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1. Implementation Details

In this section, we elaborate on the details of our exper-
iment, including the dataset information and the complete
training settings.

1.1. Datasets

To carry out the experiments, we adopt three datasets,
CIFAR-10 [10], CIFAR100 [10], and ImageNet [ 15]. Infor-
mation about the number of images and categories is shown
below:

Task ‘ Train Test

CIFAR-10 50000 10000 10
CIFAR-100 | 50000 10000 100
ImageNet | 1281167 50000 1000

Classes

Table 1. Detailed information of three involved datasets.

1.2. Training Settings

We adopt six different data augmentations: Random-
Crop, RandomHorizontalFlip, RandomRotation, Cutout
[6], RandomAugment [5], and AutoAugment [4]. As shown
in Tab. 2, we compose them into five data transforms for
training different models. The two student models and the
HWM in our OKDPH are trained with three different trans-
form compositions: 1, 3, 4 on CIFAR-10, 2, 3, 4 on CIFAR-
100, and 1, 4, 5 on ImageNet. In addition, before data aug-
mentation, all input images are resized to the same size of
pixels, where 32 x 32 on CIFAR and 224 x 224 on Ima-
geNet.

For CIFAR-10 and CIFAR-100, we evaluate OKDPH
on students with various backbones, including ResNet32
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[8], ResNet110 [8], VGG16 [17], DenseNet40-12 [9] and
WRN20-8 [18]. According to the common settings in OKD,
we use the SGD optimizer [16] with a learning rate of 0.1
decayed at the 150" and 225™ epoch by a factor of 0.1 when
updating the weights of students. The weight decay, the
number of epochs, and batch sizes are set to 5e~%, 300, and
128, respectively.

For the settings of ImageNet, we employ the standard
ResNet18 [8] as the backbone and train 100 epochs with
a learning rate of 0.1, which is adjusted by the multi-
step scheduler with the gamma of 0.1 and milestones of
{30,60,90} to obtain faster convergence. The weight de-
cay of the SGD optimizer and batch sizes are set to le™*
and 256, respectively. It is worth emphasizing that the re-
ported experimental results are the average accuracy of five
consecutive runs with a fixed random seed of 42.

ID ‘ Transform Composition

1 RandomHorizontalFlip

2 RandomHorizontalFlip RandomRotation
3 | RandomCrop | RandomHorizontalFlip Cutout

4 RandomAugment

5 AutoAugment

Table 2. Details of five adopted transform compositions.

2. Results of Three or More Students

Tab. 3 shows the top 1 accuracy (%) comparison of
several OKD methods in the case of multiple students or
branches, where #S/B represents the number of students or
branches. Specifically, DML, KDCL, and our OKDPH are
multiple students, while the remaining methods are mul-
tiple branches. The three students and the HWM in our
method are trained with the transform composition 1,3,4,5



Dataset | #S/B ResNet32 VGG16
DML ONE KDCL OKDDip FFL PCL Ours | DML ONE KDCL OKDDip FFL PCL Ours
2 94.27 94.31 9391 94.19 9432 9420 95.01|94.28 93.83 9424 93.72 93.92 94.22 95.32
CIFAR-10 3 |94.31 9436 94.06 9422 9449 9422 95.0394.33 93.92 9426 93.84 9396 94.74 95.72
4 (9449 9446 94.10 94.61 94.69 94.31 95.13|94.36 93.77 9428 93.78 94.26 94.38 95.78
2 72.82 74.02 71.83 7171 73.39 72.86 74.10|73.56 72.59 7398 7271 7295 73.54 75.56
CIFAR-100 | 3 [73.24 74.16 71.71 7427 74.09 73.09 74.28|73.73 72.72 73.79 73.04 72.61 75.89 77.68
4 [73.11 7416 7191 7424 74.11 7242 74.56 |74.17 7291 73.86 73.19 73.01 73.69 78.06

Table 3. Top 1 accuracy (%) comparison of several OKD methods in the case of multiple students or branches (#S/B).

Dataset | Setting | DML ONE KDCL OKDDip FFL PCL Ours
Noisy | 8137 80.62 8153  80.85  80.94 8057 81.67
CIFAR-10 | 10% | 82.07 80.19 8170 8049  79.83 8031 8245
1% 4521 4502 4447 4424 4296 4489 46.98
Noisy | 4744 4770 4673 4756  47.08 4627 48.62
CIFAR-100 | 10% | 4122 37.52 41.89  37.90 39.09 3892 4224
1% 871 780 853 792 849 746 874

Table 4. Top 1 accuracy (%) comparison with the backbone of DenseNet40-12 in the context of noisy data (Neisy) and limited data

(Sampling 10% and 1% of training data).

and 2,3,4,5 on CIFAR-10 and CIFAR-100, respectively,
while in the case of four students, the fourth student is not
used data augmentation.

The results in Tab. 3 show that the proposed method is
improved steadily with more students and is far superior to
other methods. Especially on CIFAR-100 using VGG16,
our OKDPH is 2.14%, 2.36%, and 5.24% higher than the
suboptimal method, respectively, in the case of 2, 3, and 4
students or branches.

3. Generalization Measurement

In this section, we qualitatively and quantitatively eval-
uate that our method obtains more generalized distillation
effects, including visualization of the loss landscape, effects
on noisy and limited data, and the generalization bound.

3.1. Loss Landscape Visualization

Fig. 2, Fig. 3, Fig. 4, and Fig. 5 show the loss landscape
visualization of ResNet110, VGG16, DenseNet40-12, and
WRN20-8, respectively. On all four backbones, our student
models converge to a broader and flatter basin, while other
methods converge to two basins with various flatness. Ex-
tensive loss landscape visualization on well-known archi-
tectures of the two datasets intuitively proves that the stu-
dents we obtain have strong and consistent generalization
abilities.

It is worth noticing that PCA can only be used on vectors
of the same dimension. While other OKD methods, such

as ONE [20] and OKDDip [3], are based on multi-branch
network architectures, resulting in the vast difference in pa-
rameter quantities and thus failing in the landscape com-
parison by PCA. Consequently, we only compare OKDPH
with DML and KDCL here.

3.2. Stability Analysis

As with the setting of the noisy and limited data in the
main text, we additionally verify the proposed method’s
performance on the backbone of DenseNet40-12. As shown
in Tab. 4, our method still outperforms the state-of-the-art
methods.
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Figure 1. PAC-Bayes bound of models trained on VGG16 in dif-
ferent epochs.



Methods CIFAR-10 CIFAR-100

Base DML KDCL Ours Base DML KDCL Ours
ResNet32 97.78 97.57 97.69 97.26 103.03 102.43 102.66 101.71
ResNet110 239.55 239.82 239.34 238.92 249.44 248.63 248.17 247.98
VGG16 3051.24 3051.35 3047.62 3043.88 | 3089.95 3088.79 3078.59 3068.47
DenseNet40-12 38.57 38.34 38.80 38.14 45.19 43.65 41.77 41.46
WRN20-8 1376.46  1376.83 1376.24 1374.61 | 1391.57 1392.68 1384.58 1383.76

Table 5. PAC-Bayes bound (-10°) of different backbones on CIFAR-10 and CIFAR-100.

3.3. PAC-Bayes Bound

In machine learning, the generalization bound [1, 14] is
a probabilistic bound on the defect (generalization error),
the maximum gap between the expected risk and the em-
pirical risk. The PAC-Bayes theorem [2, 12, 13] bounds the
expected error rate of a classifier chosen from a distribution
@ in terms of the KL divergence from a prior fixed distri-
bution P. Although PAC-Bayes bound in deep learning are
often vacuous, they are the primary tool for measuring gen-
eralization.

Based on the above theory, We calculate the PAC-Bayes
bound of various backbones on CIFAR-10 and CIFAR-100
to measure the generalization quantitatively. As shown in
Tab. 5, our method achieves the lowest PAC-Bayes bound
on all kinds of backbones, which shows that we get stu-
dents with better generalization ability. In other words, our
method obtains a model with a lower difference between the
training error and the error outside the distribution.

Fig. 1 shows the PAC-Bayes bound of models trained on
VGG16 in different epochs. With the continuous training
of the model, the PAC-Bayes bound gradually decreases,
which indicates that the model’s generalization is improv-
ing. We notice that the models trained by the four methods
have different degrees of overfitting. For example, the PAC-
Bayes bound is increased slightly in the 175-th epoch. It can
be seen that the overfitting amplitude of our method is sig-
nificantly lower than that of the other three methods, which
proves that parameter hybridization alleviates the overfitting
phenomenon.

4. Hyperparameters

We describe the two formulas with four hyperparameters
(w, B,7,A) in the main text as follows:

L=wll+ (1 —w) L™ + BLra(z",2"), (1)
when reach the interval A then do:
(1 =785, )

where w and (8 are the two loss terms. ~ and A are the
fusion proportion and interval. The fusion interval A can

01, =0 +

be set at the epoch or batch level, abbreviated as b and e,
respectively. For example, 5b represents the fusion of stu-
dent models and the HWM every five batches, and 1e repre-
sents the fusion of student models and the HWM every one
epoch.

Tab. 6 shows the hyperparameter values of five different
backbones on CIFAR-10 and CIFAR-100, where ResNet32-
3 and ResNet32-4 represent the case of 3 and 4 students,
respectively. Tab. 7 shows the hyperparameter values of ex-
perimental results in the context of noisy and limited data
with the backbone of ResNet32, VGG16, and DenseNet40-
12.
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Dataset ‘HP ‘ ResNet32 ResNet110 VGG16 DenseNetd0-12 WRN20-8 | ResNet32-3 ResNet32-4 | VGG16-3 VGG16-4

w 0.8 0.8 0.3 0.8 0.8 0.8 0.8 0.8 0.3
B 0.8 0.8 0.3 0.8 0.8 0.8 0.8 0.8 0.3
CIFAR-10 v 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0
A le 5b le 5b le le 5b le le
w 1.0 0.8 0.3 1.0 0.5 1.0 1.0 0.3 0.3
8 0.5 0.8 0.3 0.5 0.5 0.5 0.5 0.3 0.3
CIFAR-100 ~ 1.0 0.5 1.0 0.5 0.5 1.0 1.0 1.0 1.0
A 5b 5b le 5b 5b 5b 5b 3e 2e

Table 6. Optimal hyperparameter (HP) values of OKDPH with different backbones on CIFAR-10 and CIFAR-100, where b and e are
abbreviations for batch and epoch, respectively. 5b and le represent the fusion of student models and the HWM every five batches and
every epoch, respectively.

ResNet32 VGG16 DenseNet40-12
w B v Alw B v Ajlw B v A
Noisy [0.8 0.8 0.5 5b(0.3 0.3 1.0 1e|0.8 0.8 0.5 5b
CIFAR-10 [10% 1.0 0.5 1.0 5b{0.3 03 1.0 1e|0.8 0.8 0.5 5b
1% 1.0 0.5 0.5 5b{0.3 03 1.0 1e|0.8 0.8 0.5 5b

Noisy |1.0 0.0 0.5 5b(0.3 03 1.0 1e|1.0 0.5 0.5 5b
CIFAR-100 | 10% 05 05 1.0 5b|03 03 1.0 1e|1.0 0.5 0.5 5b
1% 1.0 05 0.5 5b|0.8 0.8 1.0 1e|0.8 0.8 0.5 5b

Dataset Setting

Table 7. Optimal hyperparameter values of OKDPH with three backbones in the context of noisy and limited data, where b and e are
abbreviations for batch and epoch, respectively. 5b and le represent the fusion of student models and the HWM every five batches and
every epoch, respectively.

CIFAR-10
Loss

o
COORHNNNWW

[SENINE- R=E R NE-N

Ours-S1
- - - -20 - ; -
10 10 Ours-S2
SOTA-S1
SOTA-S2

CIFAR-100
Loss

~10

—204

COHRENNWWAM
cUuoONNWOAO
Stotouowoun

—304

-20 0 20 40

Figure 2. The loss landscape visualization of three methods (Base, DML [19], and KDCL [7] from left to right) compared with our method
on two datasets (CIFAR-10 and CIFAR-100 [10] from top to bottom). Ours-S1 and Ours-S2 are the two students obtained by our method,
and SOTA-S1 and are the two students obtained by other methods, both of which are ResNet32 [&] trained by the same settings.
The x-axis and y-axis represent the values of model parameters by the PCA dimension reduction algorithm [11]. Each sub-diagram shows
four students who start from the initial point (Red points in the center) and converge to three basins along different loss trajectories.
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Figure 3. The loss landscape visualization of three methods (Base, DML [19], and KDCL [7] from left to right) compared with our method
on two datasets (CIFAR-10 and CIFAR-100 [10] from top to bottom). Ours-S1 and Ours-S2 are the two students obtained by our method,
and SOTA-S1 and SOTA-S2 are the two students obtained by other methods, both of which are VGG16 [17] trained by the same settings.
The x-axis and y-axis represent the values of model parameters by the PCA dimension reduction algorithm [11]. Each sub-diagram shows
four students who start from the initial point (Red points in the center) and converge to three basins along different loss trajectories.
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Figure 4. The loss landscape visualization of three methods (Base, DML [19], and KDCL [7] from left to right) compared with our
method on two datasets (CIFAR-10 and CIFAR-100 [10] from top to bottom). Ours-S1 and Ours-S2 are the two students obtained by our
method, and SOTA-S1 and SOTA-S2 are the two students obtained by other methods, both of which are DenseNet40-12 [] trained by
the same settings. The x-axis and y-axis represent the values of model parameters by the PCA dimension reduction algorithm [11]. Each
sub-diagram shows four students who start from the initial point (Red points in the center) and converge to three basins along different loss
trajectories.
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Figure 5. The loss landscape visualization of three methods (Base, DML [19], and KDCL [7] from left to right) compared with our method
on two datasets (CIFAR-10 and CIFAR-100 [10] from top to bottom). Ours-S1 and Ours-S2 are the two students obtained by our method,

and SOTA-S1 and

are the two students obtained by other methods, both of which are WRN20-8 [ 18] trained by the same settings.

The x-axis and y-axis represent the values of model parameters by the PCA dimension reduction algorithm [ 1]. Each sub-diagram shows
four students who start from the initial point (Red points in the center) and converge to three basins along different loss trajectories.
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