
Ref-NPR: Reference-Based Non-Photorealistic Radiance Fields for Controllable
Scene Stylization: Supplementary Material

A. Supplementary Materials
We have prepared supplementary materials, including a

document and a video, to provide a more comprehensive
understanding of Ref-NPR. In the document, we discuss the
technical details of our implementation in Sec. B, and pro-
vide visualizations in Sec. C to better illustrate the proposed
modules in Ref-NPR. Moreover, we present additional ex-
amples and visualizations in Sec. D to demonstrate the per-
formance and controllability of our method. Furthermore,
we have prepared a video that showcases the results and
comparisons of Ref-NPR. We also provide live demo ex-
amples on the project page.
Video link https://youtu.be/jnsnrTwVSBw.
Project page https://ref-npr.github.io.

B. Technical Details

Implementation details. Two worth-noting details may
affect the visual quality of stylization results when imple-
menting Ref-NPR.

• Before computing image-level loss terms (Lcolor and
Lfeat), for LLFF [5] and T&T [4] dataset, we down-
sample both stylized and content views by 2x to speed
up the calculation of patch-wise feature distance.

• Different from the implicit feature loss Lfeat, in or-
der to get a high-level semantic color mapping for the
color-matching loss Lcolor, we evaluate distances be-
tween features extracted by the last stage (i.e., stage
5) of VGG backbone [7]. Besides, when calculating
Lcolor, we exclude the position of interest (i, j) where
the semantic feature is not close enough to any feature
in the reference view, to avoid over-matching. Such
a constraint of the feature distance for valid position
(i, j) is formulated as

min
i′,j′

dist(F
(i,j)
I , F

(i′,j′)
IR

) < 0.4 . (1)

Details of comparison. Our experiments on Texler [8] are
conducted using their official implementation. As the refer-
ence view can be freely chosen, it is possible that continu-
ous views with high-quality temporal coherence do not ap-
pear in the test sequence. Therefore, we only use the RGB
image sequence as input and follow the default training set-
tings by training each scene for 30,000 iterations. However,

it is important to note that Texler’s method is unsuitable for
videos with large movements and rotations, and we train it
on the template view. Despite applying the Gaussian mix-
ture strategy with a dense sample rate, error accumulation
still leads to artifacts in the output.

Regarding SNeRF [6], we re-implement it based on
Plenoxels [2] and use Gatys [3] as the stylization method.
We train the stylization step for 10 iterations and the entire
scene stylization for 10 epochs for each training view.

Quantitative comparison. In Sec. 4.3, we propose a
reference-based perceptual similarity metric to evaluate our
method. The detailed LPIPS scores for each scene are re-
ported in Tab. B.1. It is worth noting that the scene-wise
LPIPS scores exhibit significant variations. We speculate
that these fluctuations may be due to the substantial differ-
ences in camera poses between the reference view and all
other test views. Additionally, Texler [8] achieves slightly
better reference-related LPIPS scores. However, it fails to
produce satisfactory results when the camera pose diverges
significantly from the reference camera φR, as demon-
strated in Fig. D.7 and the supplementary video.

Fig. B.1 (a) depicts the procedure of the designed LPIPS
evaluation in the paper. As only the reference image is given
to evaluate the visual quality, we utilize LPIPS referring to
CCPL [9] as a metric for frame-wise stylization consistency.
The closest ten frames represent a frame-wise consistency
of stylization results with the given style reference. Fig. B.1
(b) depicts our experiments investigating the robustness of
stylization methods. For a stylized NeRF ωNP, we render
a set of views as the style reference and use them to get
a set of stylized NeRFs. Given the same camera path, we
compute the PSNR of rendering results between them and
ωNP.

C. Method Visualizations

Reference ray registration. Fig. C.2 gives two concrete
examples of how ray registration provides supervision in
reference-dependent areas. Rays related to the stylized ref-
erence SR are projected to each training view to provide
pseudo-ray supervision.

Template-based feature matching. Except for explicit su-
pervision in R3, the implicit supervision provided by TCM
is essential to occluded regions. Fig. C.3 shows two exam-
ples of patch-wise replacement results. For guidance fea-
ture FG, we select VGG features at stages 3 and 4. Since
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Figure B.1. Left: An illustration of the Ref-LPIPS and robustness test. Right: Tested views for robustness.

Ref-LPIPS ↓ Geo. Consist. Chair Ficus Hotdog Mic Flower Horn Truck Playground Average
Texler [8] ✗ 0.167 0.120 0.216 0.119 0.230 0.488 0.667 0.675 0.335
ARF [10] ✓ 0.185 0.123 0.300 0.146 0.619 0.502 0.683 0.592 0.394
SNeRF [6] ✓ 0.188 0.129 0.283 0.138 0.646 0.492 0.702 0.663 0.405
Ref-NPR ✓ 0.164 0.122 0.273 0.126 0.289 0.471 0.669 0.596 0.339

Table B.1. Reference-related novel view LPIPS for each test scene.

reference view training views with registered rays

Figure C.2. Two examples to visualize registered rays in R3. We
paste pseudo-rays on content images in the first example for a bet-
ter presentation.

the patch-wise semantic feature is a high-level representa-
tion for each patch, the receptive field is much larger than
the corresponding image patch.

Conversely, directly using patch replacement results at
the same stages for the color supervision Lcolor may result
in a color mismatch problem, as highlighted in Fig. C.2.

reference view feature supervision color supervision

stage 3 stage 4 stage 5

Figure C.3. Two examples of patch-wise replacement on VGG
feature at the last three stages to visualize the semantic correspon-
dence. Color mismatch problems in shallow semantic features are
highlighted.

This problem is mainly caused by the receptive field differ-
ence between the feature patch and the image patch. Hence,
as mentioned in Sec. B, we evaluate feature distances at the
last VGG stage for color-matching supervision.

Loss balancing ablation. In addition to the ablation stud-
ies on the microphone example provided in Sec. 4.4, we
conduct another ablation on the scene flower to discuss the
effectiveness of color-matching loss Lcolor and the smooth
content update strategy, which is described in Sec. 4.1.

For the same content view in Fig. C.4 (a), the color

2



(d) full model(c) w/o smooth update

(b) w/o !!"#"$(a) content image

Figure C.4. Ablation on the color-matching loss and smooth up-
date strategy. The occluded region is zoomed in.

mismatch problem would exist in occluded regions when
we remove the color-matching loss Lcolor, as shown in
Fig. C.4 (b). In Fig. C.4 (c), we find that the stylized view
without applying the smooth update strategy leads to oc-
cluded regions being under-stylized, which implies that the
quality of semantic correspondence in the original content
domain needs to be enhanced by TCM. A full model in
Fig. C.4 (d) clearly shows a satisfying stylization result in
terms of both color and style.

Discussion on TCM matching. We also validate the how
effectiveness of the patch-wise matching scheme in TCM.
Unlike epipolar correspondence, the deep semantic feature
is calculated in 2D patch-wisely. The correspondence is
only computed once and costs around 2 seconds for a set
with 100 images. As shown in Fig. C.5 (a), a direct match
with the stylized view often fails to get desired correspon-
dence due to the domain gap in the semantic feature space.
Conversely, in Fig. C.5 (b), TCM matches features within
the same content domain. Hence the semantic correspon-
dence is preserved at each level of semantic features.

stage 3 stage 4 stage 5

(a)

(b)

Figure C.5. Patch-wise replacement results on features from the
last three stages of VGG backbone. (a) Matching with the style
reference directly. (b) Matching with the content reference (TCM).

D. More Results

Comparsion with INS. We test INS [1] on examples with
the same reference cases in Fig. 5 and Fig. D.10. Results
are shown in Fig. D.6. Due to its simple supervision design,
INS cannot generate satisfying results which contain local
correspondence.

*Click image for animated version

Figure D.6. Examples with INS.

More comparisons. Fig. D.7 offers two additional exam-
ples to compare our method with [6, 8, 10]. As discussed
in Sec. 4.2, Texler can generate novel-view stylized results
with a proper color distribution, but consistent results with
the reference stylized view can be only obtained under the
condition that the test camera pose is around the reference.
More specifically, it fails to generate reasonable style in the
occluded regions and has some flickering or ghosting arti-
facts in a continuous sequence. Two scene stylization meth-
ods [6, 10] are unable to find a desired style mapping to
the entire scene. Neither in the reference-related regions
nor the occluded regions. By contrast, results generated by
Ref-NPR keep both semantic correspondence and geomet-
ric consistency with the reference view.

Flexibility & controllability. In Sec. 5, we show the ability
of Ref-NPR to adapt with an arbitrary image as reference.
Fig. D.10 gives two examples to demonstrate the flexibil-
ity of Ref-NPR, where the stylized reference view is gen-
erated by selecting one stylized view from ARF for each
scene. In Fig. D.10 (a), we manually edit the selected view
and take it as the style reference. Ref-NPR faithfully re-
produces the textures in the edited regions. Meanwhile, as
shown in Fig. D.10 (b), our method can reproduce the orig-
inal novel-view stylizations by ARF through feeding in a
stylized view as reference, which requires high-quality se-
mantic correspondence.

Except for the local editing and scene stylization repro-
ducing, the controllability of Ref-NPR can also be rep-
resented by adapting scene stylization to various styles.
Fig. D.9 shows two examples of applying multiple styles
to the same scene. Ref-NPR is capable of producing a
faithful stylization result for each style owing to the model-
ing of cross-view semantic correspondence. Additionally,
as shown in Fig. D.8, powered by controllable diffusion
models [11], Ref-NPR is capable of text-driven controllable
scene stylization as well.
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Figure D.7. Additional examples for qualitative comparisons.
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Figure D.8. Controllable scene stylization with ControlNet [11] and Ref-NPR. A text-driven stylization with an image diffusion model is
used to generate reference (the second column), then Ref-NPR can propagate it to the whole scene.
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Figure D.9. Examples to show the controllability of Ref-NPR with hand drawing styles. Stylized novel-view rendering results are satisfac-
tory with references in different styles.

6



ARF

Ref-NPR

stylize

edit

ARF

Ref-NPR

one st
ylized

view

(a)

(b)

stylized novel views

Figure D.10. Examples to show the flexibility of Ref-NPR: (a) reference editing based on a stylized view, and (b) reproducing novel-view
stylization given one stylized view generated by ARF [10] as reference.
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