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A. Overview
This supplementary material includes:

• Implementation details for exploiting the full data in
the few-shot task (in Sec.B);

• Hyper-parameters validation, e.g., the weight coeffi-
cient of the loss function, the momentum, and the num-
ber and size of multi-crop (in Sec.C);

• More feature visualization results (in Sec.D);

• Results with 95% confidence intervals. (in Sec.E);

B. The implementation details of exploiting the
full data in the few-shot task

State-of-the-art methods usually exploit the full data
in the few-shot task to improve performance, such as
TPN+ATA† [1], TPN+AFA† [2] and RDC† [3]. Exploiting
the full data means that the samples in the query set are also
used but in an unsupervised fashion. In order to maintain
a fair comparison with the methods, the proposed method
(LDP-net†) also exploited the full data in the few-shot task.
We take a few-shot task as an example, and summarize the
implementation details in algorithm 1 in detail. Specifically,
we first train a Logistic Regression Classifier (LRC) using
the support set. Then, we use the trained classifier to make
predictions on the query set. Next, we select some query
samples with high confidence for each class according to
the predictions. Then, we add these selected query samples
to expand the support set. Finally, the classifier is re-trained
on the expanded support set. We repeat this process several
times, and use the last predictions as the final results for the
query set. It is worth noting that, in 1-shot setting, since
there is only one original support sample for each category,
if the selected query samples are directly used to expand
the support set of each category, this will cause noise inter-
ference. To avoid this problem, we average the expanded
support samples of each class. In this way, we always keep
only one support sample per class to train the classifier. For
the 5-shot setting, we directly use all support samples after
expansion to train the classifier.

Algorithm 1 The implementation details of exploiting the
full data
Input: Feature extractor fθs , Logistic Regression Classi-

fier (LRC), the support set TS , the query set TQ
Output: The predictions of TQ

1: Utilize fθs to extract features for all samples
2: Train the LRC using TS
3: Use the trained LRC to make predictions on TQ
4: According to the predictions of TQ, at most ten query

samples are selected for each category to expand the
support set

5: Retrain LRC using the expended support set
6: Use the trained LRC to predict TQ
7: Repeat steps 4 to 6 seven times
8: Use the last predictions as the final results for TQ
9: return The predictions of TQ

C. Hyper-parameters validation

The hyper-parameters of the proposed method include
the coefficient λ1 of self-image knowledge distillation loss,
the coefficient λ2 of cross-image knowledge distillation
loss, the momentum parameter m in cross-episode knowl-
edge distillation, and the size and number of crops. For λ1,
we fix it to 1. We validate the remaining hyper-parameters
on the CUB, Cars, EuroSAT and ISIC datasets respectively.

For the hyper-parameter λ2, we evaluate the perfor-
mance under the values of 0.05, 0.10, 0.15, 0.25 and 0.50
respectively. The experimental results are shown in Fig. 1.
Overall, the performance is not sensitive to the value of λ2.
We set λ2 to 0.15.

For the hyper-parameter m, we vary the values within
the set of {0.990, 0.993, 0.996, 0.997, 0.998, 0.999}. The
experimental results are shown in Fig. 2. It can be seen that
when m changes between 0.990 and 0.999, the four datasets
observe different but minor performance variation. Without
otherwise stated, the value m is set to 0.998 uniformly on
all the datasets.

For the size of crops, we evaluate four cases, i.e., 48×48,
72×72, 96×96 and 128×128. The experimental results are
shown in Table 1. It can be seen that in most cases, crop
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(a) CUB (b) Cars

(c) EuroSAT (d) ISIC

Figure 1. Classification accuracy w.r.t values of λ2.

(a) CUB (b) Cars

(c) EuroSAT (d) ISIC

Figure 2. Classification accuracy w.r.t values of momentum.

size of 96×96 achieves superior performance.
For the number of crops within each image, we evaluate

the crop number of 2, 3, 5, 6 and 8 respectively. The experi-
mental results are shown in Fig. 3. Overall, the performance
is optimal when the number of crops is 6.

D. More feature visualization results
We provide more feature visualization results in Fig. 4.

It can be seen that ProtoNet++ only pays attention to some
local regions of the object, e.g., Fig. 4 (b), (e), (h), (k), (n),
(q), (t), (w). In contrast, the proposed method can focus
on a wider range of the object, e.g., Fig. 4 (c), (f), (i), (l),
(o), (r), (u), (x), which means that the proposed method can

(a) CUB (b) Cars

(c) EuroSAT (d) ISIC

Figure 3. Classification accuracy w.r.t the number of crops.

capture more comprehensive semantic information and thus
generalize better.

E. Results with 95% confidence intervals
In the manuscript, due to space constraints, we did not

present the results with 95% confidence intervals in the
comparative experiments with the state-of-the-art methods.
We add the results with confidence intervals to this supple-
mentary material, as shown in Table 2 and Table 3.



(a) Raw image (b) ProtoNet++ (c) LDP-net (ours)

(d) Raw image (e) ProtoNet++ (f) LDP-net (ours)

(g) Raw image (h) ProtoNet++ (i) LDP-net (ours)

(j) Raw image (k) ProtoNet++ (l) LDP-net (ours)

(m) Raw image (n) ProtoNet++ (o) LDP-net (ours)

(p) Raw image (q) ProtoNet++ (r) LDP-net (ours)

(s) Raw image (t) ProtoNet++ (u) LDP-net (ours)

(v) Raw image (w) ProtoNet++ (x) LDP-net (ours)

Figure 4. Feature visualization for ProtoNet++ and the proposed LDP-net.



Table 1. Classification accuracy w.r.t the crop size. Average classification accuracies (%) are provided. The best results are in bold.

CUB Cars EuroSAT ISIC

Crop size 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

48×48 47.16 68.14 35.05 51.36 64.18 80.16 32.54 44.88
72×72 46.67 67.86 34.61 50.28 62.74 80.34 33.38 45.36
96×96 47.70 68.94 34.65 51.61 63.70 80.26 33.51 46.42

128×128 46.60 68.17 34.15 50.46 64.96 80.81 33.16 45.65

Table 2. Comparison with state-of-the-art methods. Average classification accuracies (%) are provided.† stands for exploiting the full data
of FSL task. ∗ stands for fine-tuning on target domain. The best results are in bold.

CUB Cars

Methods Mark Ft 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet [4] NeurIPS-16 % 35.89%±0.51% 51.37%±0.77% 30.77%±0.47% 38.99%±0.64%
RelationNet [5] CVPR-18 % 41.27%±0.40% 56.77%±0.40% 30.09%±0.30% 40.46%±0.40%

GNN [6] ICLR-18 % 44.40%±0.50% 62.87%±0.50% 31.72%±0.40% 43.70%±0.40%
RelationNet+FT [7] ICLR-20 % 43.33%±0.40% 59.77%±0.40% 30.45%±0.30% 40.18%±0.40%

RelationNet+ATA [1] IJCAI-21 % 43.02%±0.40% 59.36%±0.40% 31.79%±0.30% 42.95%±0.40%
GNN+FT [7] ICLR-20 % 45.50%±0.50% 64.97%±0.50% 32.25%±0.40% 46.19%±0.40%

GNN+ATA [1] IJCAI-21 % 45.00%±0.50% 66.22%±0.50% 33.61%±0.40% 49.14%±0.40%
MatchingNet+AFA [2] ECCV-22 % 41.02%±0.40% 59.46%±0.40% 33.52%±0.40% 46.13%±0.40%

GNN+AFA [2] ECCV-22 % 46.86%±0.50% 68.25%±0.50% 34.25%±0.40% 49.28%±0.50%
LDP-net (ours) - % 49.82%±0.78% 70.39%±0.67% 35.51%±0.64% 52.84%±0.74%

TPN+ATA† [1] IJCAI-21 % 50.26%±0.50% 65.31%±0.40% 34.18%±0.40% 46.95%±0.40%
TPN+AFA† [2] ECCV-22 % 50.85%±0.40% 65.86%±0.40% 38.43%±0.40% 47.89%±0.40%

RDC† [3] CVPR-22 % 47.77%±0.50% 63.39%±0.40% 38.74%±0.50% 52.75%±0.40%
LDP-net† (ours) - % 55.94%±1.09% 73.34%±0.75% 37.44%±0.88% 53.06%±0.82%

Fine-tuning∗ [8] ECCV-20 " 43.53%±0.40% 63.76%±0.40% 35.12%±0.40% 51.21%±0.40%
TPN+ATA∗† [1] IJCAI-21 " 51.89%±0.50% 70.14%±0.40% 38.07%±0.40% 55.23%±0.40%

RDC∗† [3] CVPR-22 " 50.09%±0.50% 67.23%±0.40% 39.04%±0.50% 53.49%±0.50%

Places Plantae

Methods Mark Ft 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet [4] NeurIPS-16 % 49.86%±0.79% 63.16%±0.77% 32.70%±0.60% 46.53%±0.68%
RelationNet [5] CVPR-18 % 48.16%±0.50% 64.25%±0.40% 31.23%±0.30% 42.71%±0.30%

GNN [6] ICLR-18 % 52.42%±0.50% 70.91%±0.50% 33.60%±0.40% 48.51%±0.40%
RelationNet+FT [7] ICLR-20 % 49.92%±0.50% 65.55%±0.40% 32.57%±0.30% 44.29%±0.30%

RelationNet+ATA [1] IJCAI-21 % 51.16%±0.50% 66.90%±0.40% 33.72%±0.30% 45.32%±0.30%
GNN+FT [7] ICLR-20 % 53.44%±0.50% 70.70%±0.50% 32.56%±0.40% 49.66%±0.40%

GNN+ATA [1] IJCAI-21 % 53.57%±0.50% 75.48%±0.40% 34.42%±0.40% 52.69%±0.40%
MatchingNet+AFA [2] ECCV-22 % 54.66%±0.50% 68.87%±0.40% 37.60%±0.40% 52.43%±0.40%

GNN+AFA [2] ECCV-22 % 54.04%±0.60% 76.21%±0.50% 36.76%±0.40% 54.26%±0.40%
LDP-net (ours) - % 53.82%±0.84% 72.90%±0.70% 39.84%±0.75% 58.49%±0.69%

TPN+ATA† [1] IJCAI-21 % 57.03%±0.50% 72.12%±0.40% 39.83%±0.40% 55.08%±0.40%
TPN+AFA† [2] ECCV-22 % 60.29%±0.50% 72.81%±0.40% 40.27%±0.40% 55.67%±0.40%

RDC† [3] CVPR-22 % 58.82%±0.50% 72.83%±0.40% 41.88%±0.50% 55.30%±0.40%
LDP-net† (ours) - % 62.21%±1.13% 75.47%±0.73% 41.04%±0.94% 59.64%±0.77%

Fine-tuning∗ [8] ECCV-20 " 50.57%±0.40% 70.68%±0.40% 38.77%±0.40% 56.45%±0.40%
TPN+ATA∗† [1] IJCAI-21 " 57.26%±0.50% 73.87%±0.40% 40.75%±0.40% 59.02%±0.40%

RDC∗† [3] CVPR-22 " 61.17%±0.60% 74.91%±0.40% 41.30%±0.60% 57.47%±0.40%



Table 3. Comparison with state-of-the-art methods. Average classification accuracies (%) are provided.† stands for exploiting the full data
of FSL task. ∗ stands for fine-tuning on target domain. The best results are in bold.

Chest ISIC

Methods Mark Ft 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet [4] NeurIPS-16 % - 22.40%±0.70% - 36.74%±0.53%
MAML [9] ICML-17 % - 23.48%±0.96% - 40.13%±0.58%

RelationNet [5] CVPR-18 % 21.95%±0.20% 24.07%±0.20% 30.53%±0.30% 38.60%±0.30%
MetaOptNet [10] CVPR-19 % - 22.53%±0.91% - 36.28%±0.50%

GNN [6] ICLR-18 % 21.94%±0.20% 23.87%±0.20% 30.14%±0.30% 42.54%±0.40%
RelationNet+FT [7] ICLR-20 % 21.79%±0.20% 23.95%±0.20% 30.38%±0.30% 38.68%±0.30%

RelationNet+ATA [1] IJCAI-21 % 22.14%±0.20% 24.43%±0.20% 31.13%±0.30% 40.38%±0.30%
GNN+FT [7] ICLR-20 % 22.00%±0.20% 24.28%±0.2% 30.22%±0.30% 40.87%±0.40%

GNN+ATA [1] IJCAI-21 % 22.10%±0.20% 24.32%±0.4% 33.21%±0.40% 44.91%±0.40%
MatchingNet+AFA [2] ECCV-22 % 22.11%±0.20% 23.18%±0.20% 32.32%±0.30% 39.88%±0.30%

GNN+AFA [2] ECCV-22 % 22.92%±0.20% 25.02%±0.20% 33.21%±0.30% 46.01%±0.40%
LDP-net (ours) - % 23.01%±0.43% 26.67%±0.43% 33.97%±0.64% 48.06%±0.61%

TPN+ATA† [1] IJCAI-21 % 21.67%±0.20% 23.60%±0.20% 34.70%±0.40% 45.83%±0.30%
TPN+AFA† [2] ECCV-22 % 21.69%±0.10% 23.47%±0.20% 34.25%±0.40% 46.29%±0.30%

RDC† [3] CVPR-22 % 22.66%±0.20% 25.10%±0.20% 32.29%±0.30% 42.10%±0.30%
LDP-net† (ours) - % 22.21%±0.44% 26.88%±0.46% 33.44%±0.73% 48.44%±0.67%

Fine-tuning∗ [8] ECCV-20 " 22.13%±0.20% 25.37%±0.20% 34.60%±0.30% 49.51%±0.30%
NSAE(CE+CE)∗ [11] ICCV-21 " - 27.10%±0.40% - 54.05%±0.60%

ConFeSS∗ [12] ICLR-22 " - 27.09% - 48.85%
TPN+ATA∗† [1] IJCAI-21 " 22.45%±0.20% 24.74%±0.20% 35.55%±0.40% 49.83%±0.30%

RDC∗† [3] CVPR-22 " 22.32%±0.20% 25.07%±0.20% 36.28%±0.40% 49.91%±0.30%

EuroSAT CropDisease

Methods Mark Ft 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet [4] NeurIPS-16 % - 64.45%±0.63% - 66.39%±0.78%
MAML [9] ICML-17 % - 71.70%±0.72% - 78.05%±0.68%

RelationNet [5] CVPR-18 % 49.08%±0.40% 65.56%±0.40% 53.58%±0.40% 72.86%±0.40%
MetaOptNet [10] CVPR-19 % - 64.44%±0.73% - 68.41%±0.73%

GNN [6] ICLR-18 % 54.61%±0.50% 78.69%±0.40% 59.19%±0.50% 83.12%±0.40%
RelationNet+FT [7] ICLR-20 % 53.53%±0.40% 69.13%±0.40% 57.57%±0.50% 75.78%±0.40%

RelationNet+ATA [1] IJCAI-21 % 55.69%±0.50% 71.02%±0.40% 61.17%±0.50% 78.20%±0.40%
GNN+FT [7] ICLR-20 % 55.53%±0.50% 78.02%±0.40% 60.74%±0.50% 87.07%±0.40%

GNN+ATA [1] IJCAI-21 % 61.35%±0.50% 83.75%±0.40% 67.47%±0.50% 90.59%±0.30%
MatchingNet+AFA [2] ECCV-22 % 61.28%±0.50% 69.63%±0.50% 60.71%±0.50% 80.07%±0.40%

GNN+AFA [2] ECCV-22 % 63.12%±0.50% 85.58%±0.40% 67.61%±0.50% 88.06%±0.30%
LDP-net (ours) - % 65.11%±0.92% 82.01%±0.64% 69.64%±0.85% 89.40%±0.51%

TPN+ATA† [1] IJCAI-21 % 65.94%±0.50% 79.47%±0.30% 77.82%±0.50% 88.15%±0.50%
TPN+AFA† [2] ECCV-22 % 66.17%±0.40% 80.12%±0.40% 72.44%±0.60% 85.69%±0.40%

RDC† [3] CVPR-22 % 67.58%±0.50% 79.12%±0.40% 80.88%±0.50% 88.03%±0.30%
LDP-net† (ours) - % 73.25%±1.13% 84.05%±0.66% 81.24%±1.05% 91.89%±0.50%

Fine-tuning∗ [8] ECCV-20 " 66.17%±0.50% 81.59%±0.30% 73.43%±0.50% 89.84%±0.30%
NSAE(CE+CE)∗ [11] ICCV-21 " - 83.96%±0.60% - 93.14%±0.50%

ConFeSS∗ [12] ICLR-22 " - 84.65% - 88.88%
TPN+ATA∗† [1] IJCAI-21 " 70.84%±0.50% 85.47%±0.30% 82.47%±0.50% 93.56%±0.20%

RDC∗† [3] CVPR-22 " 70.51%±0.50% 84.29%±0.30% 85.79%±0.50% 93.30%±0.30%
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