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Abstract

Facial affect analysis is essential for understanding
human expressions and behaviors, encompassing action
unit (AU) detection, expression (EXPR) recognition, and
valence-arousal (VA) estimation. The CVPR 2023 Compe-
tition on Affective Behavior Analysis in-the-wild (ABAW) is
dedicated to providing a high-quality and large-scale Aff-
wild2 dataset for identifying widely used emotion represen-
tations. In this paper, we employ MAE-Face as a unified
approach to develop robust visual representations for fa-
cial affect analysis. We propose multiple techniques to im-
prove its fine-tuning performance on various downstream
tasks, incorporating a two-pass pre-training process and a
two-pass fine-tuning process. Our approach exhibits strong
results on numerous datasets, highlighting its versatility.
Moreover, the proposed model acts as a fundamental com-
ponent for our final framework in the ABAW5 competition.
Our submission achieves outstanding outcomes, ranking
first place in the AU and EXPR tracks and second place
in the VA track.

1. Introduction
Facial affect analysis plays a vital role in diverse fields

such as psychology, neuroscience, computer vision, and
human-computer interaction. The advent of deep learn-
ing has brought about significant advancements in facial af-
fect analysis, with deep neural networks being employed
to learn facial expression representations. However, most
existing approaches focus on specific tasks, like facial ex-
pression recognition or action unit detection, necessitating
the creation of task-specific architectures and training pro-
cedures.

In this paper, we adopt MAE-Face as a unified approach
for facial affect analysis, originally proposed by [35] for
action unit analysis. Drawing inspiration from Masked Au-
toencoders [13], MAE-Face learns robust visual representa-
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tions for facial affect via pre-training on a large-scale facial
image dataset using a self-supervised learning scheme.

We fine-tune the pre-trained model on various datasets,
and experiment with several facial affect analysis tasks,
such as action unit (AU) detection, expression (EXPR)
recognition, and valence-arousal (VA) estimation. In addi-
tion to incorporating the MAE-Face model into these tasks,
we explore several methods to further enhance its perfor-
mance. For example, we propose a two-pass pre-training
method for improved model initialization and a two-pass
fine-tuning method to stabilize the training process and mit-
igate overfitting issues.

The 5th Competition on Affective Behavior Analysis in-
the-wild (ABAW5) [25] aims to tackle the challenges asso-
ciated with human affective behavior analysis. To achieve
this goal, the competition has developed large-scale multi-
modal video datasets, namely Aff-wild [23,26,65] and Aff-
wild2 [20, 22, 24, 27–29]. Aff-wild2 consists of 598 videos
with frame-wise annotations for three types of expression
representations: Action Units (AU), basic expression cate-
gories, and valence-arousal (VA). ABAW5 introduces three
challenges concerning the detection of these three expres-
sion representations. These datasets have significantly con-
tributed to the progress of facial expression analysis in real-
world scenarios and have accelerated the practical imple-
mentation of related industries.

Our proposed method exhibits state-of-the-art perfor-
mance on multiple facial affect analysis task datasets, high-
lighting the adaptability and robustness of the learned facial
feature representation. Moreover, the model presented in
this paper serves as the base model in our final framework
for the ABAW5 Competition. Our final framework secured
first prizes in the AU and EXPR tracks, and second prize in
the VA track, underscoring the efficacy of our unified ap-
proach and its potential for real-world applications.

2. Related Works

In recent years, there has been significant progress in fa-
cial affect analysis. This section presents recent works on
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relevant tasks in CVPR2023: ABAW5 competition - AU
detection, expression recognition, and VA estimation in the
wild. We also discuss state-of-the-art self-supervised learn-
ing approaches related to our proposed frameworks.

AU detection. AU detection in the wild faces challenges
such as limited identity information and interference from
diverse poses, illumination, or occlusions leading to over-
fitting. Multi-task frameworks, like Zhang et al. [68], Jin
et al. [16], and Thinh et al. [51], incorporate auxiliary infor-
mation as regularization to introduce extra label constraints.
Zhang et al. [68, 70] use a pre-trained expression embed-
ding model as the backbone and won ABAW2 and ABAW3.
Multi-modal information is also used in ABAW competi-
tions. Zhang et al. [70] fuse vision, acoustic, and text infor-
mation using a transformer decoder, while Jin et al. [17] use
a transformer for multi-modal feature fusion. JAA-Net [48]
performs landmarks detection and AU detection simultane-
ously.

Expression recognition. The goal of expression recog-
nition is to classify an input image into one of the basic
emotion classes, such as happiness or sadness. Zhang et
al. [68] utilize the prior expression embedding model and
propose a multi-task framework. Phan et al. [40] employ the
pre-trained model RegNet [42] as the backbone and add the
Transformer [53] structure to extract the temporal informa-
tion. Kim et al. [19] use Swin transformer [31] as the back-
bone and exploit the extra auxiliary from the audio modal.
Wang et al. [58] propose a semi-supervised framework to
predict pseudo-labels for unlabeled data, which helps im-
prove the model’s generalization to some extent. Xue et
al. [62] develop a CFC network that uses different branches
to train the easy-distinguished and hard-distinguished emo-
tion categories.

VA estimation. For VA estimation, multi-task frame-
works leveraging the correlation between VA and AU or
VA and EXPR are proposed in several studies [7,55,59,68].
Multi-modal frameworks are also common, leveraging hid-
den features from vision, audio, or text [18,37,45,64,66,69].
The Transformer structure is frequently used for feature fu-
sion in VA tasks [30, 37, 69, 73]. These approaches extract
supplementary information from other tasks, particularly
for data without VA labels but possessing AU or EXPR la-
bels.

Self-supervised learning. Annotating emotion/AU/VA
labels from real-world facial images is time-consuming,
hindering the development of affective analysis. SSL meth-
ods can exploit knowledge from existing large-scale unla-
belled data. Shu et al. [49] improve expression recogni-
tion accuracy using contrastive SSL methods (e.g., Sim-
CLR [5]). Ma et al. [35] pre-train the MAE structure on
large-scale face images and fine-tune it on AU detection and
intensity estimation, achieving state-of-the-art performance
on BP4D [71] and DISFA [36]. Zhang et al. [69], Liu et

al. [30], and Wang et al. [60] employ pre-trained MAE to
extract vision features, securing a top few positions in the
ABAW5 competition.

Masked language modeling has recently emerged as a
highly effective self-supervised learning technique in natu-
ral language processing (NLP). Pre-training models, such as
BERT [9], are designed to reconstruct masked tokens within
a corpus. On the other hand, auto-regressive models, like
GPT-3 [3], are pre-trained to predict the next token in the
sequence based on all the preceding tokens. These models
leverage self-supervised learning on large-scale datasets to
improve their performance significantly.

Masked image modeling has been explored as a poten-
tial self-supervised learning technique, similar to masked
language modeling. However, this approach has not shown
much success [10]. Until recently, inspired by the use of
tokens in NLP, BEiT [2] proposed a pre-training framework
that predicts visual tokens of missing patches using masked
image patches as input. As an alternative, MAE [13] pro-
poses a more straightforward method for image modeling,
directly reconstructing the pixels of masked patches. MAE
is simpler and faster without requiring a tokenizer. As we
aim to develop a facial image representation model, we fol-
low MAE-Face [35] as the approach for our pre-training
framework.

3. Method

3.1. Pre-training

Our model is a Vision Transformer (ViT) [10] pre-
trained using a self-supervised learning approach, which
involves the masking-then-reconstruct procedure from
Masked Autoencoder (MAE) [13]. To accomplish this, we
split an input image into non-overlapping patches of 16×16,
and then mask out a portion of these patches, leaving only
the visible patches to be fed into the encoder. The goal of
training is to reconstruct the masked patches in pixels, us-
ing the visible patches as the input. As suggested by [13],
we use a masking ratio of 75%, which speeds up the pre-
training process since only 25% of the patches need to be
processed by the MAE encoder.

Dataset. We pre-train an MAE-Face model [35] in-
stead of training a general vision model based on the Im-
ageNet dataset [44]. To achieve this, we construct a large-
scale facial image dataset by concatenating AffectNet [38],
CASIA-WebFace [63], IMDB-WIKI [43], and CelebA [32].
The final dataset includes 2,170,000 face images, and all la-
bels are removed for self-supervised learning.

By pre-training on the facial image dataset, our model
learns to predict the global states of a face from only 25%
observation of the local patches of a face image. This task is
non-trivial and beyond the capabilities of traditional image
restoration and inpainting algorithms. The latter typically
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rely on low-level image features to recover missing pixels,
while our pre-training task focuses on building a high-level
understanding of the relations between different areas of a
face image. This potentially forces the model to learn facial
features representing identities, expressions, and poses.

Reconstruction loss. To achieve optimal accuracy dur-
ing the fine-tuning process, instead of the L2 loss originally
proposed by MAE, we use L1 loss for the reconstruction:

Lrecon(θ) =
1

C

C∑
i=1

|fθ(Xvisible, i)−Norm(xi)|1 (1)

where θ represents the model parameters, | · |1 denotes the
L1 norm. For the visible patches Xvisible in an input image,
fθ(Xvisible, i) is the model’s prediction for the ith masked
patch xi, and C is the number of masked patches in the
image. To further improve accuracy, a per-patch pixel nor-
malization is applied to the input patch xi to form the re-
construction target.

3.2. Fine-tuning

During the pre-training stage, our model learns a facial
feature representation that we expect can be adapted to any
face-related recognition task. In this paper, we focus on the
model’s ability to be adapted to facial affect analysis tasks,
including action unit (AU) detection, expression (EXPR)
recognition, and valence-arousal (VA) estimation.

To fine-tune the pre-trained MAE-Face model for each
downstream task, we use a supervised learning approach on
a labeled dataset. The pre-trained model serves as the ini-
tialization weights for the fine-tuning model. Firstly, we
take the encoder from the pre-trained model and remove
the decoder. Then, we add a global average pooling and a
fully-connected layer to the encoder’s output, which serves
as the classification head for the final predictions. Finally,
the model is trained on a dataset specific to the given task
under supervision.

The overall framework of the proposed method is illus-
trated in Fig. 1. The pipeline consists of a two-pass pre-
training stage and a two-pass fine-tuning stage. Next, we’ll
explain them in detail.

3.2.1 Two-pass pre-training

The fine-tuning approach is not restricted to relying solely
on the pre-trained MAE-Face model. A two-pass pre-
training process can also be employed, which can further
enhance the model’s performance.

For instance, the MAE-Face model serves as a 1st-pass
pre-trained model. We can begin by fine-tuning the 1st-
pass pre-trained model on a large dataset using supervised
learning, resulting in a 2nd-pass pre-trained model. Sub-
sequently, we can fine-tune the 2nd-pass pre-trained model

Vision Transformer

Pre-trained model (2nd pass)

Pre-trained model (1st pass)

Fine-tuned 
model (1st pass)

Fine-tuned 
model (2nd pass)

Self-supervised
Pre-training

Supervised
Fine-tuning

Knowledge
Distillation

Prediction

Supervised
Pre-training

Unlabeled Dataset

Labeled Dataset

Target Dataset

Figure 1. The schematic pipeline of the proposed framework. It
consists of two stages: a two-pass pre-training stage and a two-
pass fine-tuning stage. During the pre-training stage, facial rep-
resentations are learned by the model, while the fine-tuning stage
enables the model to acquire task-specific prediction capability.

on a smaller dataset to obtain the final model. This two-pass
pre-training process can lead to a model that performs better
on the smaller dataset. It is noteworthy that the two datasets
used in this process do not need to have the same classifica-
tion labels and can even be related to different facial affect
analysis tasks.

Essentially, the MAE-Face model is a pre-trained model
based on self-supervised learning. By utilizing supervised
learning in the two-pass pre-training process, we can further
enhance the model’s capabilities before its final fine-tuning.
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3.2.2 Two-pass fine-tuning

During the fine-tuning process described earlier, we ob-
served that training directly from the hard labels of the orig-
inal datasets can result in the overfitting of the model. To
address this issue, we propose a two-pass fine-tuning pro-
cess that employs knowledge distillation [1] [14].

Our approach involves training a 1st-pass fine-tuned
model using the original labels, which serves as the teacher
model. We then train a 2nd-pass fine-tuned model by dis-
tilling knowledge from the teacher model. Unlike typi-
cal knowledge distillation techniques that distill knowledge
from a larger model to a smaller one, we distill knowledge
from a model of the same size.

The core idea is that the teacher model provides soft la-
bels as additional training targets, which act as a form of
regularization in the optimization process. This regular-
ization allows for more training epochs before the model
begins to overfit, resulting in a better model than the one
that was fine-tuned using only hard labels from the original
dataset.

3.2.3 Loss functions

To achieve the best performance for different tasks, we use
different loss functions and hyperparameters. In this sec-
tion, we describe the loss functions used for the three tasks
discussed in this paper.

For AU detection, we use Binary Cross Entropy (BCE)
as the loss function. For EXPR classification, we use Cross
Entropy (CE) as the loss function. For VA estimation, we
use Concordance Correlation Coefficient (CCC) loss as the
loss function.

To tackle the class imbalance problem in AU and EXPR,
we utilize weighted loss. We rescale the loss of each class
by a weight, with larger weights applied to the minority
classes and smaller weights to the majority classes.

The loss functions for the three tasks are as follows:

LAU = − 1

Cau

Cau∑
j=1

Wauj
[yj log ŷj + (1− yj) log(1− ŷj)].

(2)

LEXPR = − 1

Cexpr

Cexpr∑
j=1

Wexprjzj log ẑj . (3)

LVA = 1− CCC(v̂batchi , vbatchi)

+1− CCC(âbatchi , abatchi)
(4)

CCC(X , X̂ ) =
2ρXX̂ δX δX̂

δ2X + δ2
X̂
+ (µX − µX̂ )2

. (5)

where Cau and Cexpr are the number of categories for AU
and EXPR tasks, respectively. The weights for different
categories, represented by Wauj

and Wexprj , are inversely
proportional to the number of class samples in the training
set. ŷ, ẑ, v̂, and â denote the model’s predictions for AU, ex-
pression category, Valence, and Arousal, respectively. The
symbols without hats refer to the ground truth. δX and δX̂
indicate the standard deviations of X and X̂ , respectively.
µX and µX̂ are the corresponding means and ρXX̂ is the
correlation coefficient.

3.3. Data pre-processing

During both the pre-training and fine-tuning stages, we
use RetinaFace [8] to detect 5-point facial landmarks, using
the coordinates of the two eyes for face alignment. We then
crop a squared image based on the facial bounding box to
ensure consistency.

Furthermore, to ensure the quality of the pre-training
dataset, we clean up the dataset by removing corrupt files,
non-face images, and images with too low resolution.

3.4. Post-processing

The aforementioned procedure predicts the result on an
image basis, which works well for image-based facial affect
datasets. However, for video-based datasets, applying the
proposed method frame by frame may result in fluctuation
and inconsistency in the time domain. To address this issue,
a straightforward solution is to apply a smoothing filter over
the predicted samples of the model output across the time
domain. One popular smoothing filter is the Gaussian filter,
defined as:

h(σ)[n] =
1√
2πσ

e−
n2

2σ2 (6)

g(σ)[n] =

∞∑
k=−∞

x[k]hσ[n− k] (7)

where n is the sample index, x[n] is the input sequence, and
g(σ)[n] is the filtered output sequence. σ is the standard
deviation of the Gaussian filter.

However, directly applying a Gaussian filter on the pre-
dicted samples may lead to over-smoothing, eliminating all
high-frequency components in the time domain, which is
undesirable as facial affect can change rapidly in some sce-
narios.

To address this issue, we propose a post-processing al-
gorithm that smooths the predictions while compensating
for high-frequency components. We define a function,
MD(x[n], y[n]), that returns the element with the smaller
absolute value between x[n] and y[n], as follows:
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MD(x[n], y[n]) =

{
x[n] if |x[n]| ≤ |y[n]|
y[n] if |x[n]| > |y[n]|

for n = 0, 1, 2, . . .

(8)

With a input sequence x[n], we define the filtered output
sequence, y[n], as follows:

y[n] = g(σ1)[n]

+MD(x[n]− g(σ2)[n], x[n]− g(σ3)[n])
(9)

where σ1, σ2, and σ3 are the standard deviation of the Gaus-
sian filters. We set the limitation that σ1 > σ2 and σ1 > σ3.

The filtered output sequence, y[n], is obtained by adding
the Gaussian filtered output sequence, g(σ1)[n], to the
output of the MD function applied to the difference be-
tween the input sequence, x[n], and two Gaussian filtered
sequences with different standard deviations, σ2 and σ3,
respectively. The MD function ensures that the high-
frequency components that were eliminated by the Gaussian
filter are compensated for, while still smoothing the overall
output.

Our proposed post-processing algorithm can be applied
to any facial affect recognition model that operates on
video-based datasets and can help to improve the stability
and consistency of the output results in the time domain.

4. Experiments

4.1. Experimental Setting

Pre-training. Our model is pre-trained for 800 epochs
with 40 warmup epochs using the AdamW optimizer [34]
and a weight decay of 0.05. Random cropping is applied
for data augmentation, and the Transformer blocks are ini-
tialized with Xavier Uniform [12]. The batch size is set to
4096, and the learning rate is 2.4e-3 with cosine anneal-
ing [33].

Fine-tuning. For each task, our model is fine-tuned for
50 epochs with 5 warmup epochs using the AdamW opti-
mizer and a weight decay of 0.05. RandAug(9, 0.5) [6] is
used for data augmentation. Drop path [15] of 0.1 is ap-
plied for regularization. The batch size is set to 512, and the
learning rate is 2e-4 with cosine annealing.

All implementations are created using PyTorch [39] and
trained on 8 NVIDIA A30 GPUs.

4.2. Evaluation metrics

For AU detection, we measure the performance using
F1-score, where the F1-score is calculated by taking the av-
erage of the F1-score on each class.

For EXPR classification, we measure the performance
using F1-score or Top-1 accuracy. Furthermore, we also ex-
amine Top-5 accuracy and Top-10 accuracy for the Emo135
dataset.

For VA estimation, we measure the performance by cal-
culating Concordance Correlation Coefficient (CCC) for va-
lence and arousal respectively.

The definitions for each track in the ABAW5 challenge
are described as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(10)

SAU =
1

Nau

∑
F1aui

(11)

SEXPR =
1

Nexpr

∑
F1expri (12)

SV A = 0.5 ∗ (CCC(v̂, v) + CCC(â, a)) (13)

where the definition of CCC refers to equ. 5

4.3. Results on AffectNet

AffectNet [38] is a widely used dataset for facial expres-
sion classification, comprising approximately 440k face im-
ages with manual annotations of seven discrete facial ex-
pressions and the intensity of valence and arousal.

We fine-tune our model on AffectNet for both 8-class
and 7-class tracks, with results shown in Tab. 1. We uti-
lize one-pass pre-training and two-pass fine-tuning. Our
approach achieves 66.65% Top-1 accuracy in 8-class and
69.51% Top-1 accuracy in 7-class, surpassing previous
works by more than 3%.

In addition to the ViT-Base [10] backbone, we incorpo-
rate a ViT-Tiny [52] variant to evaluate performance in a
smaller model size. The ViT-Tiny model demonstrates rea-
sonably good performance, with about 1% lower accuracy
than the ViT-Base model, making it more suitable for de-
ployment in applications where speed is a concern.

4.4. Results on Emo135

Emo135 [4] is a dataset comprising 135 emotion cate-
gories with a total of 696,168 facial images. Each emotion
category contains between 994 and 12,794 facial images la-
beled with emotions. Due to the higher number of class
labels, it presents a more challenging expression classifica-
tion task compared to AffectNet.

We fine-tune our model on Emo135 and present the re-
sults in Tab. 2. We utilize one-pass pre-training and two-
pass fine-tuning. Our approach outperforms the baseline
results reported by Chen et al. [4] by a significant margin.

Additionally, we also test different ViT model variants
as the backbone. The results reveal that ViT-Base [10] sig-
nificantly outperforms ViT-Tiny [52], while ViT-Large [10]

5928



Method
Metric: Top-1 Acc. (%)

AffectNet-8 AffectNet-7
ESR-9 [50] 59.3 -
RAN [57] 59.5 -
Georgescu et al. [11] 59.58 63.31
VGG-FACE [21] 60.40 -
PSR [54] 60.68 -
Distilled student [47] 61.60 65.40
Pourmirzaei et al. [41] 61.72 -
DAN [61] 62.09 65.69
MT-ArcRes [27] 63 -
Savchenko et al. [46] 63.03 66.29
Ours (ViT-Tiny) 65.23 68.46
Ours (ViT-Base) 66.65 69.51

Table 1. AffectNet (EXPR): The results of the models that are trained and evaluated on the 8-class or 7-class task. We also include the
results from several state-of-the-art works for comparison. The best results are in bold.

Method
Metric

F1-score Top-1 Acc. (%) Top-5 Acc. (%) Top-10 Acc. (%)
Chen et al. [4] 0.247 28.3 66.4 78.7
Ours (ViT-Tiny) 0.3203 35.44 75.65 86.61
Ours (ViT-Base) 0.3753 38.64 80.82 89.71
Ours (ViT-Large) 0.3791 39.26 80.93 89.86

Table 2. Emo135 (EXPR): The results of the models that are trained on the training set and evaluated on the test set. We also compare our
result to the baseline from Chen et al. [4]. The best results are in bold.

Val set
Metric

F1-score
Official 0.5553
5-fold Avg. 0.5548
fold-1 0.5617
fold-2 0.5843
fold-3 0.5606
fold-4 0.5274
fold-5 0.5402

Table 3. ABAW5 (AU): The results of our models that are trained
and evaluated on different folds.

offers only a marginal advantage over ViT-Base. Therefore,
for Emo135, ViT-Base represents the optimal balance be-
tween performance and speed.

4.5. Results on ABAW5 validation set

The Affective Behavior Analysis in-the-wild (ABAW5)
competition provides the Aff-Wild2 dataset, which is a
large-scale video-based dataset comprising three emotion
representations: action units, expression categories, and
valence-arousal.

Val set
Metric

F1-score Top-1 Acc. (%)
Official 0.4460 58.51
5-fold Avg. 0.4403 56.45
fold-1 0.4306 52.95
fold-2 0.4642 59.41
fold-3 0.4299 57.74
fold-4 0.5028 59.44
fold-5 0.3738 52.72

Table 4. ABAW5 (EXPR): The results of our models that are
trained and evaluated on different folds.

We assess the effectiveness of our method on all three
tracks. It is important to note that a separate model is fine-
tuned on the specific data for each track. All models employ
ViT-Base as the backbone. We utilize two-pass pre-training
and two-pass fine-tuning, where the 2nd-pass pre-training
is based on the AffectNet dataset. Apart from the official
validation split, we also evaluate the performance using 5-
fold cross-validation. The results are presented in Tab. 3,
Tab. 4, and Tab. 5.

The results obtained from the AU and EXPR tracks
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Val set
Metric: CCC

Valence Arousal VA Avg.
Official 0.4652 0.6177 0.5414
5-fold Avg. 0.5914 0.5507 0.6321
fold-1 0.5811 0.5500 0.6122
fold-2 0.5691 0.5382 0.6001
fold-3 0.6175 0.5618 0.6731
fold-4 0.5598 0.5093 0.6103
fold-5 0.6293 0.5941 0.6646

Table 5. ABAW5 (VA): The results of our models that are trained
and evaluated on different folds.

demonstrate that the proposed method has the ability to gen-
eralize well on different validation splits. This is evident
from the fact that the results obtained from the official val-
idation set are quite similar to those obtained from the 5-
fold average. Therefore, we can conclude that the proposed
method is robust and can perform well on different valida-
tion sets. However, it is worth mentioning that the results
obtained from the VA track indicate a relatively large gap,
which suggests that the VA track is more sensitive to val-
idation splits. In the future, more experiments should be
conducted to further investigate the sensitivity of the VA
track to validation splits and to determine whether the pro-
posed method can be further improved to perform better on
different validation sets.

4.6. Results on ABAW5 test set

In the ABAW5 competition, the proposed model in this
paper serves as a strong baseline for our final method. Our
final approach leverages multi-modal information from vi-
sion, acoustic, and text modalities, as well as various post-
processing techniques, to improve the capability and robust-
ness in analyzing the Aff-Wild2 dataset.

Our method won first place in the AU Detection Chal-
lenge with an F1-score of 0.5549 (Tab. 6). For the Ex-
pression Classification Challenge, our method also won first
place with an F1-score of 0.4121 (Tab. 7). Furthermore, we
secured second place in the VA Estimation Challenge with
a CCC score of 0.6372 (Tab. 8).

Other top-performing methods such as SituTech and SZ-
FaceU also use MAE pre-trained on facial image datasets
as the feature extractor. SituTech and CtyunAI also in-
corporate multi-modal information for expression classifi-
cation, combining vision and audio features. HFUT-MAC
uses POSTER2 as the feature extractor and a transformer
for temporal feature integration. HSE-NN-SberAI applies
EfficientNet and MLP for classification. For the VA Estima-
tion Challenge, CBCR leverages TCN for temporal feature
capture and channel attention network (CAN) for feature
fusion, while other teams’ methods are similar to those in

Team
Test Set

Rank F1-score
PRL [56] #5 0.5101

SZFaceU [60] #4 0.5128
USTC-IAT-United [64] #3 0.5144

SituTech [30] #2 0.5422
Ours #1 0.5549

Table 6. Final competition results (average F1-score) on the AU
test set of ABAW5.

Team
Test Set

Rank F1-score
HSE-NN-SberAI [45] #5 0.3292

HFUT-MAC [72] #4 0.3337
CtyunAI [73] #3 0.3532
SituTech [30] #2 0.4072

Ours #1 0.4121

Table 7. Final competition results (average F1-score) on the EXPR
test set of ABAW5.

Team
Test Set

Rank CCC
HFUT-MAC [72] #5 0.5342

CtyunAI [73] #4 0.5666
CBCR [67] #3 0.5913

SituTech [30] #1 0.6414
Ours #2 0.6372

Table 8. Final competition results (average CCC) on the VA test
set of ABAW5.

the other challenges.
In summary, our proposed method outperforms other

top-performing methods in the Action Unit Detection and
Expression Classification Challenges, while achieving com-
petitive results in the VA Estimation Challenge. Our ap-
proach leverages the MAE-Face pre-training and multi-
modal information to improve performance. Other top
teams also employ similar techniques, highlighting the ef-
fectiveness of such methods.

5. Conclusion
This paper presents MAE-Face as a unified approach to

facial affect analysis. By pre-training on a large-scale fa-
cial image dataset, MAE-Face learns a robust visual repre-
sentation for facial affect. The pre-trained model is subse-
quently fine-tuned on different datasets for specific down-
stream tasks.

Our proposed method demonstrates state-of-the-art per-
formance on various facial affect analysis task datasets. The
results for different tasks stem from the same pre-trained
model and fine-tuning procedure, showcasing the robust-
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ness of the learned facial feature representation and its
adaptability to distinct facial affect analysis tasks.

In the ABAW5 competition, the model proposed in this
paper serves as the fundamental building block in our final
framework, offering a robust baseline for visually analyzing
facial affective behavior on a frame-by-frame basis. By in-
corporating sequential information and multimodal analysis
in our final framework, we won first prizes in the AU and
EXPR tracks, and second prize in the VA track.
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