
EVAEF: Ensemble Valence-Arousal Estimation Framework
in the Wild

Xiaolong Liu1, ∗, Lei Sun2, ∗, Wenqiang Jiang1, Fengyuan Zhang2

Yuanyuan Deng1, Zhaopei Huang2, Liyu Meng1, Yuchen Liu2, and Chuanhe Liu1,†

1 Beijing Seek Truth Data Technology Co.,Ltd.
2 School of Information, Renmin University of China

Abstract

This paper presents our work to the Valence-Arousal Es-
timation Challenge of the 5th Affective Behavior Analy-
sis in-the-wild (ABAW) competition. We explore the prob-
lems in this VA challenge from three aspects: 1) To ob-
tain efficient and robust feature representations, we explore
the role of multiple visual and video feature extractors; 2)
Based on multimodal feature representations that fuse the
visual and video information, we utilize four types of tem-
poral encoders to capture the temporal context informa-
tion in the video, including the LSTM, GRU, Transformer
based encoder and a combined encoder of Transformer and
LSTM; 3) five model ensemble strategies are used to com-
bine multiple results with different model settings. Our
system achieves the performance in Concordance Correla-
tion Coefficients (CCC) of 0.6193 for valence, 0.6634 for
arousal, and a mean CCC of 0.6414 on the test set, which
demonstrates the effectiveness of our proposed method and
ranks first place in the challenge.

1. Introduction

As a vital component of human-computer interaction, af-
fective computing is widely applicable in scenarios involv-
ing education, healthcare, market research, social interac-
tion, and other types of interaction. It also has extremely
valuable theoretical implications and real-world practical
application value for the realization of humanized commu-
nication for intelligent machines. However, emotions usu-
ally arise in response to either an internal or external event
that has a positive or negative meaning for an individual
[35]. Ambiguity or confusion in emotion perception can re-
sult from tiny variations in emotional displays when recog-
nizing emotions. Fortunately, with the continuous research
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in psychology and the rapid development of deep learning,
affective computing is gaining more and more attention. For
example, Aff-wild [17,22,42] and Aff-wild2 [16,18–25,42]
provide us with large-scale annotated datasets, driving the
development of affective computing.

Emotion can be described as discrete categorical states or
values in a continuous dimensional space. One of the most
popular dimensional descriptions of emotion is the circum-
plex model [33] which uses the two dimensions of valence
and arousal to represent emotional states. Valence refers
to the positive or negative degree of emotion, while arousal
refers to emotional intensity. In this work, we explore meth-
ods to estimate the valence and arousal annotations of a per-
son appearing in a video recording. Our system contains
four key components. First, for multimodal feature extrac-
tion, we use a variety of feature extractors to obtain visual
and audio features. Then, based on the above features, to
fully capture the temporal context information in the videos,
we further apply four types of temporal encoders, including
LSTM [34], GRU [4], Transformer [38], and a combina-
tion model of Transformer and LSTM. Next, we explore
an early-fusion and a late-fusion strategy for feature fusion.
Last, five ensemble strategies are used to get better results,
which proves to be effective.

2. Related Works

The Valence-Arousal Estimation task of the 5th ABAW
competition attracted a lot of attention from researchers,
and many brand-new methods were proposed to tackle
the challenging task of predicting continuous valence and
arousal in videos.

[28–30, 43, 45–47] demonstrate the importance of con-
sidering multiple modalities to better capture complex in-
formation of human emotions. The integration of both au-
dio and visual features has been shown to provide com-
plementary information, leading to better performance in
Valence-Arousal Estimation task. [32, 36, 39, 40, 44, 48] fo-
cuse on modeling the emotional content of videos through
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the use of visual features. In particular, [36] leverages mul-
tiple training methods to improve the model’s ability to
represent emotional content from facial expressions. As
mentioned by the aforementioned methods, the utilization
of multi-modal features enhances performance when com-
pared to using visual features exclusively.

Our proposed approach, which leverages both visual and
audio features to model different combinations of features
and incorporates temporal and spatial information, achieved
competitive performance in the task.

3. Method

Given a video X , it can be divided into the visual input
Xvis and the audio input Xaud, where Xv can be illus-
trated as a sequence of image frames {F1, F2, ..., Fn}, and
n denotes the number of image frames in X . In the Valence-
Arousal estimation task, each frame in X is annotated with
an emotion label y consisting of a valence label yv and an
arousal label ya. The task is to predict the emotion label for
each frame in the video.

The overall pipeline is illustrated in Fig.1, which con-
sists of four components. First, we extract various frame-
level features of the input video in visual and audio modal-
ities. These features are then fed into temporal encoders
to model the context information. Afterward, the temporal-
aware representations are fed into regressors to acquire pre-
dictions of each independent model. Finally, we ensemble
several models based on different features or temporal en-
coders to get a combined prediction as the final one.

3.1. Pre-processing

The videos are first split into image frames, and a face
detector is applied to get the face bounding box and facial
landmarks in each image. Then, the face in each image
is cropped out according to the bounding box, and these
cropped images are aligned based on the facial landmarks.
Here we simply utilize the cropped and aligned facial im-
ages provided by the ABAW5 competition officials.

In addition, there is no valid face in some frames, where
faces in these frames are not detected or there is no face in
them. For such frames, we simply use their nearest frames
with valid faces to represent them. Besides, some frames
are annotated with label -5, which means that these anno-
tations are invalid. Such frames are discarded in the pre-
processing stage.

3.2. Multimodal Feature Representation

In order to obtain multi-modal representations of the
frames in the videos, we employ multiple types of pre-
trained models to extract visual features and audio features
of the frames. Then, the visual and audio features are fused
to get the multi-modal feature representations.

3.2.1 Visual Features

Six kinds of visual feature extractors are employed for
the visual feature extraction, which results in five kinds
of visual features. The visual feature extractors in-
clude the DenseNet-based [13] facial expression model,
the IResNet100-based [6] facial expression model, the
IResNet100-based [13] facial action unit (FAU) detection
model, the MobileNet-based [11] valence-arousal estima-
tion model, the MAE-based [9] facial expression, and ac-
tion unit model. We will introduce the five kinds of visual
features in detail below.

DenseNet-based Features The DenseNet-based fea-
tures are extracted by a pre-trained DenseNet model, where
the DenseNet model is pre-trained on the facial expression
datasets, including FER+ [2] and AffectNet [31] datasets.
This kind of feature is denoted as densenet in Section 4.

IResNet100-based FE Features We make an IRes-
Net100 model pre-trained on the image-level face expres-
sion (FE) task and then use it as a feature extractor. The
pre-training datasets include FER+ [2], RAF-DB [27] [26],
and AffectNet [31] datasets. The extracted features are de-
noted as ires100 in Section 4.

IResNet100-based FAU Features Another IResNet100
model is pre-trained on a commercially authorized facial
action unit (FAU) detection dataset. The extracted features
are denoted as fau in Section 4.

MobileNet-based Features The MobileNet-based fea-
tures are extracted by a MobileNet model pre-trained on
the AffectNet [31] dataset for the valence-arousal estima-
tion task. They are denoted as ms va in Section 4.

MAE-based Features MAE-based features are ex-
tracted by an MAE model pre-trained on DFEW [14], Emo-
tionet [3], FERV39k [41] datasets. They are denoted as mae
in Section 4.

3.2.2 Audio Features

For audio modality, we employ seven features including
low-level and deep-level types. We will introduce the fea-
tures at the two levels respectively.

Low-level Features We first employ three manually de-
signed low-level descriptors (LLDs). FBank is a commonly
used feature in the field of speech processing. We also uti-
lize it in our work and denote it as fbank. Besides, we take
advantage of two off-the-shelf feature sets eGeMAPS [7]
and ComParE 2016 [37], which proved helpful in some pre-
vious emotion estimation works. We denote these two fea-
tures as egemaps and compare, respectively.

Deep-level Features We further extract four kinds of
features by deep networks. The VGGish model [10] is pre-
trained on an audio events dataset AudioSet [8]. We denote
the feature extracted by this model as vggish. Wav2Vec
2.0 [1] and HuBERT [12] are two recent self-supervised

5864



Figure 1. The overall framework of our proposed method.

pre-trained models and performed well on various audio
downstream tasks. We explore them in our emotion esti-
mation task and denote the extracted features as wav2vec
and hubert. In addition, we employ a speaker verification
model ECAPA-TDNN [5] to provide speaker-related fea-
tures, which are denoted as ecapatdnn.

3.2.3 Multimodal Fusion

In order to fuse the visual and audio features to obtain
the multi-modal feature representations, we use two mul-
timodal feature fusion strategies, including early fusion and
late fusion.

Early fusion Given the visual features fv and audio fea-
tures fa corresponding to a frame, they are first concate-
nated and then fed into a fully-connected layer to produce
the multimodal representations fm. It can be formulated as
follows:

fm = Wf [f
v; fa] + bf (1)

where Wf and bf are learnable parameters. Afterward, the
multi-modal representations are fed into a temporal encoder
for context modeling.

Late fusion With the late fusion strategy, we employ two
separate temporal encoders to encode the visual and audio
context in the video respectively. Given the visual features
fv and audio features fa corresponding to a frame, they
are first fed into corresponding temporal encoder Ev , Ea

and then concatenated to together produce the multimodal
representations fm. It can be formulated as follows:

fv = Ev(f
v)

fa = Ea(f
a)

fm = [fv; fa]

(2)

where fv and fa are visual and audio context representa-
tions respectively. The multimodal representations fm are
directly used for the regression module.

3.3. Temporal Encoder

Due to the limitation of GPU memory, we split the
videos into segments at first. Given the segment length
l and stride p, a video with n frames would be split into

[n/p]+1 segments, where the i-th segment contains frames
{F(i−1)∗p+1, ..., F(i−1)∗p+l}. With the single-modal or
multi-modal features of the i-th segment, which are uni-
formly denoted as fm

i , we employ a temporal encoder to
model the temporal context in the video. Specifically, four
kinds of structures are utilized as the temporal encoders,
including LSTM, GRU, Transformer encoder, and a com-
bined encoder of Transformer and LSTM.

3.3.1 LSTM-based Temporal Encoder

We employ a Long Short-Term Memory Network (LSTM)
to model the sequential dependencies in the video. For the
i-th video segment si, the multimodal features fm

i are di-
rectly fed into the LSTM. In addition, the last hidden states
of the previous segment si−1 are also fed into the LSTM to
encode the context between two adjacent segments. It can
be formulated as follows:

gi, hi = LSTM(fm
i , hi−1) (3)

where hi denotes the hidden states at the end of si. h0 is
initialized to be zeros. To ensure that the last frame of si−1

and the first frame of segment si are consecutive frames,
there is no overlap between two adjacent segments when
LSTM is used as the temporal encoder. In other words, the
stride p is the same as the segment length l.

3.3.2 GRU-based Temporal Encoder

We use a Gate Recurrent Unit Network (GRU) to encode
the temporal information of the image sequence. Segment
si means the i-th segment, and fm

i means the input of GRU
is the visual features for si. Furthermore, the hidden states
of the last layer are fed from the previous segment si−1 into
the GRU to utilize the information from the last segment.

gi, hi = GRU(fm
i , hi−1) (4)

where hi denotes the hidden states at the end of si. h0 is
initialized to be zeros. To ensure that the last frame of si−1

and the first frame of segment si are consecutive frames,
there is no overlap between the two adjacent segments.
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3.3.3 Transformer-Based Temporal Encoder

Besides, we also use a Transformer Encoder to model the
temporal information, which can be formulated as:

gi = TRMEncoder(fm
i ) (5)

Using the transformer encoder model, there is no need to
feed a full video sequence to the model, while we just split
it into a small sequence.

3.3.4 Transformer-LSTM-based Temporal Encoder

Moreover, to make full use of temporal information ex-
tracted from both Transformer and LSTM, we combine two
encoders together, which can be formulated as follows:

fh
i = TRMEncoder(fm

i ) (6)

gi, hi = LSTM(fh
i , hi−1) (7)

where fh
i denotes the last hidden layer’s output of the Trans-

former encoder. It is believed that with the local temporal
features encoded by Transformer, we can further model the
global temporal information by feeding these features into
an LSTM-based Temporal Encoder.

3.4. Regressor
After the temporal encoder, the features gi are finally fed

into fully-connected layers for regression, which can be for-
mulated as follows:

ŷi = Wpgi + bp (8)

where Wp and bp learnable parameters, ŷi ∈ Rl×2are the
predictions of the valence and arousal labels of si.

3.5. Loss Function

In the training phase, we utilized CCC Loss which can
be formulated as:

LV =
1

N

N∑
i=1

(1− CCC(ŷV
i , yV

i ))

LA =
1

N

N∑
i=1

(1− CCC(ŷA
i , y

A
i ))

(9)

L = α ∗ LV + β ∗ LA (10)

where LV denotes the valence task loss function, LA de-
notes the arousal task loss function, N denotes the number
of frames in each batch, ŷVi , yVi and ŷAi , y

A
i respectively de-

notes the prediction and label of valence and arousal in each
batch respectively, L denotes the loss function we utilize, α
and β are set to 1 here.

4. Experiments

4.1. Dataset

The 5th ABAW competition includes four challenges:
i) Valence-Arousal Estimation ii) Expression Classification,
iii) Action Unit Detection, and iv) Emotional Reaction In-
tensity Estimation Challenge. An augmented version of the
Aff-Wild2 database is released in the 5th ABAW competi-
tion. This database consists of 594 videos of around 3M
frames of 584 subjects annotated in terms of valence and
arousal.

To extract visual features, the AffectNet, FER+, and
RAF-DB datasets are used for pre-training. AffectNet is
a large-scale facial expression recognition dataset that con-
tains around 440K manually annotated images for discrete
facial expressions and the intensity of valence and arousal.
FER+ is a strict-labeled dataset for facial expression recog-
nition. In order to increase the label accuracy, the label of
FER+ is annotated by 10 crowd-sourced taggers. RAF-DB
is also a large-scale facial expression recognition dataset
that contains 29,672 facial images downloaded from the In-
ternet. During the pre-training phase, we only utilized the
discrete basic expression to pre-train our feature extractor.

4.2. Experiment Settings

During the training phase, we use the Adam [15] opti-
mizer to train all our models for 30 epochs. We trained
different architectures on Aff-Wild2, as for the transformer-
based architecture, the affine dimension is 1024, the number
of Transformer encode layers is 4, the attention heads num-
ber is 4, the dropout ratio in the Transformer encoder layer
is 0.3, the sequence length of one segment is 150, the hid-
den size of head layers are {512, 256}, and the dropout ratio
of head layers is 0.1.

4.3. Overall Performance on Validation Set

Table 1 shows some results of our method on the vali-
dation set of Aff-Wild2. As the results posted in the table,
the addition of the densenet features can effectively improve
the performance of valence, and the addition of the ires100
feature makes a clear contribution to the performance of
arousal. Both Transformer and LSTM models can achieve
competitive results using different feature combinations.

4.4. Model Ensemble

The model ensemble is an elegant way to prevent over-
fitting and enhance the robustness of models. During prepa-
ration for the model ensemble, we tried different architec-
tures, hyper-parameters, and combinations of the feature.
Moreover, to further improve the variability of the candi-
date models, we utilized different random seeds and learn-
ing rate decay strategies when training these models.
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Table 1. The performance of our method on the validation set.

Model Visual Features Audio Features Valence Arousal
Transformer fau,ires100 ecapatdnn,hubert 0.54859 0.73099
Transformer fau,densenet wav2vec,ecapatdnn 0.58029 0.69335
Transformer affectnet compare,egemaps,wav2vec 0.60372 0.64089

LSTM fau,ires100 ecapatdnn,hubert 0.53461 0.70766
LSTM ires100,mae compare,wav2vec 0.50706 0.73183

Table 2. The results of every single model and the ensemble of
them for the valence task on the validation set.

Model Features Valence
Transformer densenet,compare,wav2vec 0.60372
Transformer densenet,fau,compare,wav2vec 0.57113

LSTM ires100,mae,compare,wav2vec 0.58605
LSTM ires100,ms va,compare,wav2vec 0.60661

Transformer fau,densenet,wav2vec,ecapatdnn 0.59588
Transformer fau,ms va,wav2vec,fbank,ecapatdnn 0.60750
Transformer fau,densenet,wav2vec,fbank,ecapatdnn 0.60114

Ensemble 0.65281

Table 3. The results of every single model and the ensemble of
them for the arousal task on the validation set. Underline indicates
the use of late fusion strategy, without underline means the use of
early fusion strategy.

Model Features Arousal
Transformer ires100,mae,compare,wav2vec 0.72343
Transformer mae,ires100,compare,wav2vec 0.71048

Transformer-LSTM densenet,fau,hubert,ecapatdnn,wav2vec 0.72124
Transformer-LSTM ires100,mae,fau,ecapatdnn,wav2vec 0.72803
Transformer-LSTM ires100,mae,compare,wav2vec 0.73845

LSTM ires100,mae,compare,wav2vec 0.73212
Transformer ires100,fau,mae,wav2vec,ecapatdnn 0.73142
Transformer fau,ires100,ecapatdnn,hubert 0.73099
Transformer ires100,fau,mae,hubert,wav2vec,ecapatdnn 0.73364
Transformer ires100,fau,mae,wav2vec,ecapatdnn 0.72027
Transformer ires100,fau,mae,wav2vec,fbank,ecapatdnn 0.72849

GRU ires100,fau,ms va,hubert,wav2vec,ecapatdnn 0.72412
Ensemble 0.76650

Table 2 and Table 3 show the model ensemble result on
the validation set for valence and arousal tasks respectively.
According to these results, the ensemble of different models
can achieve a better improvement over a single model.

4.5. Cross Validation

To prevent overfitting and improve the robustness of the
model, we also utilized a 6-fold cross validation strategy to
train our model. For the choice of number 6, we analyzed
the data distribution and found that the number of videos
in the training set is roughly 5 times the number of videos
in the validation set, so we split the training set into 5 seg-
ments, which together with the validation set to compose

complete 6-fold dataset.

Table 4. The performance of our method on the 6-fold cross-
validation. Original means the official validation set. The first
five folds are from the training set, and the last fold is the original
validation set.

Valence Arousal Mean
Fold 1 0.61800 0.68642 0.65221
Fold 2 0.64664 0.66806 0.65735
Fold 3 0.57118 0.64668 0.60893
Fold 4 0.57468 0.65583 0.61526
Fold 5 0.55084 0.68317 0.61701
Fold 6 0.56636 0.69179 0.62908

Average 0.58795 0.67199 0.62997

As the result shown in table 4, we utilized feature set
{fau, ms va} as the visual feature and {fbank, ecapatdnn}
as the audio feature. As the experiment setting we described
in 4.2, we utilized a transformer encoder model to train on
the 6-fold dataset.

4.6. Ablation Study

Table 5 shows the ablation study performance on the val-
idation set, where all the results are based on the transformer
architecture with the same training setting, except for the
feature combinations. The addition of ms va and densenet
features leads to better performance on valence than others.
With the contributions from ires100, hubert and mae fea-
ture, the performance on arousal outperforms the rest of the
feature combinations.

Table 5. Ablation study of features on the validation set.

Visual Audio Valence Arousal
fau,densenet ecapatdnn 0.56295 0.70253
fau,densenet fbank,ecapatdnn 0.57369 0.69397
fau,densenet hubert,ecapatdnn 0.57434 0.70275

ires100,fau,densenet ecapatdnn 0.55862 0.72417
ires100,fau,densenet hubert,ecapatdnn 0.55997 0.72003

ires100,fau,ms va hubert,ecapatdnn 0.54087 0.73136
fau,densenet wav2vec,fbank,ecapatdnn 0.60114 0.71153

fau,ms va wav2vec,fbank,ecapatdnn 0.60750 0.69444
ires100,fau,mae hubert,wav2vec,ecapatdnn 0.54617 0.73364
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4.7. Test Performance

In this section, we briefly describe our five submission
strategies and the results on test set. Table 6 shows our
strategies and results for each submission. As for the 1st
submission, we only train the models on the official train-
ing set and choose the models with the best performance on
the official validation set, then we ensemble the inference
results on the test set from these models. Specifically, we
use seven models for the valence estimation task and twelve
models for the arousal estimation task.

Table 6. The results on the test set of five submissions.

Submission Strategy Valence Arousal Mean
1 Ensemble 1 0.6030 0.6501 0.6265
2 Ensemble 2 0.6115 0.6424 0.6269
3 Train-Val-Mix 0.5968 0.6423 0.6195
4 Ensemble 3 0.6095 0.6514 0.6305
5 6-Fold 0.6193 0.6634 0.6414

The model and feature combination of the 1st submis-
sion is shown in Table 2 and 3. As for the 2nd submission,
we select several models that work better on the validation
set from the models used for the first submission to the en-
semble. As for the 3rd submission, we mix up the training
and validation set and use both of them for training, which is
called Train-Val-Mix. To get test set results, we empirically
choose the models from 16 to 25 epochs in the training stage
for valence and arousal, then we ensemble all these models
to get the final test results. As for the 4th submission, we
ensemble the test results of submission 1 and submission 3,
which proves to be better than the two original results. As
for the last submission, we mix up the training and valida-
tion set and divide them into six folds. For each time, one
fold is used for validation, and the rest five folds are used for
training. Since we get the six models, we ensemble all these
models to get test results. We call this submission strategy
as 6-Fold.

Table 7. The overall results and ranks on the test set.

Teams Total Score Valence Arousal
Ours 0.6414 0.6193 0.6634

Netease Fuxi Virtual Human [45] 0.6372 0.6469 0.6258
CBCR [43] 0.5913 0.5526 0.6299

CtyunAI [47] 0.5666 0.5008 0.6325
HFUT-MAC [46] 0.5342 0.5234 0.5451

HSE-NN-SberAI [36] 0.5048 0.4788 0.5227
ACCC [48] 0.4842 0.4622 0.5062
PRL [39] 0.4661 0.5043 0.4279

SCLAB CNU [32] 0.4640 0.4578 0.4703
USTC-AC [40] 0.2372 0.3007 0.1736
baseline [21] 0.201 0.211 0.191

Finally, Table 7 shows the test results of all the teams

in the Valence-Arousal Estimation Challenge, and our pro-
posed method achieves surpasses performance over all the
other teams.

5. Conclusion
In this paper, we introduce our method for the Valence-

Arousal Estimation Challenge of the 5th Affective Behav-
ior Analysis in-the-wild (ABAW) competition. Our method
utilizes multimodal features and uses four different tempo-
ral models to obtain sequential information in the videos.
We also explore strategies for multimodal feature fusion,
including early-fusion and late-fusion. To further improve
our predictions, five model ensemble strategies are used to
get better final results. The experiment results show that
our method achieves 0.6193 ccc for valence, 0.6634 ccc
for arousal, and 0.6414 mean ccc on the test set of the ex-
panded Aff-Wild2 dataset, which proves the effectiveness
of our proposed method.
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