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1. Motion Estimation
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Figure 1. Pipeline of motion estimation.

For motion estimation, we follow a similar design
schema in RIFE [1], which directly utilizing simple con-
volutional layers to iteratively updates the optical flow F
for backward warp and the fusion map O. In contrast to
RIFE, without as many as eleven convolutional layers in
each iteration and extra privileged distillation, only three
convolutional layers are needed for high-performance mo-
tion estimation due to the sufficient information contained
in the extracted motion and appearance feature.

The pipeline of our motion estimation is shown in Fig. 1.
For the motion and appearance features extracted at i-th
Transformer stage, we first acquire M i

0→t and M i
1→t by

linear scaling M i
0→1 and M i

0→1 with t. M i
0→t and M i

1→t

are then concatenated with Ai
0 and Ai

1. Due to the reso-
lution of motion and appearance features being quite low,
we apply two PixelShuffle [4] with r = 2 to quadruple
the resolution of those features. To iteratively update F i−1

and Oi−1 estimated in the previous stage, we also combine
F i−1 and Oi−1 with the warped original images as extra in-
put to further boost the performance. Then the two stream
inputs are concatenated together and fed to three convolu-
tion layers to generate the residual. The residual is upsam-
pled by bilinear interpolation to the original resolution of
inputs and added to the F i−1 and Oi−1 to synthesize mo-
tion at current stage:

F i = F i−1 +∆F i, (1)

Oi = Oi−1 +∆Oi (2)

2. RefineNet
We adopt a simplified U-Net [3] architecture for refining

the warped results Ĩt obtained with F and O, as shown in
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Figure 2. Structure of RefineNet.

Fig. 2. The only difference is that we add the acquired low-
level features L and inter-frame enhanced appearance fea-
tures A into the corresponding stage to provide additional
appearance information for better appearance refinement.

3. Loss Functions
The training loss is composed of two parts: warp loss and

reconstruction loss. The warp loss is to directly supervise
the result Ĩt obtained by warping and fusing inputs with F
and O, which implicitly supervise the motion estimation,
as:

Li
warp = f(Ĩi

t , I
GT
t ) , (3)

where Li
warp represents the warps loss for i-th motion esti-

mation, IGT
t is the ground truth, f is usually a pixel-wised

loss. Following previous work [2], we employ the Lapla-
cian loss, which denotes the L1 loss between the Laplacian
pyramids of the warped frame and the ground truth, as f .
The reconstruction loss is to supervise the reconstruction
quality of the final synthesized frame, as:

Lrec = f(Ît, I
GT
t ) . (4)

The full loss function is defined as:

L = Lrec + λ
∑
i

Li
warp , (5)

where λ is the loss weight for warp loss, we set λ = 0.5 to
maintain the balance between losses.



4. Detailed Runtime/Memory Comparisons
More comparisons, conducted on the 2080 Ti, are pro-

vided in Tab. 1. Our method shows efficiency compared
to high-performance models (VFIFormer and ABME), and
Ours-small is comparable to real-time models (AdaCoF).

Table 1. More Runtime/Memory Comparisons.
Input Ours VFIFormer ABME Ours-small AdaCoF

256× 256 56ms/1.49GB 214ms/2.41GB 84ms/1.50GB 13ms/1.14GB 6ms/1.19GB
512× 512 132ms/2.01GB 892ms/6.13GB 206ms/2.20GB 25ms/1.42GB 21ms/1.58GB

5. Affect of window size
As shown in Tab. 2, 7 is a decent choice for the attention

window size.
Table 2. Affect of window size.

Winow Size Vimeo90k Xiph-2k Xiph-4k

5 36.04/0.9797 36.40/0.9418 34.21/0.9015
7 36.07/0.9797 36.55/0.9421 34.25/0.9019
9 36.05/0.9795 36.53/0.9420 34.18/0.9011
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