
Supplementary Material of NeuralDome: A Neural Modeling Pipeline on
Multi-View Human-Object Interactions

1. More Details of Data Capturing

In this section, we discuss more details about our data
capturing system and annotation process.

1.1. Data Preprocess

Accurate human-object segmentation is required for
joint optimization of capturing, Instant-NSR [16] and
Instant-NGP [9]. For each recording frame, we segment
the human-object foreground mask by running background
matting [12] and detect 2D joints (include hand) by using
state-of-the-art 2D joint detectors, e.g. OpenPose [4].

1.2. Object Tracking

For object tracking, each object is represented by a rigid
mesh by pre-scanned tenplate. To capture object motions,
we attach 10 mm hemispherical markers with strong glue
directly to the object’s surface and use at least 4 markers for
each object. Note that we empirically distribute them on the
object to ensure at least 3 of them are always observed.

1.3. Time Synchronization

To avoid motion blur, we set the Optitrack system [1] to
work at 120 FPS and set the RGB system to work at 60 FPS.
Thus we need to resample the tracking data (120Hz) to the
same frame rate as RGB (60Hz) to synchronize the RGB
and marker system. Besides, we place an additional marker
on the hand of the actor and block it as the flag of starting.
Then we manually label the start frame in both recording
timestamps.

1.4. Calibration

To align RGB and Optitrack into the unified world co-
ordinate system w.r.t. to the scene, we need to register the
Optitrack maker set to the 3D scene. First human annota-
tor annotates 3 correspondences between the marker record-
ing data and RGB world location and then estimates the
marker-to-RGB rigid transformation using ICP [2, 17]. Be-
sides, camera extrinsic parameters and rigid transformation
are fixed during each recording.

1.5. Data Capture Protocol

We recruit 10 subjects (5 males and 5 females) that are
between 18-40 years old and between 1.5-1.95m heights.
Each subjects are recorded while interacting with 23 ob-
jects, according to their time availability. To ensure interact
with objects as naturally as possible, each subjects are not
instructed to do any actions.

2. Contribution to Community
Consisting of various human-object interacting scenes

with rich labels covering capturing and rendering labels, our
NeuralDome pipeline and HODome dataset fill an impor-
tant gap in the literature and support many research direc-
tions. We propose the following challenges with HODome
dataset:
Interaction Capturing. HODome dataset provided the
largest accurate capturing label with paired natural RGB
images for strong HOI supervision. Benefiting from our
76-view setting, our dataset is suitable for the monocular
and multi-view settings. Moreover, our quantitative subset
can be used for benchmarking thanks to our accurate ground
truth and dense view validation.
Geometry Reconstruction. Joint human-object geome-
try Reconstruction is a challenging task and the existing
dataset can not be used for the benchmark. Besides, existing
publicly available data do not support learning an accurate
data-driven model of human-object geometry. Thanks to
our dense capture setting, NeuralDome can provide high-
fidelity human/object geometry to enable this task.
Object-Occluded Pose and Shape Estimation. Exist-
ing public datasets (e.g. Human36m [6] and 3DPW [14])
mainly focus on capturing accurate human labels but ignore
the object conditions. By contrast, HODome dataset pro-
vided accurate capturing labels with SMPL parameters and
3D keypoints under challenge object-occluded case.
Neural Rendering in HOI scenarios. With the human-
object interaction sequences captured by our dense cameras,
there are lots of interesting and meaningful directions to ex-
plore. First, it’s interesting to extend our layer-wise human-
object representation to weaker settings that are closer to
real life, e.g., sparse views, without accurate object poses.
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Besides, generalizable neural rendering techniques should
be further developed to support HOI scenarios where occlu-
sions are inevitable Moreover, our HODome can naturally
enable building photo-realistic neural avatars that support
object-aware deformation in HOI scenarios.

3. More Details of Human-object Tracking
In Section 4.1 of the paper, we have described the joint

tracking between humans and objects. Here we elaborate
more details and mathematical formulations.

3.1. Tracking Initialization

Object Tracking. We consider each object V ∈ Rm as a
rigid body mesh model with m vertices. And we only need
to estimate the translation Tt ∈ R3 and rotationRt ∈ SO(3)
with respect to its pre-scanned template on each frame t.
The 3D location of the object mesh on per-frame is repre-
sented as,

Vt(Rt, Tt) = RtO(ct, pt) + Tt, (1)

where O(cj) represents the pj part of category cj mesh tem-
plate. Tt and Rt is rigid transformation estimated from a
per-frame marker set using Rigid-ICP.

3.2. Joint optimization for human-object tracking

We used SMPL-X [10] as the body model, which pro-
vides a differentiable function M(·) to control an artist-
created mesh with N = 10475 vertices and K = 54 joints.
We estimate body shape and pose over the whole sequence
from multi-view RGB videos in a frame-wise manner. Re-
call that we imposed several regularization terms in Eq.
(1) to ensure plausible interactions. Here we elaborate the
mathematical formulation of each term.

Following the previous method [3, 5], we compute the
index of vertex where the body is in contact with objects,
and enforce contact between SMPL-X and object explicitly
as the following term:

Econtact = ∥1contact
t (Vt(Rt, Tt)−M(βt, θt, ψt, γt))∥22,

(2)
where 1contact

t denote as binary indicator matrix computed
from the contact map. Note that marker-based tracking is
quite accurate but remains some bias due to the error caused
by camera alignment. Thus we impose a human-object sil-
houettes loss term using a differentiable render [7] to refine
the 3D object and SMPL-X to human-object foreground
masks:

Ehomask = ∥
76∑
1

(Ihomask
j −DR(Vt,M)∥22, (3)

where DR denote as differentiable rendering and Ihomask
j

denote as human-object mask computed from background
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Figure 1. We provide more quality result on sparse-view rendering
tasks and evaluate on IBRNet [15], NeuRay [8], NeuralHuman-
FVV [13] and our baseline NeuralHOIFVV.

matting. Finally, we also impose a marker corresponding
team to prevent local minimal,

Emarker = ∥1markerVt(cj , pn)− s)∥22, (4)

where 1marker denote as a binary indicator matrix that selects
the vertices on the object mesh Vt at its marker location and
s is the tracking data by the marker.

4. More Details of NeuralHOIFVV
To validate that the HODome dataset is able to support

novel view synthesis under sparse view settings, we pro-
pose a naive method called NeuralHOIFVV. We adapt the
neural texture blending method introduced in [16]. Instead
of using precise depth, we use the reprojection of 6-view
PIFu [11] trained on HODome to generate the coarse depth
maps of the target view and input views. After getting the
coarse depth map of the target view, we use it to warp the
input images and input coarse depth maps into the target
view. Then we use the same network as introduced in [16]
to predict the two channels’ feature maps W = (W1,W2)
representing the blending weights of warped images. Note
that different from [16], we do not have a coarse rendering
image at the target view generated by the textured mesh.
Our blending result is obtained only by using the blending
map W and the warped images. We provide also provide
more quality result on sparse-view rendering tasks and eval-
uate on IBRNet [15], NeuRay [8], NeuralHumanFVV [13]
and our baseline NeuralHOIFVV as shown in Fig. 1.

5. More Experiment Results
To better evaluate the components of joint optimization,

we further do an additional quality analysis of different con-
straint terms. Note that we have no ground truth of the
specific tracking, thus we conduct qualitative evaluations
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Figure 2. Qualitative evaluation

only. Fig. 2 shows the quality result by ablating differ-
ent components. ”w/o homask” and ”w/o contact” respec-
tively denotes the result obtained without using the human-
object masks term Ehomask, and without using the contact
term Econtact. It demonstrates that the term of human-object
masks Ehomask can effectively alleviate the bias caused by
calibration and alignment and our contact map further en-
sures the realistic interaction between humans and objects.
We also provide more quality results sampled from our
HODome dataset as shown in Fig. 3. Fig. 5 provides
the gallery of data examples captured by our multi-view
HODome with 76 synchronized high-resolution RGB cam-
eras and Optitrack system. Our dataset includes a variety of
human-object under various interactions. Fig. 4 shows the
objects of data sampled from our HODome dataset.
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Figure 3. More quality results.



Figure 4. The objects sampled from our HODome dataset



Figure 5. Data examples were captured by our multi-view HODome with 76 synchronized high-resolution RGB cameras and Optitrack
system. Our dataset includes a variety of human-object under various interactions
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