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Abstract

Action Unit (AU) detection is an important research
branch in affective computing, which better understands hu-
man emotional intentions and responds more naturally to
their needs and desires. In this paper, we present our lat-
est progress techniques in the 5th Affective Behavior Anal-
ysis in-the-wild (ABAW) competition, including data bal-
ancing by marking, extracting features visual through mod-
els trained in face database and audio through deep net-
works and traditional methods, proposing model structures
for mapping multimodal information to a unify multimodal
vector space and fusing results from multiple models. These
methods are effective on the official validation dataset of
the Aff-Wild2. The final F1 in the 5th ABAW competition
test dataset achieves 54.22%, 4.33% higher than the best
results in the 3rd ABAW competition.

1. Introduction

The explosion of LLM [1] in January 2023 has brought
more attention to artificial intelligence and motivate count-
less researchers. As an essential component of artificial in-
telligence and human-computer interaction, affective com-
puting has made significant progress in recent years with
the deepening of psychological research and the rapid de-
velopment of deep learning. However, there are still many
technologies that need to research. Action Unit (AU) de-
tection, as a technique in emotion computing, helps to un-
derstand human emotional needs and intentions and plays
an essential role in human-computer interaction, healthcare,
marketing, and user research.

The 5th ABAW Competition is a continuation of the
Competitions held at ECCV 2022, IEEE CVPR 2022, ICCV
2021, IEEE FG 2020 and CVPR 2017 Conferences, and is
dedicated at automatically analyzing affect [2]. It motivates
researchers worldwide to implement their latest techniques
on the Aff-Wild2 [2–13] database, which multiple experts
annotate. It provides us with rich and reliable data resources
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and makes our experimental results more convincing.We are
studying the methods used by ABAW competition winners
over the past few years and finding that multimodal fusion
performs well. This is inspiring us to explore the multi-
modal fusion method more deeply.

2. Related Works

Multimodal training has the significant advantage of
leveraging other modalities to improve model performance.
However, multimodal training also increases the number of
input parameters and the demands on GPUs. We improved
the model training method to achieve high-precision output
with a low-configuration GPU.

Our method involves two steps to achieve model train-
ing. First, we use face-related pre-training models to extract
visual and audio features. Then, we combine these features
as input to train the model. In this way, we can achieve
model training with longer sequences while reducing GPU
memory usage to some extent.

Section 2 describes our multimodal information fusion
model method for the AU task in the ABAW5 competition.
First, to balance the distribution of labels in the training
data, we cover the image’s upper or lower by face landmarks
detectionn [14] on the official dataset and extend them to the
training set. Then, we use different depth networks to ex-
tract visual and audio features. Last, we propose the model
structure of CrossAttention [15] + Transformer [16], Dual
Transformer, and TCN [17]+Transformer to train the mul-
timodal features. Section 3 demonstrates the effectiveness
of these methods by conducting comparative experiments in
the official validation set.

3. Method

A video consists of two components: visual and audio
information. Typically, image frames are used to process vi-
sual information, while audio signals are converted into dig-
ital representations for model training. In our pipeline, we
derive visual information from n-dimensional image fea-
tures extracted from a pre-trained face model, and process
audio information using a combination of deep neural net-
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Figure 1. model structure
Figure 1 shows the three model constructs we use in the 5th ABAW competition. The input to the model is a combination of

visual and audio features extracted from the Aff-Wild2 dataset. Different feature combinations have different feature
dimensions, so N-d is used to represent the input feature dimensions of the model.

works and traditional methods to extract n-dimensional au-
dio features. Our model uses both types of features as inputs
for the visual and audio parts, respectively, with a uniform
sequence length for the AU task during training. If a video’s
length is shorter than the sequence length, we replicate the
last frame. Additionally, we handle frames without faces by
using the nearest valid frame to represent them.

Training features require less time and GPU memory
than directly training multi-modal image-audio data. There-
fore, we train AU features using various model structures,
including single-model Transformer, TCN, GRU [18], BI-
GRU [19], LSTM [20], BiLSTM [21] and our proposed hy-
brid models. The three hybrid model structures shown in
Figure 1 are the top-performing models in our experiments
during the 5th ABAW competition.

3.1. Data balancing

The AU dataset poses a challenge due to its imbalanced
distribution of data for multi-label classification. Imbal-
anced data can hinder models from learning better represen-
tations. To address this issue, we propose a novel masking
method that covers the upper and lower face of images with

a few labels using face landmark detection. These masked
images and labels are then extended to the training set. The
facial action unit labels covered by the black borders are set
to 0, while those not covered retain their original labels.
This method is applied only to AUs with below-average
data volume (AU1, AU2, AU4, AU5, AU12, AU15, AU23,
AU24, AU26) to mitigate data imbalance. Conversely, AUs
with above-average data volume (AU6, AU7, AU10, AU25)
do not require additional masked data.

Figure 2. Face with mask generated by face landmarks detection.
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3.2. Feature extraction

3.2.1 Visual Feature

Different networks extract features that can have diverse ef-
fects on model training. In the 5th ABAW competition, we
used both public and private datasets to pre-train various
models, from which we then extracted visual features for
the Aff-Wild2 dataset.

iResNet100 iResNet100 [22] is a deep learning architec-
ture that combines the strengths of Residual [23] networks
and Inception [24] networks, utilizing 100 convolutional
layers, inception modules, and residual connections. It of-
fers several advantages over traditional convolutional neu-
ral networks, including extracting features at multiple scales
and addressing the problem of vanishing gradients in deep
networks. iResNet100 has been pre-trained on large-scale
datasets and has proven highly effective at feature extrac-
tion and transfer learning. We refer to the visual features
extracted from the Aff-wild2 dataset using iResNet100 pre-
trained on databases from Glint360K [25] and a private
commercial FAU database as ires100.

MobileNet MobileNet [26] is a convolutional neural net-
work that uses depth-separable convolution to reduce the
size and computation of the network while maintaining ac-
curacy. Depth separable convolution involves two oper-
ations: deep convolution and point-by-point convolution.
The deep convolution is applied to each input channel in-
dependently, and the point-by-point convolution combines
the output of the deep convolution. This design allows
MobileNet to significantly reduce the number of network
parameters while achieving comparable accuracy to tradi-
tional convolutional neural networks. We refer to the visual
features extracted from the Aff-wild2 dataset using Mo-
bileNet pre-trained on databases from a private commercial
VA database as mobilenet.

MAE MAE [27] is a deep network structure that recon-
structs an input image by predicting the pixel value of each
mask block. MAE pre-training is efficient, simple and does
not require any special sparse operation. We refer to the
visual features extracted from the Aff-wild2 dataset using
MAE pre-trained on databases from DFEW [28], Emotionet
[29], FERV39k [30] and a private commercial VA database
as mae.

DenseNet Traditional convolutional neural networks only
receive the output of the previous layer as input, but
DenseNet [31] is designed to receive input from all previous
layers. This densely connected design enables DenseNet
to better leverage the characteristics of previous layers and

achieve better performance with fewer layers. Each layer in
DenseNet is composed of two sub-layers: the primary sub-
layer and the compact connector sub-layer. The primary
sub-layer consists of convolution layers, batch normaliza-
tion layers, and activation function layers, used to extract
features. The compact connector sub-layer joins the out-
put of all previous layers and uses it as input to the current
layer. This compact connection design allows DenseNet to
transfer gradients better, alleviating the vanishing gradients
problem and improving training efficiency. We refer to the
visual features extracted from the Aff-wild2 dataset using
MAE pre-trained on databases from FER+ [32] and Affect-
Net [33] database as densenet.

VIT The VIT [34] model first divides the input image into
fixed-size blocks, which are flattened into one-dimensional
vectors and passed through a group of Transformer en-
coders. Each encoder comprises multiple self-attention lay-
ers and feedforward neural network layers for feature ex-
traction and encoding. The self-attention mechanism allows
the model to focus on relevant areas in the image and cap-
ture more visual information. VIT also uses a learnable po-
sition embedding vector, representing the position informa-
tion of each image block, which is concatenated with the
feature vector of the image. This embedding method en-
ables VIT to capture spatial information and achieve high
performance in image classification tasks. We refer to the
visual features extracted from the Aff-wild2 dataset using
VIT pre-trained on databases from a private commercial AU
database as vit.

3.2.2 Audio Feature

Two ways to get audio features; one is the deep network
extracting features, including using Wav2vec 2.0 base [35]
to extract features which are called wav2vec, extracted fea-
tures on HuBERT [36] are called hubert, extracted features
on ECAPA-TDNN [37, 38] are called ecapatdnn, and the
other is using the tradition method Fbank [39] to extract
features which are called fbank.

Wav2vec 2.0 base Wav2vec 2.0 base divides speech sig-
nals into small blocks of fixed length and converts each
block into a high-dimensional vector representation. Here
we use Mel spectrum features composed of Mel filters and
a learnable linear transformation to map the Mel spectrum
features to a higher dimensional representation space. Us-
ing a large amount of unlabeled speech data, an autoencoder
model is trained under the framework of self-supervised
learning, with the goal of minimizing the distance between
the original speech signal and the reconstructed speech sig-
nal. A mask convolution mechanism is used to introduce
some random masks between the input and output of the
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encoder to enhance the robustness of the model. Finally,
supervised learning is conducted through fine-tuning and
adaptive prediction.

HuBERT HuBERT is a speech recognition model based
on mixed input representation. It adopts two different input
modes, binaural input and monaural input, and combines
convolutional neural network and Transformer network for
feature extraction and coding. Specifically, HuBERT em-
ployed a set of cross-channel attention mechanisms that
weighted and fused the features of binaural and monaural
inputs to further improve the model’s performance.

ECAPA-TDNN ECAPA-TDNN enhances the architec-
ture of Time Delay Neural Network (TDNN) in multiple
ways. It reconstructs the initial frame layer into a one-
dimensional Res2Net module with effective skip connec-
tions. It aggregates and propagates features from different
levels using complementary information with varying com-
plexity in each layer of the neural network. It improves the
statistics pooling module with channel-dependent frame at-
tention. This enables the network to focus on different sub-
sets of frames during each of the channel’s statistics estima-
tion [38].

Fbank Fbank is a traditional speech feature extraction
method, which divides the speech signal into a series of
short-time frames, and then carries out a series of filter con-
volutions for each frame. Finally, the output of each filter is
taken logarithm and spliced together to form a fixed dimen-
sion feature vector. The advantage of Fbank is that it can
compress the speech signal while retaining enough speech
information, thus reducing the dimension of the feature vec-
tor and improving the efficiency of speech recognition.

3.3. Architectures

CrossAttention+Transformer Multi-head attention al-
lows the model to jointly attend to information from dif-
ferent representation subspaces at different positions [16].
To integrate the multi-modal features of vision and audio
more effectively, we add CrossAttention before the trans-
former to handle feature interactions to varying scales us-
ing the cross-modal attention mechanism to improve visual
and audio feature fusion. The model structure diagram is in
Figure 1, and the Multi-head attention formula is below.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Dual Transformer Visual and audio features are diverse
compared to the same modal features. To make the model

distinguish this, we use a dual transformer structure to pro-
cess audio and visual separately. The model structure dia-
gram is in Figure 1.

TCN+Transformer Taking advantage of TCN’s transla-
tion invariance and local feature extraction capabilities in
sequential data and Transformer’s global dependency and
context modeling capabilities in sequences, we use a com-
bined model framework training of TCN and Transformer
to improve model performance and robustness.

Loss Function AU task is an imbalanced multi-label task.
We chose Binary Cross Entropy [40, 41](BCE) Loss in the
5th ABAW competition, creating a criterion that measures
the Binary Cross Entropy between the target and the input
probabilities, and the formula is below.

BCE(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(2)

4. Experiments
4.1. Database

To obtain better visual features, we pre-train our models
on Glint360K, DFEW, Emotionet, FERV39k, FER+, Af-
fectNet, private commercial AU, and private commercial
VA database before extracting visual features. After obtain-
ing these pre-train models, we extract visual features from
the AU database in Aff-Wild2.

4.2. Training

In our training for the AU task, we find that longer image
sequences lead to better model performance. However, we
train on 2 NVIDIA GeForce RTX 3080 Ti GPUs. Due to
the limited GPU memory, feeding long image sequences as
input is not feasible. Therefore, we first extract features to
get visual and audio features and combine them as model
input for training which the sequence length is 128.

For feature training, the optimizer is Adam, with a learn-
ing rate of 0.0001, and the learning scheduler uses StepLR,
which reduces the learning rate by multiplying it by 0.1 ev-
ery 20 epochs. The total number of training epochs is 50.

4.3. Ablation Study

Data Balancing In Table 1, the performance of the val-
idation set before and after data balancing compare under
the same feature combination and network.

Ablation of Features Table 2 shows the single visual fea-
ture transformer training experiment that verifies the effec-
tiveness of features. Table 3 shows the fusion of different
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audio features with the ires100 feature for the training ex-
periment. The different combinations of multi-modal fea-
tures training experiments and the experimental results are
in Table 4.

Ablation of Models The single-model network training
experiments use combined features ires100 and ecapatdnn
to compare Transformer, TCN, GRU, BIGRU, LSTM, and
BiLSTM on the validation set, which results are in Table
5. After that, we select the top-performing Transformer and
TCN to design three hybrid model structures for training,
which evaluate effects on the validation set shown in Table
5.

Table 1. The performance of data whether balancing on the official
validation set.

Data Features Model F1
balancing ires100,mobilenet Transformer 0.5508

disbalancing ires100,mobilenet Transformer 0.5486

Table 2. The performance of visual features on the official valida-
tion set.

Visual Features Model F1
ires100 Transformer 0.518

mae Transformer 0.507
densenet Transformer 0.504

mobilenet Transformer 0.488
vit Transformer 0.486

Table 3. The performance of audio features on the official valida-
tion set.

Audio Features Visual Features Model F1
wav2vec ires100 Transformer 0.531

fbank ires100 Transformer 0.529
hubert ires100 Transformer 0.526

ecapatdnn ires100 Transformer 0.525

Table 4. The performance of different combinations of visual and
audio features on the official validation set.

Features Model F1
ires100;mae;wav2vec;ecapatdnn Transformer 0.556

ires100;mobilenet;mae;wav2vec;ecapatdnn Transformer 0.554
ires100;mae;densenet;wav2vec;ecapatdnn Transformer 0.554

ires100;mobilenet;mae;wav2vec;fbank;ecapatdnn Transformer 0.553
ires100;densenet;vit;wav2vec;fbank Transformer 0.552
ires100;mobilenet;hubert;wav2vec Transformer 0.551

4.4. Model Ensemble

Model fusion can to some extent avoid model overfitting,
increase model robustness, and improve model performance

Table 5. The performance of the single models and hybrid models
on the official validation set.

Model Features F1
Transformer ires100;ecapatdnn 0.525

TCN ires100;ecapatdnn 0.519
BiGRU ires100;ecapatdnn 0.516

BiLSTM ires100;ecapatdnn 0.515
GRU ires100;ecapatdnn 0.513

LSTM ires100;ecapatdnn 0.513
TCN+Transformer ires100;ecapatdnn 0.531
Dual Transformer ires100;ecapatdnn 0.526

CrossAttention+Transformer ires100;ecapatdnn 0.525

by leveraging the differences between different model struc-
tures. After experimenting with different feature combina-
tions and model frameworks, we selected the models with
excellent performance on the AU validation set for result
fusion, and the fused results are shown in Table 6.

Table 6. The performance of the ensemble models on the official
validation set.

Model Features F1
TCN+Transformer ires100;mae;wav2vec;ecapatdnn 0.556
Dual Transformer ires100;mobilenet;mae;wav2vec;ecapatdnn 0.554

Transformer ires100;mae;densnet;wav2vec; 0.554
CrossAttention+Transformer ires100;mobilenet;mae;wav2vec;fbank;ecapatdnn 0.553

TCN+Transformer ires100;densenet;vit;wav2vec;fbank 0.553
Transformer ires100;mobilenet;mae;wav2vec;fbank;ecapatdnn 0.553

Ensemble 0.5796

4.5. K-fold Validation

In order to increase the training data of the model to im-
prove the performance of the model, we used the k-fold
method to split the dataset into 7 parts, where the training
set was divided into 5 parts and the validation set was di-
vided into 2 parts. The validation results at each fold are
shown in Table 7.

Table 7. The performance of the k-fold model on each fold valida-
tion set.

Fold 1 2 3 4 5 6 7 avg
F1 0.56 0.53 0.55 0.61 0.56 0.53 0.57 0.559

4.6. Test Performance

In this subsection, we describe our final submission strat-
egy for the 5th ABAW competition. We submitted the re-
sults five times, the first time using the 12 best performing
models on the single AU label for ensemble of model re-
sults, the second time using the 6 best performing models
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on the overall AU for ensemble. The third time is the fusion
of seven models by the k-fold method, and the fourth time
is the selection of six models for ensemble by train val mix
method. The fifth time is to select the 6 models with the best
performance on the data set from the 13 models in the train
val mix method and the k-fold method for model ensemble.

Finally, on the test set of the 5th ABAW Competition,
our K-fold method achieved an F1 score of 54.22%, ranking
2nd in the 5th ABAW Competition. Compared with the best
F1 in the 3rd ABAW Competition, this is an increase of
4.33%. The results with other teams are shown in Table 9.

Table 8. The performance of these five strategies on the test set.

Submission Strategy F1
1 AU top Ensemble 0.5169
2 Model Ensemble 0.5286
3 K-fold 0.5422
4 Train-Val-Mix 0.5352
5 K-fold + Train-Val-Mix 0.5404

Table 9. The performance of top teams perform on the Aff-Wild2
test set. * representing teams in the 3rd ABAW competition.

Teams F1
Netease Fuxi Virtual Human* 0.4989

SituTech* [Our Team] 0.4982
PRL* 0.4904

Netease Fuxi Virtual Human 0.5549
SituTech [Our Team] 0.5422

USTC-IAT-United 0.5144
SZFaceU 0.5128

PRL 0.5101

5. Conclusion

This paper introduces our Facial Action Unit (AU)
recognition task training method in the 5th ABAW competi-
tion. Through experiments on the AU dataset of Aff-Wild2,
our data balancing method makes minor AUs perform bet-
ter, combined training of multimodal features extracted
from different ways can improve model performance, and
proposed hybrid model structures are more effective than
single networks. We also learn many training skills and
model structure methods [42–46] during this process on
previous researchers’ contributions to affective computing.
We hope this paper inspires more researchers in this field.
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