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Appendix
In this appendix, we further provide detailed descriptions

on the following contents:

• Additional details on our SemiAG method in Ap-
pendix A.

• Dataset profiles in Appendix B.

• The complete implementation details in Appendix C.

• Additional experimental results in Appendix D.

• Training algorithm of PromptCAL in Appendix E.

• Qualitative and visualization results in Appendix F.

• Efficiency analysis in Appendix G.

• Broader impact and limitations in Appendix H.

• License for experimental datasets in Appendix I.

A. Additional details on SemiAG
In this section, we present an extended description of

TPG [18] affinity propagation algorithm that underlies our
SemiAG method.

Suppose we have a graph G = (V,E) with a node set V
and an edge set E. In our context, V is a set of N embed-
dings and E ∈ RN×N represents the pairwise affinity ma-
trix. TPG runs a graph diffusion process on a tensor product
graph G = (V ×V, E) defined on G, where E = E⊗E rep-
resents a 4-dim tensor. In particular, for i, j, k, l = 1..., N ,
the tensor element Ei,j,k,l = Ei,jEk,l ∈ RNN×NN . In
other words, the tensor graph G can be intuitively consid-
ered as a higher-order graph through cartesian product be-
tween G and itself. Then the graph diffusion process on G
is formulated as:

E(t) =

t∑
i=0

E i

where E(t) denotes the t-th step affinity matrix and E i is
i-power of E . Theoretically, if the row-sum of E is less than
one, E(t) will converge to a nontrivial solution. To make
computation tractable on large-scale data, TPG [18] pro-
poses an iterative equation without multiplication on tensors
which theoretically guarantees the same converged solution,
which is formulated as:

Q(t+1) = EQ(t)ET + I

where I denotes an identity matrix, E is the affinity matrix,
and Q(0) = E.

In our work, we calibrates the affinity graph with only
first-order structural information and, thus, set the diffusion

step η = 1 since: firstly, online diffusion till convergence at
each iteration will incur great computation overheads; be-
sides, we find larger diffusion steps will include noisy false
positives which significantly degrades the overall perfor-
mance. Based on our further observation that the row-wise
sum constraint has negligible effect on final performance,
we exclude the row-wise sum threshold in TPG [18] as an-
other hyperparameter.

B. Dataset details
We evaluate PromptCAL on six benchmarks, i.e.,

CIFAR-10 [9], CIFAR-100 [9], ImageNet-100 [10], CUB-
200 [17], StandfordCars [8], and Aircraft [11]. The pro-
file of six benchmark datasets is displayed in Table 1. Our
dataset splits follow GCD [16].

Dataset CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 Aircraft StanfordCars

#Images in D 50k 50k 127.2k 6k 6.6k 8.1k
#Classes (|C|) 10 100 100 200 100 196
#Known Classes (|Ckwn|) 5 80 50 100 50 98

Table 1. The dataset profiles of six benchmarks for evaluation.

C. Implementation details
Architecture and optimization. Following [16], we use
a 12-layer base vision transformer [13] with a patch size
of 16 (ViT-B/16) as our backbone in all experiments. The
backbone weights are initialized with pre-trained DINO [3]
on the ImageNet-1K [10] dataset. The first 11 blocks of the
backbone are frozen as in [16]. For our PromptCAL, we fur-
ther adapt pre-trained ViT [13] with prompts by prepending
5 prompts before each block (in VPT-Deep scheme [7]). We
only supervise the first 2 of 5 prompts at the last block with
DPR loss, and all remaining prompts are unsupervised and
thus automatically learned. In practice, this ViT backbone
can be of any architecture and pre-trained with any self-
supervised learning method on large-scale datasets. Ini-
tially, we separately adopt two DINO [3] projection heads
for [CLS] and [P] to avoid negative interferences, which
are randomly initialized. In both stages, we fix the batch
size to 128 on all datasets; besides, we optimize Prompt-
CAL with standard SGD with a momentum of 0.9, a weight
decay of 5 × 10−5, and an initial learning rate of 0.1. For
all datasets, we train PromptCAL with 200 epochs in the
first stage; in the second stage, we train PromptCAL with
70 epochs on CIFAR-10/100 and ImageNet-100 datasetes;
while, we optimize PromptCAL by 100 epochs on CUB-
200, StanfordCars, and Aircraft datasets.
Warmup training. In the 1st stage training of PromptCAL,
we adopt an unsupervised L2 distillation loss on ImageNet-
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1K [10] with a loss weight of min
(
0, 0.5× (1− E

5 )
)
. Here,

E denotes the epoch number. We add this loss based on
consideration of potential adverse effects of randomly ini-
tialized visual prompts on the class token.
Contrastive affinity learning. In the 2nd stage training
of PromptCAL, model parameters (prompt-adapted back-
bone with two heads) are initialized by the best warmed-up
checkpoint at the 1st stage. For SemiAG parameters, we
fix the neighborhood size K = |M|/(4|C|) for all datasets
unless otherwise specified. We fix sizes of both memories
as |M| = |MP| = 4096 and set Nneg = 1024 in all
experiments. Furthermore, since most edges of the bina-
rized affinity graph G′

b are of small values, we first com-
pute the mean value of non-zero affinities; then, we fix
threshold q to 80% quantile of affinities above this value for
all fine-grained datasets, and 50% for all generic datasets.
We fix diffusion step η = 1. For loss parameters, we fix
α = 0.35, τ = 1.0, and τa = 0.07 based on existing litera-
ture [3,6,16]. Besides, we determine γ = 0.35 and β = 0.6
via first and second stage validation scores on the held-out
validation set. Our teacher model is initialized by the stu-
dent weights at the beginning, and we conduct momentum
updates with a momentum of 0.999 at each iteration. Dur-
ing the inference, the [CLS] representation of the student
model is used for prediction.
Validation scheme. Follow GCD [16] setup, we assume
access to a small validation set, in which only samples
from known classes are labeled. In the first stage, we keep
the best checkpoint with the highest clustering accuracy
on Known on the validation set. In the second stage, we
keep the best checkpoint with the highest clustering quality
on the validation set for evaluation. We define clustering
quality as the average score of the clustering accuracy on
Known classes and unsupervised Silhouette score [12] on
New. Note that there is no information leakage, since Sil-
houette score does not need ground-truth label.
Other baselines. For GCD [16], since our dataset splits
are consistent with theirs, we report their official scores for
main comparisons. In our ablations, we reproduce its results
based on their official codes. For ORCA [2], we adapt their
backbone from ResNet to the same pre-trained DINO and
obtain results based on their official codes. For our base-
line (PromptCAL w/o prompt), we remove all the prompts
and DPR loss on them; besides, we keep the warmup train-
ing stage for fair comparison. Other parameters follow the
standard setups.

D. Additional experiment results

D.1. Inductive category discovery

In contrast to the evaluation protocol on transductive cat-
egory discovery GCD [16], we also conduct ablation exper-
iments on inductive category discovery protocol proposed

in ORCA [2]. In other words, besides achieving high per-
formance on category discovery on the unlabeled training
data (transductive protocol), we also expect models to learn
general rules applied to unseen test sets (inductive proto-
col). Therefore, we conduct experiment under this inductive
evaluation protocol on three benchmarks (CUB-200 [17],
CIFAR-100 [9], and ImageNet-100 [10] datasets). In this
experiment, we hold out 10% (labeled and unlabeled) train-
ing data as the validation set for GCD and PromptCAL.
From displayed results in Table 7, we can conclude that
our PromptCAL achieves the best performance on three
datasets, which manifests its good generalization capabil-
ity. Meanwhile, we observe that PromptCAL boosts perfor-
mance on New with significant margins.

D.2. Additional ablation on SemiAG and DPR

To further validate the effectiveness of our SemiAG,
we conduct ablation on different positive mining meth-
ods integrated into our online contrastive learning frame-
work with CAL. Besides, we supplement more ablation
results on larger datasets (i.e., CIFAR-100 and ImageNet-
100 datasets) to showcase that learning with semantically
discriminative prompts can achieve notable improvements
across various datasets. The experiment results are pre-
sented in Table 3. Firstly, we notice that SemiAG sig-
nificantly outperforms other positive mining methods, i.e.,
naive KNN with SemiPriori (KNN w/ S.P.) and Ranking
Statistics (R.S.) [5]. The results unveil that both KNN
with SemiPriori and RankingStats fail to reliably uncover
the substantial semantic information in embedding spaces,
which proves that our SemiAG method is the most effective
in this open-set setting. On the other hand, removing either
DPR loss or entire prompt-related components in Prompt-
CAL causes noticeable performance drop, e.g., nearly 3%
and 2% drops on All on CIFAR-100 dataset after removing
prompts and DPR loss. Moreover, removing either compo-
nent also leads to severe overfitting on Known classes.

D.3. Visualization on embeddings

To inspect the learned semantic discriminativeness of
PromptCAL, we visualize embeddings by t-SNE [15] al-
gorithm in Fig. 2. Firstly, by comparing (a-d), we can
conclude that PromptCAL can effectively learn better se-
mantic clustering, witnessed by higher purity, larger inter-
class separation, and high compactness. Notice in (b) that
naive VPT model suffer from degraded clustering perfor-
mance compared with (a) baseline, which again proves that
lack of semantic supervision is a critical issue (see ablations
in main content) in prompt tuning. Interestingly, though
not supervised, automatically learned prompts [P]∗ in (i)
and (j) can still learn robust semantically meaningful repre-
sentation, benefiting from DPR on [P]. Meanwhile, DPR
loss reinforce this effect in (g) and (h). Furthermore, we
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(a) GCD [CLS] (b) VPT-5 [CLS] (c) PromptCAL-1st [CLS] (d) PromptCAL-2nd [CLS] (e)

(f) VPT-5 [P]∗ (g) PromptCAL-1st [P] (h) PromptCAL-2nd [P] (i) PromptCAL-1st first [P]∗ (j) PromptCAL-2nd second [P]∗

Table 2. The t-SNE [15] visualization of ViT embeddings on CIFAR-10 test set for GCD [16], naive VPT model [7], and PromptCAL-
1st stage and 2nd stage, Here, [CLS], [P], and [P]∗ denote embeddings from ViT class token, ensembled prompts supervised by DPR
loss, and unsupervised prompts, respectively. The embedding clustering shows that DPR reinforces the semantic discriminativeness of
[P], and for [P]∗ despite no explicit supervision. (e) exhibits the class name each color denotes. All figures share the same axis scale.

also observe that [P] supervised by CAL loss (h) can
learn better semantic clustering than those supervised by
SemiCL (g), and better benefit [P]∗ (j). Thanks to bet-
ter semantic information supplied by CAL loss, [CLS] of
PromptCAL-2nd learns more compact and better-separated
clusters compared with that of PromptCAL-1st. To sum-
marize the above, we can conclude that the second stage
enhances the prompts potential using CAL loss, which fur-
ther enables prompts and CAL to synergistically improve
the overall performance.

D.4. Sensitivity analysis on hyper-parameters.

We conduct ablation experiments on critical hyper-
parameters of PromptCAL, which includes: (1) CAL loss
weight β; (2) neighborhood size K; (3) different pre-
training methods; (4) number of auxiliary prompts.
CAL loss weight. We sample β values from 0.2 to 1.0
at an interval of 0.2 and run experiments on StanfordCars
dataset. The results are visualized in Fig. 1. We observe
that decreased weights of contrastive affinity learning will
cause model suffer from low performance on New. We ar-
gue that, although different datasets exhibit different trends,
the model performance is fairly robust within the modest
value range (from 0.4 to 0.8).
Neighborhood size. We select K = 5, 10, 15, 20 for abla-
tions on two datasets (CIFAR-100 and Aircraft, both with
100 All classes). Results in Table 4 display that Prompt-
CAL is robust to small K; while, its performance degrades
largely as the neighborhood expands. We guess it is be-
cause false positive has severer negative effects than false
negatives.
Pretraining. We argue that PromptCAL can take advantage
of the property of the high KNN precision of ViT, which
are pre-trained in various schemes. In Table 6, we replace
DINO [3] pre-trained ViT with iBoT [19] pre-trained ViT as

Dataset Setup All Known New

CUB-200 w/o prompt 60.3 64.8 58.0
CUB-200 w/o DPR 59.3 63.3 57.4
CUB-200 KNN w/ S.P. 60.1 70.1 55.1
CUB-200 R.S. 55.6 66.0 50.3
CUB-200 PromptCAL 62.9 64.4 62.1

CIFAR-100 w/o prompt 78.1 83.0 68.4
CIFAR-100 w/o DPR 79.0 83.4 70.3
CIFAR-100 KNN w/ S.P. 78.7 85.3 65.4
CIFAR-100 R.S. 75.9 87.1 53.4
CIFAR-100 PromptCAL 81.2 84.2 75.3

ImageNet-100 w/o prompt 81.8 94.7 75.3
ImageNet-100 w/o DPR 80.7 94.8 73.6
ImageNet-100 KNN w/ S.P. 81.9 95.0 75.3
ImageNet-100 R.S. 78.1 95.2 69.4
ImageNet-100 PromptCAL 83.1 92.7 78.3

Table 3. Further ablation study on CUB-200 [17], CIFAR-
100 [9], and ImageNet-100 [10] datasets. We investigate four
setups: the first is PromptCAL removing all prompt related com-
ponents; the second is PromptCAL without DPR loss; the third is
replacing SemiAG with naive KNN incorporated with SemiPriori;
the last one is replacing our SemiAG with RankingStats [5] pseudo
labeling.

our backbone in CIFAR-100 experiments 1. We can show
that PromptCAL further improves as iBoT possesses higher
KNN precision [19]. It manifests that our PromptCAL per-
formance is likely to correlate with better initial representa-
tions.
Number of supervised prompts. We varies the number of
supervised prompts to observe sensitivity of performance

1The KNN precision of DINO and iBoT on ImageNet-1K dataset are
76.1% and 77.1%, respectively [19].
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Figure 1. Ablation study on the CAL loss weight β on StanfordCars [8] dataset.

CIFAR-100 Aircraft
K All Known New All Known New

5 80.9 85.5 71.7 49.0 54.4 46.3
10 81.2 84.2 75.3 52.2 52.2 52.3
15 80.2 83.4 74.0 50.6 55.1 48.4
20 78.9 80.3 76.1 47.4 52.5 45.0

Table 4. Ablation study on the neighborhood size K on the
CIFAR-100 [9] and Aircraft [11] datasets.

w.r.t. this parameter. Table 8 showcases the results under
different setups. We can observe that leaving some un-
supervised prompt to learn can provide extra flexibility to
the backbone and thus achieves the best performance, espe-
cially on New. In general, PromptCAL is robust to different
numbers of supervised prompts.

D.5. Additional results on Herbarium dataset

We also present evaluation results on the challenging
Herbarium2019 [14] dataset, which consists of 683 classes
and 34k images in total. Our dataset split follows [16].
Specifically, we set labeling ratio to 50% and known class
number to 341. We compare PromptCAL with other SO-
TAs on this dataset. Considering larger class numbers, we
enlarge the memory size to 2 × 104 and Nneg = 5000, ac-
cordingly. We set K = |M|/(4|C|) ≈ 7 in this case. Other
parameters follow the setup on fine-grained datasets. Ta-
ble 5 display the results, which demonstrates our Prompt-
CAL also excels at discovering categories on large vocabu-
lary fine-grained datasets, especially on New classes.

E. Training algorithm of PromptCAL
Given a training dataset D, we describe our entire

training algorithm of PromptCAL in Algo. 1. Before
PromptCAL training, we adapt the ImageNet pre-trained
ViT backbone f(·|θ) with prompts into f(·|θ, θP), and ran-
domly initialize two identity heads g(·|θH) and gP(·|θP,H)
for [CLS] and [P], respectively.

In the 1st stage, we sample a batch of images X with
their corresponding labels Y at each iteration. Note that
ground-truth labels of unlabeled images are masked in Y.

Method All Known New

KMeans [1] 12.9 12.9 12.8
RankStats+ [5] 27.9 55.8 12.8

UNO+ [4] 28.3 53.7 14.7
GCD [16] 35.4 51.0 27.0
ORCA [2] 25.5 34.7 15.8

PromptCAL (our) 37.0 52.0 28.9

Table 5. Additional experiments on the Herbarium2019 [14]
dataset.

Method All Known New

GCD [16] 73.0 76.2 66.5
PromptCAL (iBoT [19]) 83.0 85.0 78.9
PromptCAL (DINO [3]) 81.2 84.2 75.3

Table 6. Ablation study on pretraining methods on CIFAR-
100 [9] dataset.

We obtain [CLS] and [P] projected features (Z,ZP) by
forwarding X through backbone and two heads. Next, we
compute SemiCL loss (Eq. 2) on the features based on the
class labels and label-or-not information in Y. All tunable
parameters (θ, θP, θH, θP,H) are updated.

Before the 2nd stage training, we initialize two empty
embedding memory bank M,MP for [CLS] and [P], re-
spectively. Besides, we initialize the teacher model with
the student weights. During the training, for each sam-
pled batch (X, Y), we first obtain student embeddings of
[CLS] and ensembled [P] (H,HP), and corresponding
student features (Z, ZP) by forwarding images to the stu-
dent. Meanwhile, we acquire the teacher embeddings and
features (HT , HP,T , ZT , ZP,T ) from the teacher, corre-
spondingly.

Further, we construct a sub-graph for a token (line 14 for
the class token and line 18 for ensembled prompts) based on
its teacher embeddings of the current batch and all embed-
dings in its corresponding memory. Given the sub-graph,
we sequentially perform three operations of SemiAG to ob-
tain the calibrated binarized affinity graph (line 15 and 19).
For each student embedding, we utilize its teacher embed-
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CUB-200 CIFAR-100 ImageNet-100
Method All Known New Known∗ New∗ All Known New Known∗ New∗ All Known New Known∗ New∗

GCD [16] 57.5 64.5 50.6 69.2 57.6 70.1 76.8 43.5 78.7 58.2 79.7 92.7 66.7 92.7 66.9
ORCA (DINO) [2] 40.7 61.2 20.2 76.3 38.3 77.7 83.6 53.9 83.6 66.6 81.3 94.5 68.0 94.5 71.1
PromptCAL (our) 62.4 68.1 56.8 70.1 60.1 81.6 85.3 66.9 86.2 71.3 84.8 94.4 75.2 94.4 75.3

Table 7. Evaluation in the inductive GCD setting [2] on three benchmarks. The results are reported in accuracy scores on the test
set. Here, we also adopt the task-informed evaluation protocol in [2, 4], i.e., Known∗ and New∗ are evaluated by separate clustering and
Hungarian assignment.

Stage 1 Stage 2
Method All Known New All Known New

GCD [16] 51.3 56.6 48.7 - - -
DPR-2-5 51.1 55.4 48.9 62.9 64.4 62.1
DPR-1-5 51.7 57.2 48.9 59.9 63.0 58.4
DPR-5-5 50.9 55.6 48.6 61.0 63.6 59.8

Table 8. Ablation study on prompt numbers of our prompt-
adapted ViT backbone. Evaluation conducted on CUB-200 [17]
dataset.

ding counterpart as a query on the affinity graph to acquire
its pseudo positive set and pseudo anchor set with randomly
sampled pseudo negatives (line 16 and 20). With these
pseudo positive and anchor sets, we compute CAL loss on
embeddings of each token (line 17 and 21) by Eq. 7.

Along with CAL loss, we also compute SemiCL loss
on the projected features; here, we utilize student embed-
dings as queries and teacher embeddings as keys in the con-
trastive loss (Eq. 8 and Eq. 9). In other words, for each
student embedding, we construct its positive and anchor
sets with teacher embeddings and then compute the semi-
supervised contrastive loss. Next, we obtain the total loss
for the [CLS] token by combining its SemiCL and CAL
loss functions (Eq. 9). After adding our DPR counterpart
loss on ensembled prompts, we finally get the total loss at
this stage (Eq. 10).

At each iteration, all tunable parameters of the student
are updated. Lastly, we update two memories with teacher
embeddings of their corresponding token and update mo-
mentum teacher model with the updated student model.
Note that for inference, we adopt embeddings from the
[CLS] token of the student model f(·|θ, θP) for final pre-
dictions.

F. Qualitative results

In this section, we present qualitative results of catego-
rization confusion matrix, attention map visualization, and
KNN retrieval.
Confusion matrix on ImageNet-100. We present confu-
sion matrix for GCD [16] and our PromptCAL on both
Known and New classes on ImageNet-1K dataset in Fig. 2.

We can observe that our PromptCAL can learn more robust
clusters on New classes, while preserving high accuracy on
Known. Moreover, our PromptCAL is less susceptible to
confusion between Known and New.
Attention map visualization. We visualize and com-
pare the attention maps of [CLS] tokens of DINO [3],
GCD [16], PromptCAL-1st, and PromptCAL-2nd in Fig. 3.
We summarize the following observations: (1) DINO
attends to the instance discriminative regions, e.g., li-
cence plate, and may overfit on surrounding objects; while,
PromptCAL lays more attention on class-specific features,
e.g., car lights for cars, and feather textures for birds. (2)
Although both GCD and PromptCAL can attend to semanti-
cally meaningful regions, PromptCAL-2nd focuses on mul-
tiple semantically discriminative regions, e.g., car lights
and textures, feathers and wings. (3) After CAL train-
ing, attention maps of PromptCAL-2nd in contrast to that
of PromptCAL-1st are remarkably refined.
Nearest-neighbor query. In Fig. 4, we visualize the 8 pre-
dicted nearest neighbors, from GCD [16] and our Prompt-
CAL, of 20 randomly selected query images, which are la-
beled with correct (green) and incorrect (red). Specifically,
we first randomly sample a subset from ImageNet-1K, and
conduct KNN search (with cosine distance) for given ran-
dom queries in [CLS] embedding space. We can observe
that PromptCAL generally exhibits higher retrieval preci-
sion (e.g., for “n02006656” in 3rd row, “02018207” in 5th

row, “n02027492” in 8th row). To summarize, our Prompt-
CAL learns more semantically calibrated local structures.
We also notice that both GCD and PromptCAL fails on
“n01695060” in 11th row, which, we guess, is due to the
confusing view angle of the query image and high visual
similarities between lizards of different species.

G. Efficiency analysis

Compared with the raw ViT backbone (GCD [16]), our
PromptCAL only adds negligible computation overheads
during inference, since the only overheads origin from vi-
sual prompts. In Table 9, we quantitatively list inference
time per image, thoughput, and FLOPs for PromptCAL. It
can be observed that our PromptCAL achieves comparable
inference efficiency with the raw ViT backbone.
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Figure 2. Confusion matrix of PromptCAL on ImageNet-100 [10] test set. The labels on the x-axis and y-axis denotes the class index
of our generated split. The first 50 classes are Known, and the last 50 classes are New.

Method Time (s/per img) Throughput (img/s) FLOPs

GCD [16] 1.70× 10−3 586 35.1
PromptCAL (our) 1.79× 10−3 558 36.1

Table 9. Comparison on inference time, throughput, and
FLOPs based on ViT-B/16 backbone.

H. Broader impact and limitations
It should be noticed that although our method achieves

state-of-the-art performance on generalized novel category
discovery problem, the performance gap between the fully
supervised counterpart and our method still exists. Besides,
in real world, the data can be more complicated and un-
curated. For instance, realistic data may follow long-tail
distributions, human-annotation may incur noises, and the
vocabulary maybe huge. We leave these for future research.

I. License for experimental datasets
All datasets used in our experiments are permitted for re-

search use. CIFAR-100 and CIFAR-10 [9] are released un-
der MIT license for research use. ImageNet-100, the subset
of ImageNet [10], also allows for research purpose. Be-
sides, CUB-200 [17], Aircraft [11], StanfordCars [8] also
permits for research purpose. Herbarium19 [14] are re-
leased for non-commercial purposes.
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Algorithm 1: PromptCAL training algorithm.
Input: Training dataset D = Du ∪ Dl, an ImageNet pre-trained ViT backbone f(·|θ), and a randomly-initialized [CLS]

projection head g(·|θH).
Output: Trained prompt-adapted model f(·|θ, θP).

1 Initialize prompt-adapted backbone with random prompts into f(·|θ, θP).
2 Randomly initialize prompt projection head gP(·|θP,H) from g.
/* Stage 1: Warm-up Training */

3 for each epoch e=1...E1 do
4 for each batch (X,Y) ∈ D do
5 Z,ZP = Forward(X, f, g, gP) // forward backbone and heads

6 Compute overall SemiCL loss L1 by Eq. (2) on Z,ZP.
7 Back-propagation and optimize θ, θP, θH, θP,H.

/* Stage 2: Contrastive Affinity Learning */
8 Initialize memoryM,MP.
9 Initialize teacher fT , gT , gP,T from the student model.

10 for each epoch e=1...E2 do
11 for each batch (X,Y) ∈ D do

/* Forward */

12 H,HP,Z,ZP = Forward(X, f, g, gP) // forward student

13 HT ,HP,T ,ZT ,ZP,T = Forward(X, fT , gT , gP,T ) // forward teacher
/* SemiAG for [CLS] */

14 Concatenate embedding E ← [HT ;M] for [CLS] token and construct sub-graph G′
H.

15 Compute binarized affinity graph G′
b from G′

H by applying SemiAG in Eq. (4) (5) (6) sequentially.
16 Obtain pseudo positives Pa and pseudo anchors Aa from G′

b.
17 Compute CAL loss LCLS

CAL for [CLS] with Pa and Aa on H by Eq. (7).
/* SemiAG for [P], similar process to [CLS] */

18 Concatenate embedding EP ← [HP,T ;MP] for [P] token and construct sub-graph G′
P,H.

19 Compute G′
P,b from G′

P,H by applying Eq. (4) (5) (6) sequentially.
20 Obtain pseudo labels PP,a and AP,a from G′

P,b.
21 Compute CAL loss LP

CAL for [P] with PP,a and AP,a on HP,T by Eq. (7).
/* SemiCL loss */

22 Compute LCLS
sup , LCLS

self for [CLS] and LP
sup, L

P
self for [P] on Z and ZT by Eq. (8).

/* Compute total loss */

23 Compute [CLS] total loss LCLS
2 with LCLS

sup , LCLS
self , L

CLS
CAL by Eq. (9).

24 Compute overall total loss L2 with LCLS
2 and its DPR counterpart LP

2 by Eq. (10).
/* Back propagation */

25 Back-propagation and optimize student θ, θP, θH, θP,H.
26 M← Enqueue(M,HT ),MP ← Enqueue(MP,HP,T ) // update memories
27 Update momentum teacher with current student.

28 return f(·|θ, θP)
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Figure 3. Attention map visualization of class tokens for comparison on StandfordCars [8] (left) and CUB-200 [17] (right) datasets.
The columns from left to right refer to attention maps of DINO [3], GCD [16], our first stage PromptCAL, and our second stage Prompt-
CAL. In the first row, attended areas are marked in red in each images; the second row display the complete attention maps corresponding
to the first row images (yellow regions denote high attention values).
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Figure 4. Visualization of retrieved 8-NN for 20 randomly selected query images (with blue borders). The correct/incorrect predictions
are marked with green/red borders. The predictions on the left come from GCD, and the right is from PromptCAL. The first column
contains ImageNet synsetIDs, category name, and Known/New for each query. Better view with zoom in.
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