3 33.6 5.36
(4) w. Rdw. Noisy Depth 13.7 31.7 5.45

(5) w. Noisy Depth (Gau.) and Noisy Pose| 13.6 31.6 5.50
(6) w. Noisy Depth (Rdw.) and Noisy Pose| 13.1 30.1 6.02

(7) PONI (baseline, noiseless) 12.1 31.8 5.10
(8) Stubborn (baseline, noiseless) 13.5 31.2 5.01

Table 7. Results under various noise settings. Gau. indicates
Gaussian. Rdw. indicates Redwood.

D. Dataset

Here, we provide further details of the datasets where we
validate our method for reference.

Matterport 3D (MP3D) [6] MP3D offers photorealistic re-
constructions of building-scale scenes. Following the set-
ting in Habitat Challenge 2021 [1], we consider 21 object
categories: chair, table, picture, cabinet, cushion, sofa, bed,
chest of drawers, plant, sink, toilet, stool, towel, tv monitor,
shower, bathtub, counter, fireplace, gym equipment, seat-
ing and clothes. We split the dataset into 61 train / 11 val
scenes, containing 2,632,422 / 2,195 episodes, respectively.

MP3D-L2M. In L2M [14], they validate their method on a
self-made dataset consisting of 781 episodes from 10 MP3D
(val) scenes, which we call MP3D-L2M. It covers 6 object
categories: chair, couch(sofa), plant, bed, toilet and tv. For
a fair comparison, we also report our validation results on
this MP3D-L2M in main paper table 2.

E. Additional Experiments

Ablation study on exploration and identification poli-
cies. As shown in Table 6, 1) coupling our identification
policy with exploration heuristics [26]; 2) joint learning our
policy with 2D map-based exploration policy [9] till full
convergence using double training steps of [9]. We ob-
serve that the results of various methods are improved by
our identification policy, especially the continuous goal ex-
ploration strategy (25.7% 7 on SPL). Moreover, the fully
trained continuous goal strategy does not outperform our
corner-guided method, due to larger action space and there-
fore a harder RL problem.

A. Looking for a chest of drawers.

Explore Identify Explore Identify Identify
(Mistake) (Correct) (Close to Target)
= ;d_ i 2 J
. = & e
; ca
€ k. ibe I

10
3
%0.8
£06
E

04

0 20 40 60 80 100 120
B. Looking for a cushion:

Explore Identify
(Correct)

THE

Identify

(Close to Target)

1.0

Zo9
%08
go.
£071
06%5

10 20 30 40 50 60
Steps

C. Looking for a counter:

Explore Identify Explore Identify Identify
(Mistake) (Correct) (Close to Target)
7 AN
; # B N
, 3 , s 4 ’

0 20 40 60 80 100 120
Steps

Figure 12. Visualization of threshold changes during navigation.

Robustness to noises. We conduct a series of experi-
ments (Table 7) to evaluate our method with noisy pose and
various depth noise models. Specifically, for the pose noise,
we adopt the same simulation methods as in [38]; for depth
noise, we consider Redwood [| 1] noise model and Gaussian
noise model. Under the most challenging noises setting (6),
our method has a minor drop of 1.5 point on SPL, which
however still performs as a strong competitor against the
noiseless baselines (7, 8).

Qualitative examples of the identification policy. Here
we provide three qualitative examples (Figure 12) of our
identification policy to navigate to various target objects.
Note that, the identification policy is executed every 25
steps for the purpose of acceleration. Accordingly, we de-
lineate the exploration and identification phases based on
the primary policy utilized during the 25-step interval.

Based on the experimental results, the predicted thresh-

old is dynamically adjusted during navigation. Specifically,
when the agent is under the control of the exploration pol-
icy, the identification policy predicts a relatively low thresh-
old to facilitate rapid searching of potential targets. Con-
versely, when the agent is guided by the identification pol-
icy, the threshold is fine-tuned to achieve a trade-off be-
tween accuracy and efficiency. In general, the identification
policy gives a high threshold to ensure a successful stop.
Nevertheless, in the event that the agent is in close prox-
imity to the target object, a low threshold is predicted for a
quick stop.

F. Visualizing ObjectNav episodes

Figure 13 and Figure 14 illustrate a more detailed visu-
alization of the results obtained through the implementa-
tion of our 3D point-based fusion algorithm on the Matter-
port3D Dataset. It can be observed that during navigation,
there is a significant improvement in the semantic prediction
and spatial consistency of the points. To further substanti-
ate these findings, Figure 15 to 17 provide visualizations of
additional episodes. For a comprehensive demonstration,
the attached video in the supplemental material is recom-
mended.

HEE 1 1]

chair table picture cabinet cushion sofa bed drawers plant sink toilet stool towel Vi shower bathtub counter fireplace gym

qd

pi of finding a drawer

Figure 13. EPS Pagel.

11 1

chair table picture cabinet cushion sofa bed drawers plant sink toilet stool towel Vi shower bathtub counter fireplace gym

episode of finding a chair

A
—

{i s

= o

seod

P

Figure 14. EPS Page2.

- [>t 8 »
. : ':: . . i. b5
§ o = 58, g e e :
fﬂ: YV 'a o é i / l?\ o ,‘.‘3’ |
n " . - !&n
‘\..J\@‘ ..
R e B e L ™
P v 2
Q’ { ~/ -t Stn
3 hﬂa o - = /
et &% o Cuy
e aaa - J o or;
. T f" (-
- . » - .. o PR
£ Py 5:5;;% B : Tiae
Qb::"ﬂ i Q‘J@o mmo]' ©p O".—).
Y el T e f T / T

Figure 15. Episode results (1/3).

Figure 16. Episode results (2/3).

i,

e,
B

g~

s

Figure 17. Episode results (3/3).

	. Introduction
	. Related Work
	. Method
	. Task Definition and Method Overview
	. Navigation-Driven 3D Scene Construction
	. Simultaneous Exploration and Identification

	. Experiments
	. Experiment Setup.
	. Results

	. Conclusion
	. 3D Point Fusion Implementation Details
	. Pipeline Implementation Details
	. Policy Implementation Details

	. Computational Cost
	. Dataset
	. Additional Experiments
	. Visualizing ObjectNav episodes

