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Abstract

This paper presents our work to the Expression Clas-
sification Challenge of the 5th Affective Behavior Analysis
in-the-wild (ABAW) Competition. In our method, the multi-
modal features are extracted by several different pertained
models, which are used to build different combinations to
capture more effective emotion information. Specifically, we
extracted efficient facial expression features using MAE en-
coder pre-trained with a large-scale face dataset. For these
combinations of visual and audio modal features, we uti-
lize two kinds of temporal encoders to explore the temporal
contextual information in the data. In addition, we employ
several ensemble strategies for different experimental set-
tings to obtain the most accurate expression recognition re-
sults. Our system achieves the average F1 Score of 0.4072
on the test set of Aff-wild2 ranking 2nd, which proves the
effectiveness of our method.

1. Introduction

Affective computing has an extensive spectrum of ap-
plication requirements in human-computer interaction, se-
curity, robotics manufacturing, automation, medical, and
communications. Actively creating machines that can un-
derstand the feelings, emotions, and behaviors of humans
would help them interact with humans more intimate way
and serve effectively [1]. Facial expressions are one of
the most powerful, natural, and pervasive signals that hu-
mans use to communicate their emotional state and inten-
tions. Machines can analyze human expressions leading to
understanding human emotions. The majority of recent re-
search in emotion recognition is based on deep learning,
which requires a large quantity of labeled data. Nowadays,
there are several datasets, such as Aff-wild [2–4] and Aff-
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wild2 [3–12], which provides us with large-scale data with
high-quality labels, which are convenient for training neural
networks and increasing the accuracy of expression recog-
nition.

The facial expressions information can be mainly ob-
tained from the visual modality. Currently, there does not
exist a certain expression dataset that is much larger than
the others in scale. For extracting more efficient expression
features for a particular dataset, the feature extractor can
be pre-trained with multiple datasets. Different models as
feature extractors do not extract the same features from the
facial images and are most likely to obtain complementary
sentiment information. Therefore, a richer and more com-
plete visual facial expression representation can be obtained
by using multiple visual features from multiple pre-trained
models. With the rise of image self-supervised models, such
as MAE [13], a large amount of unlabeled data can also be
utilized as training data. MAE can improve its ability to en-
code face images by using a large number of face images,
which contributes to the acquisition of emotional informa-
tion.

Nevertheless, it is well known that audio modality also
contains certain emotional information. The information
of single modality may be affected by various noises. To
obtain a more complete emotional representation, informa-
tion from multiple modalities can be utilized. The multiple
modalities’ information can supplement and enhance the
unimodality information to a degree, improving the recog-
nition ability, generalization, and robustness of the model.

To improve the performance of emotion recognition,
we design a multimodal expression recognition system for
videos, which investigates a better combination of features
and incorporates multimodal information more efficiently.
Our system for the expression recognition contains sev-
eral key components. First, we examine the officially pro-
vided aligned and cropped images and labels, and then sup-
plement the images containing labels but no official im-
ages. Second, multiple pre-trained feature extractors are
employed to extract visual and audio features. Then, we de-
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Figure 1. The overall pipeline of our method.

signed multimodal feature combinations and concatenated
multiple features into multimodal feature representations.
Multimodal features are fed into the temporal encoder. Two
different types of temporal encoders, LSTM [14] and Trans-
former [15], are applied to extract contextual information
from the multimodal features. Several techniques are also
utilized for optimization. Finally, we adopted several en-
semble strategies to ensemble the experimental results for
different settings to raise the accuracy of recognition.

2. Related Works

During the ABAW series events, facial expression recog-
nition has consistently been a high-profile task. In this
section, we will provide an overview of some relevant ap-
proaches on facial expression recognition in ABAW com-
petitions.

[16–18] incorporates both temporal and spatial informa-
tion to enhance the representational capacity of the network
utilizing multi-modal features. [19–21] only utilize visual
features to make predictions about facial expressions. Spe-
cially, [20] employs a semi-supervised learning strategy to
fully exploit the available data and achieve optimal model
performance. By leveraging both labeled and unlabeled
data, the model is able to better capture the underlying pat-
terns in the data and generalize well to new data.

Overall, the facial expression recognition task remains
a challenging problem in the ABAW series competitions.
Various techniques and models have been proposed to im-
prove the performance of the architectures, including the
use of multi-modal features, temporal and spatial modeling,
and semi-supervised learning strategies. Our proposed ap-
proach not only utilizes multi-modal features but also in-
corporates temporal and spatial information, resulting in
enhanced representational capacity and competitive perfor-
mance.

3. Method
For a given video X , it can be separated into two

parts, the visual data Xvis and the audio data Xaud.
The visual data can be stated as an image frames
sequence{F1, F2, ..., Fn}, and n denotes the number of im-
age frames in X . The goal of the Expression Classification
Challenge is to predict the sentiment label for each frame in
the video.

The overall pipeline is illustrated in Figure 1. In our
approach, the raw data is first preprocessed by converting
the video data into a sequence of image frames and au-
dio. Then the features of the sequences are extracted using
multiple feature extractors, such as MAE-based [13] model,
DenseNet-based [22] model, Wav2Vec 2.0 [23] model and
so on. As the phase of multimodal fusion, we combined
visual and audio features to a huge feature vector as multi-
modal feature representation. Multimodal features are en-
coded by a temporal encoder and then sent to the classifica-
tion layers to obtain the predicted expression class. The fea-
ture extractors and temporal encoders will be described in
detail on the following sections. During the training phase,
we fed the same feature into the temporal encoder and head
twice because of using RDrop [24]. But during the infer-
ence phase, we just infer once to get the prediction.

3.1. Pre-processing

Firstly, the officially provided video data is divided into
multiple image frames. For each image frame, the face and
facial landmarks are recognized by the face detector. The
face part is cropped out according to the bounding box to
facilitate the extraction of more accurate emotional infor-
mation later. In order to be consistent with the official la-
bels provided, we use the cropped and aligned face images
provided by the competition for the actual processing.

We matched the labels with the images one by one, and
found that some of the images corresponding to the labels
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did not exist in the cropped and aligned set given by the
competition, probably because the face images of the corre-
sponding frames were not detected in the video due to the
lighting, angle, and other circumstances. For each of these
non-existent images, we complement it by finding the near-
est frame in the temporal dimension.

3.2. Multimodal Feature Representation

For more efficient use of information from video data, in
the feature extraction phase, we extracted various features
in both visual and audio modalities by using multiple types
of feature extractors. Afterwards, visual and audio features
are merged as multimodal feature representation.

3.2.1 Visual Features

For visual modality, many models used for ex-
tracting features including MAE-based [13] model ,
DenseNet-based [22] model, IResNet100-based [25]
model, IResNet100-based [25] facial action unit (FAU) de-
tection model and the MobileNet-based [26] model.

MAE-based Feature The first type of visual feature is
the feature extracted by pretrained MAE-based model [13].
MAE is a self-supervised model that trains label-free data
by masking random patches from the input image and re-
constructing the missing patches in the pixel space. We
used a face dataset collection of scale 1.2 million, including
AFEW [27], DFEW [28], AVEC2019 [29], Emotionet [30],
FERV39k [31],MEC2017 [32], to pre-train the MAE en-
coder. Considering that it is expensive and labor-intensive
to obtain a large amount of labeled data, we utilize unla-
beled data to train the MAE encoder. past studies have
found that action units (au) [33] are closely related to facial
expressions. We designed the training task by extracting
rough au labels using the OpenFace tool [34] and generating
emotion labels by combining the simple correspondence be-
tween au and expressions. In this way, we intend to enhance
the ability of MAE encoder to mine potential emotion repre-
sentations through self-supervised pre-training and pseudo-
labeled supervised pre-training, and be to be able to gener-
ate representations containing a large amount of facial ex-
pression information. We denoted this kind of feature as
mae, and the dimension of it is 768.

DenseNet-based Feature The second type of visual fea-
tures is extracted by a pre-trained DenseNet model. Specif-
ically, the DenseNet model is pre-trained on the FER+ and
the AffectNet datasets. The dimension of the DenseNet-
based visual features is 342. And this kind of feature is
denoted as densenet.

IResNet100-based Feature The third type of visual fea-
ture is the feature extracted by pretrained IResNet100-based
model, and the dimension of IResNet100-based feature is
512. A large-scale facial expression recognition data which

consists of FER+ [35], RAF-DB [36] [37] and Affect-
Net [38] dataset is utilized to pretrain our facial expression
recognition IResNet100-based model, which is denoted as
ires100. And a commercial authorized facial action unit
detection dataset is used to pretrain the other IResNet100-
based model, which is denoted as fau.

MobileNet-based Feature The fourth type of visual fea-
ture is the feature extracted by pretrained MobileNet-based
model, and the dimension of MobileNet-based feature is
512. The MobileNet model is trained on valence-arousal
estimation task of AffectNet to further enhance feature rep-
resentation.

3.2.2 Audio Features

For audio modality, many models used for extracting au-
dio features including eGeMAPS [39], ComParE 2016 [40],
VGGish [41], Wav2Vec 2.0 [23], ECAPA-TDNN [42] and
HuBERT [43].

Hand-craft Features The first type of audio feature is
hand-craft features, which consists of eGeMAPS, ComParE
2016 and fbank. eGeMAPS and ComParE 2016 can be ex-
tracted using openSmile, and the dimension of these fea-
tures are 23 and 130. The dimension of fbank is 80. For
convenience, we denotes them as egemaps, compare and
fbank.

Deep Features The second type of audio feature is deep
features, which consists of Wav2Vec 2.0, ECAPA-TDNN,
VGGish and HuBERT. The dimension of Wav2Vec 2.0 fea-
ture is 1024, the dimension of ECAPA-TDNN feature is
512, the dimension of VGGish feature is 128 and the di-
mension of HuBERT is 512. We denotes them as wav2vec,
ecapatdnn, vggish and hubert respectively.

3.2.3 Multimodal Fusion

Given the visual features fv and audio features fa cor-
responding to a frame, they are first concatenated and then
fed into a fully-connected layer to produce the multimodal
features fm. It can be formulated as follows:

fm = Wf [f
v; fa] + bf (1)

where Wf and bf are learnable parameters.

3.3. Temporal Encoder

Due to the limitation of GPU memory, we split the
videos into segments at first. Given the segment length
l and stride p, a video with n frames would be split into
[n/p]+1 segments, where the i-th segment contains frames
{F(i−1)∗p+1, ..., F(i−1)∗p+l}. With the multimodal features
of the i-th segment fm

i , we employ a temporal encoder to
model the temporal context in the video. Specifically, two
kinds of structures are utilized as the temporal encoder, in-
cluding LSTM and Transformer Encoder.
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3.3.1 LSTM-based Temporal Encoder

Long and short term memory networks (LSTM) are com-
monly applied to model sequential dependencies of time se-
quences. In a practical game, we use LSTM to model the
temporal relationships in a sequence of frame images from
a video. fm

i means the input of LSTM are multimodal fea-
tures for the i-th video segment.

Additionally, to encode the contextual information be-
tween two sequential segments, si−1 and si, the last hidden
state of si−1 is also fed into the LSTM. It can be formulated
as follows:

gi, hi = LSTM(fm
i , hi−1) (2)

where hi denotes the hidden states at the end of si. There is
no overlap between two adjacent segments, in other words,
the stride p is the same as the segment length l, which en-
sures that the last frame of the former segment and the first
frame of the latter segment are consecutive.

3.3.2 Transformer-Based Temporal Encoder

We used a Transformer Encoder to model the temporal
feature in the video segment, which can be formulated as:

gi = TRMEncoder(fm
i ) (3)

Unlike LSTM, the transformer encoder just models the
context in a single segment and ignores the dependencies of
frames between segments.

3.4. Classification Layers

We used fully-connected blocks to build the classififer
of our method. One fully-connected block is consists of {
FC, Dropout, ReLU }, and the dropout ratio is the same as
dropout ratio in temporal encoder. Specially, the last fully-
connected block is only consists of a FC layer, and the out-
put dimension is set to 8, which is equal to the number of
expressions in expression recognition challenge.

3.5. Loss Function
In the training phase, we utilize the RDrop loss which

can be formulated as:

LEXPR =
1

2
∗ (CE(ŷ1, y) + CE(ŷ2, y))+

α ∗ 1

2
∗ (KL(ŷ1, ŷ2) +KL(ŷ2, ŷ1))

(4)

where CE denotes cross entropy loss, KL denotes
Kullback-Leibler divergence loss. y1 and y2 denotes the
first and the second inference prediction logits, y denotes
the label.

4. Experiments
4.1. Dataset

Expression(Expr) Classification Challenge in fifth
ABAW competition is based on Aff-Wild2, a large-scale

dataset. Aff-Wild2 consists of 548 videos and is annotated
with 8 expressions (i.e. neutral, anger, disgust, fear, happi-
ness, sadness, surprise, and other). As for the feature extrac-
tors, we used some other dataset for pretraining, which con-
sists of FER+ [35], RAF-DB [36, 37], and AffectNet [38].
In addition, an authorized commercial FAU dataset is also
used for pretraining visual feature extractor, which consists
of 7K images in 15 face action unit categories(AU1, AU2,
AU4, AU5, AU6, AU7, AU9, AU10, AU11, AU12, AU15,
AU17, AU20, AU24, and AU26). As for the audio fea-
ture extractors, we used some different open-source mod-
els to extract features. Wav2Vec 2.0 [23], HuBERT [43],
and ECAPA-TDNN [42] are the deep open-source model
for extracting audio features.

4.2. Evaluation Metric
According to the competition regulations, we use the av-

erage F1 score across 8 categories, which can be formulated
as:

p =

∑8
i F1(ŷi, yi)

8
(5)

where F1 denotes F1 score, ŷi and yi denotes the i-th cat-
egory of prediction and label respectively.

4.3. Experiment Settings

First, declare that we used Adam [44] optimizer to train
models for 25 epochs. As for the Transformer model, the
learning rate is 0.0001, the α in equation 3.5 is 5, the affine
dimension is 1024, the number of Transformer encoder lay-
ers is 4, the attention heads number is 4, the dropout ratio
in the Transformer encoder layer is 0.3, the sequence length
of one segment is 128. The classifier is consists of 2 fully-
connected blocks, and the hidden size of head layers are
{512, 256}.

4.4. Overall Performance on Validation Set

Table 1 shows the results of our method on validation
set. Among all the results we post in the table, we utilized
the same training settings as we described in experiment
settings. As is shown in the table, both Transformer and
LSTM models achieve competitive performance and the
LSTM model achieves better performance than the Trans-
former model. Different feature combinations can lead to
different result using Transformer and LSTM model.

4.5. Model Ensemble

During the model selection phase, we trained multiple
models with varying structures, feature combinations, and
hyper-parameters, all of which achieved competitive perfor-
mance. To further improve the robustness and performance
of our system, we employed a vote strategy. The results
obtained from the ensemble of different architectures and
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Table 1. The performance of our method on the validation set.

Model Visual Features Audio Features F1
Transformer ires100,mae ecapatdnn,hubert,wav2vec 0.38362
Transformer densenet,ires100,mae ecapatdnn,hubert 0.39112
Transformer densenet,fau,ires100,mae ecapatdnn,hubert 0.3938

lstm ires100,mae ecapatdnn,hubert,wav2vec 0.37972
lstm fau,ires100 ecapatdnn,hubert 0.38928
lstm ires100,mae wav2vec 0.39385
lstm densenet,ires100,mae wav2vec,ecapatdnn,hubert 0.40178
lstm densenet,ires100,mae ecapatdnn,hubert 0.41410

Table 2. The results of each single model and the ensemble of
them for the expression prediction task on the validation set.

Model Visual Features Audio Features F1
Transformer ires100,mae ecapatdnn,hubert,wav2vec 0.38362
Transformer fau,ires100 ecapatdnn,hubert,wav2vec 0.35119
Transformer densenet,fau,ires100 ecapatdnn,hubert 0.36087
Transformer densenet,mae,ires100 ecapatdnn,hubert 0.39380

LSTM densenet,mae,ires100 ecapatdnn,hubert,wav2vec 0.40178
LSTM mae,ires100 ecapatdnn,hubert,wav2vec 0.40832
LSTM fau,ires100 ecapatdnn,hubert 0.38928
LSTM densenet,mae,ires100 ecapatdnn,hubert 0.40889
LSTM densenet,mae,ires100 ecapatdnn,hubert 0.41410

Ensemble 0.45774

Table 3. The performance of our method on the 5-fold cross-
validation. The First 4 folds are from training set, and the last
fold is the original validation set.

F1
Fold 1 0.43697
Fold 2 0.38015
Fold 3 0.35646
Fold 4 0.39170
Fold 5 0.38146

Average 0.38935

feature combinations are presented in Table 2, which in-
dicates that this approach yields significant benefits on the
validation set.

4.6. Cross Validation

As the experiment proceeded, we found that the model
overfitting was very serious, to address the issue of over-
fitting, we implemented K-fold cross-validation with K set
to 5, because we had 4 times as many training videos as
validation videos. We used the original validation set of
Aff-Wild2 as the 5th fold. We trained a Transformer en-
coder model using mae, ires100, wav2vec, ecapatdnn and
hubert features. Table 3 presents the results obtained using
this approach.

4.7. Ablation Study

We conducted an ablation study to evaluate the impact
of different features and feature combinations on the perfor-
mance of our transformer-based model. Table 4 shows the
results obtained on the validation set using the same exper-
imental setup as in the training phase, except for the feature
combinations.

Table 4. Ablation study of features on the validation set.

Visual Features Audio Features F1
densenet,fau ecapatdnn 0.35276
densenet,fau ecapatdnn,fbank 0.33887
densenet,fau ecapatdnn,hubert 0.34391

densenet,fau,ires100 ecapatdnn,hubert 0.36266
densenet,fau,ires100 ecapatdnn,wav2vec 0.36944
densenet,ires100,mae ecapatdnn,hubert 0.39380

4.8. Results on the test set

In this competition, we have adopted five submission
strategies. We briefly describe each strategy and show the
performance on the test set in this section. Table 5 shows
the strategies and results for each of our five submissions.
The first submission strategy is the ensemble of multiple
features and models generated by fusing the test set after
training on the officially given training set and selecting the
one that performs better on the officially provided validation
set. As for the second submission strategy, the best model
and feature combination obtained by the ensemble on the
officially divided validation set is chosen. For the third and
fourth ones, the training and validation sets are combined as
a new training set, and the test set results of multiple epochs
of multiple model and feature combinations are picked for
the ensemble. Furthermore, the fourth strategy also com-
bines the results of the first strategy. The last strategy takes
the result of k-fold cross-validation. Here, the 5-fold is di-
vided according to the ratio of the official dataset and the
validation set. The above mentioned ensemble uses the vot-
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Table 5. The results on the test set of different submissions.

Submit Strategy F1
1 Ensemble 1 0.3856
2 Ensemble 2 0.3845
3 Train-Val-Mix 0.4020
4 Train-Val-Mix&Ensemble 1 0.3940
5 5-Fold 0.4072

Table 6. The results of the Expression Classification Challenge.

rank Teams F1
1 Netease Fuxi Virtual Human [16] 0.4121
2 Ours 0.4072
3 CtyunAI [17] 0.3532
4 HFUT-MAC [18] 0.3337
5 HSE-NN-SberAI [19] 0.3292

ing method. Our method comes runner up in this challenge,
with a small difference to first place, and the results are
shown in the Table 6.

5. Conclusion
In this paper, we propose our framework for the Expres-

sion Classification Challenge of the fifth Affective Behav-
ior Analysis in-the-wild (ABAW) Competition. Our ap-
proach leverages information from multiple modalities in
the spatiotemporal dimension. Various temporal encoders
are applied to capture the temporal contextual information
in the video. We pre-trained the MAE encoder using a large
amount of unlabeled face data to enhance the ability of the
model to encode faces and extract expression information.
In addition, we design multiple high-quality feature com-
binations to extract more effective emotional information.
Our method achieves a performance of 0.4072 on the test
set.
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