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This Supplementary Material provides additional details
about our approach and more experimental results that were
not included in the main manuscript due to limited space.
In Section A, we present more descriptions of our newly
introduced THuman-CloSET dataset. In Section B, we pro-
vide more details about the implementation of our approach.
Finally, we report more experimental results in Section C.
More results are also presented in the Supplementary Video
and the project page at https://www.liuyebin.com/closet.

Table A1. Comparison of the scan data used in our experiments.

Datasets # Outfits Outfit type
Average # poses

per outfit

CAPE [4] 14 real-world, common 1806
ReSynth [5] 12 synthetic, loose 984
THuman-CloSET 15 real-world, loose 140

A. THuman-CloSET Dataset
We introduce THuman-CloSET for the reason that exist-

ing pose-dependent clothing datasets [4, 5] are with either
relatively tight clothing or synthetic clothing via physics
simulation. THuman-CloSET contains more than 2,000
high-quality human scans captured by a dense camera rig.
There are 15 different outfits with a large variation in cloth-
ing style, including T-shirts, pants, skirts, dresses, jackets,
and coats, to name a few. All subjects are guided to perform
different poses by imitating the poses in CAPE [4]. For
each outfit, there is also a scan of the same subject in min-
imal clothing so that we can obtain a more accurate body
shape. In our dataset, the body model is firstly estimated
from the rendered multiview images of the clothed human
and further refined with the ICP optimization between the
body model and the scan. As shown in Fig. A1, the loose
clothing makes the fitting of the underlying body models
quite challenging. For more accurate fitting of the body
models, we first fit a SMPL-X [7] model on the scan of the
subject in minimal clothing and then adopt its shape param-

Figure A1. The fitted SMPL-X models (colored with blue) of the
same subject in minimal and loose clothing.

eters for the fitting of the outfit scans in different poses. In
this way, we ensure that the fitted SMPL-X models of our
dataset are overall of good quality. Fig. A4 shows several
outfit scans and example scans in various poses of THuman-
CloSET. The comparison with CAPE [4], ReSynth [5], and
our THuman-CloSET datasets are summarized in Tab. A1.
We make THuman-CloSET publicly available for research
purposes and hope it can open a promising direction for
clothed human modeling and animation from real-world
scans.

B. More Implementation Details

Training. Following POP [5], we train our network for
400 epochs on ReSynth [5] and CAPE [4] datasets, using
the Adam [2] optimizer with a batch size of 4 and a learning
rate of 3.0×10−4. The loss weights are set to λp = 2×104,
λn = 0.1, λrgl = 2× 103, λpd = 1.0, and λgc = 5× 10−4

to balance different loss terms. Note that the normal loss is
turned on from the 250th epoch for more stable training, as
suggested in [5].
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Figure A2. Ablation results on the usage of garment features in the
pose decoder. (a)(b) The temple and clothing deformation results
without using garment features. (c)(d) The temple and clothing
deformation results with the usage of garment features.

Architecture. In the implementation of our network,
the PointNet++ [9] abstracts the point features for L =
6 levels, and the numbers of the abstracted points
are 2048, 1024, 512, 256, 128, and 64, respectively at each
level. The pose-dependent and garment-related features
have the same length of 64, i.e., Cp = Cg = 64. The de-
coders Dg and Dp adopt the same architecture as POP [5].
Tab. A2 reports the network parameters and runtime of
POP [5] and our method. Note that the pose and garment
encoders in our method can also be replaced with recent
state-of-the-art point-based encoders such as PointMLP [6]
and PointNeXt [10].

Table A2. Comparison of the network parameters and runtime.

Method Encoder # Params Runtime

POP [5] UNet [11] 11.33 M 44 ms
Ours PointNet++ [9] 11.76 M 47 ms

Garment Code. Following POP [5], for a specific out-
fit (e.g., an individual garment), the garment code is ran-
domly initialized with the shape of N × 64 (N is the vertex
number of SMPL(-X)) and shared across all poses. During
training, the code is optimized with the back-propagated
gradients. When trained with multiple outfits, the pose-
dependent deformation should be aware of the outfit type.
Hence, the pose decoder takes as input both the garment
features ϕg(p

t
i) and the pose features ϕp(p

t
i). As shown

in Fig. A2, the qualitative results become worse when the
garment features are not fed into the pose decoder under the
multi-outfit setting.

C. More Experimental Results.
Template learning. As described in Section 3 in the main
paper, the explicit templates are learned under the regular-
ization term. An alternative strategy for template learning is

(a) using data term (b) using regularization term

Figure A3. The templates learned with (a) the data term and (b)
the regularization term.

Table A3. Ablation study of the efficacy of the explicit template
decomposition on different backbones. † denotes the default Point-
Net [8] and PointNet++ [9].

Backbone Size(M) w/o ETD w. ETD
U

V Unet 11.33 7.34 7.05
Su

rf
ac

e PointNet † 7.68 7.14 6.94
PointNet++ † 4.35 7.08 6.71
PointNet++ 11.76 6.53 6.01

applying the data term directly to the generated point clouds
of templates, as done in previous work [3]. However, we
found such a strategy leads to worse template learning. As
visualized in Fig. A3, the template directly learned with the
data term is much nosier than the one learned with the reg-
ularization term.

Effect of Explicit Template Decomposition. In Ta-
ble A3, we further augment the ablation experiments with
the backbones of the default PointNet [8] and Point-
Net++ [9]. We can see that i) learning continuous sur-
face features consistently brings improvements over the UV
features, though the default PointNet and PointNet++ have
smaller model sizes; ii) PointNet++ is more suitable for sur-
face feature learning than PointNet; iii) ETD consistently
improves the results for all backbones. In Fig. A5, we in-
clude more rendered results of the clothing deformations
learned with and without Explicit Template Decomposition
(ETD). In general cases, ETD helps to capture more natu-
ral pose-dependent wrinkles. For more qualitative compar-
isons of SCANimate [12], SNARF [1], POP [5], and our
approach, please refer to the supplementary video.
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Figure A4. Example scans of our newly introduced THuman-CloSET dataset. (a) Example outfits. (b) Example scans in various poses.
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Figure A5. Comparison of the pose-dependent deformations learned with and without Explicit Template Decomposition (ETD).
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