
Seeing a Rose in Five Thousand Ways
–Supplementary Material–

Yunzhi Zhang
Stanford University

Shangzhe Wu
University of Oxford

Noah Snavely
Cornell Tech

Jiajun Wu
Stanford University

1. Implementation Details

Network Architectures. The generator consists of a SDF
network and an albedo network, both modulated by FC lay-
ers with SIREN [8] activations, and an optimizable scalar pa-
rameter s (Equation 6 in the main paper). The architectures
of the two networks are identical to those in StyleSDF [7],
except that we disable view-dependence for the albedo net-
work. The discriminator architecture is identical to that of
GIRAFFE [6], except that the image discriminator addition-
ally outputs 6 channels for pose prediction, which is used to
compute the regularization loss term (Equation 7 in the main
paper).

Scale and Shift Augmentations. Recall that we apply scale
and shift augmentations to prevent the discriminator from
overfitting and to improve robustness towards estimation
error in the prior pose distribution, as discussed in Section
3.3. The shift augmentation is implemented as integer off-
sets along height and width, uniformly sampled between
[−0.125, 0.125] relative to the resolution of image crops.
The scale factor s is sampled from log2 s ∼ N (0, 0.2). An
ablation study shows the benefit of data augmentation, as
shown in Table 1.

Discriminator inputs. As introduced in Section 3.3, we use
two discriminators, Dη and Dηmask , which take RGB values
and masks of instances as real inputs, respectively. Examples
of these real inputs are shown in Figure 1.

2. Learning from Multiview Images

Dataset. While our method is designed to learn a genera-
tive model from observations of similar, non-identical in-
stances, to evaluate its robustness, we additionally evaluate
our method to learn from multiple views of one instance
with known foreground masks and unknown camera poses.

We use the synthetic dataset from NeRF [5], which con-
tains 8 multi-view scenes and 100 training images for each
scene. During training, poses are randomly sampled as ori-
ented towards the upper hemisphere. The light direction
is initialized as collocated with the camera. We train our
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Figure 1. Instances are cropped from the input image as inputs
to the discriminators. As shown are examples of RGB values of
instance crops (first row) and corresponding instance masks (second
row).
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Figure 2. Results on all scenes from the dataset from NeRF [5].
Our method robustly reconstructs the scene geometry training on
multi-view images with unknown camera poses.

method for 300K iterations for all scenes. While there is
no instance variance among multiview observations, we use
identical configurations as experiments in the main paper
for consistency and keep the 64-dimensional latent space
introduced in Section 3.1.

Results. Figure 2 compares rendered novel views with the
ground truth. In this visualization, for each ground truth im-
age from the held-out test split, we render 1000 images with
randomly sampled poses and latent vectors, and visualize
the one with the lowest LPIPS error. Results show that our
method robustly recovers the 3D geometry in all scenes.

3. Ablation Studies

Architecture Designs. We conduct ablation studies on sev-
eral design choices introduced in Section 3.3 in the paper,
namely the effects of scale and shift augmentations, the
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Normal Depth View Synthesis

Angle(◦)↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

No-aug 14.50 13.12 27.04 0.89 0.06
No-alb 22.15 0.03 27.24 0.90 0.05
No-Dmask 16.26 0.11 28.94 0.93 0.04
Fix-bg 19.57 0.07 28.89 0.92 0.04
Full 14.35 0.05 29.16 0.93 0.04

Table 1. Ablation Studies on synthetic data. We compare with the
full model (“Full”) with the following model variants: without data
augmentations (“No-aug”), without intrinsics decomposition (“No-
alb”), without mask discriminator (“No-Dmask”), and one without
background randomization (“Fix-bg”). The full model achieves
better reconstruction quality both in geometry and appearance syn-
thesis.
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Figure 3. Rendered depth.

0◦ ±15◦ ±45◦

MSE 2.34 3.07 3.25

Table 2. Depth error (×10−4).

explicit shading model, the mask discriminator, and back-
ground randomization.

We compare performance of a model variant with no
augmentation (denoted as “No-aug” in Table 1), one that
predicts the final color instead of albedo (“No-alb”), one
with no mask discriminator (“No-Dmask”), one with fixed
background (“Fix-bg”), and the full model (“Full”). All
variants are evaluated on two of the four scenes, rendered
with the 3D asset from [1]. As shown in Table 1, each of
these module components improves shape reconstruction
quality measured by normal angle errors and depth errors,
and improves view synthesis results.
Robustness to Inaccurate Pose Distribution Estimation.
We show that the model is robust against a certain amount of
estimation error in the prior pose distribution. Specifically,
we perturb the estimated pose distribution by perturbing the
camera elevation with ±15◦,±45◦, and rerun the model on
the scene of roses in Figure 6 of the main paper. Figure 3 and
Table 2 show that the model still learns reasonable shapes
with a ±15◦ perturbation.

4. Qualitative Results on Real-Captured Data
More qualitative comparisons with the baseline method

on real-captured data are shown in Figure 4. Our method
produces results with significantly better view consistency
compared to the baseline method.

5. Qualitative Results on Synthetic Data
In Figure 5, together with Figure 7. from the main pa-

per, we show comparisons with baseline methods on all four

scenes from the synthetic dataset. In Table 3, we compare
with NeRD [2] and Neural-PIL [3] using the same image
crops as training inputs as used in our method. These two
methods originally assume that camera intrinsics are consis-
tent across training views, but image crops of instances have
different principal point offsets, violating this assumption.
Therefore in Table 3 from the main paper, we re-render each
instance re-centered to the origin as training data for the base-
lines. In either case, our method produces better intrinsics
decomposition and reconstruction results compared to the
baseline methods, which have additional access to ground
truth camera poses.

6. Qualitative Results on In-the-Wild Data
The proposed method effectively learns object intrinsics

across a range of objects from in-the-wild data, and can be
applied to applications such as view synthesis, relighting,
and novel instance generations, as shown in Figures 6 and 7.
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Figure 4. View synthesis results on three real-captured scenes. Each row contains the input image along with images under eight different
viewpoints synthesized by GNeRF [4], and by our method. Compared with GNeRF, our method synthesizes images with significantly better
view consistency and higher fidelity.

Normal Depth Albedo View Synthesis Relighting

Angle(◦)↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRD∗ [2] 65.94 95.33 14.19 0.62 0.35 18.61 0.64 0.32 18.28 0.63 0.32
Neural-PIL∗ [3] 75.84 77.68 13.66 0.58 0.36 19.91 0.65 0.32 19.76 0.64 0.32
Ours 22.69 1.10 22.48 0.87 0.10 29.13 0.93 0.04 26.03 0.91 0.06

Table 3. Results on synthetic data. Both baselines use ground truth poses (denoted as ∗) and use the same image crops as in our method as
training inputs. Our method produces better reconstruction results compared to the baselines.

Albedo Normal Depth

GT

Ours

Neural-
PIL*

NeRD*

New View

GNeRF

Input Image

NeRF*

N/A

N/A N/A

N/A

N/A

N/A N/A

N/A

N/A N/A N/A N/A

Albedo Normal DepthNew View

Input Image

Figure 5. Results of intrinsic decomposition on two of the four
scenes from the synthetic dataset. The remaining two scenes are
shown in Figure 7 of the main paper.
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Figure 6. Results for view synthesis, relighting and instance generation on in-the-wild images. Each row corresponds to predicted appearance,
normal or shading maps.
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Figure 7. Results for view synthesis, relighting and instance generation on in-the-wild images. Each row corresponds to predicted appearance,
normal or shading maps.
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