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Abstract

Building models for human facial expression recognition
(FER) is made difficult by subjective, ambiguous and noisy
annotations. This is especially true when assigning a single
emotion class label to facial expressions for large in-the-
wild FER datasets. Human facial expressions often contain
a mixture of different mental states, which exacerbates the
problem of single labels when used to categorize emotions.
Dimensional models of affect – such as those using valence
and arousal – provide significant advantages over categori-
cal models in terms of representing human emotional states
but have remained relatively under-explored. In this pa-
per, we propose an approach for dual-domain affect fusion
which investigates the relationships between discrete emo-
tion classes and their continuous representations. In order
to address the underlying uncertainty of the labels, we for-
mulate a set of mixed labels via a dual-domain label fusion
module to exploit these intrinsic relationships. Finally, we
show the benefits of the proposed approach using AffectNet,
Aff-Wild, and MorphSet, in the presence of natural and syn-
thetic noise.

1. Introduction
Reading emotions from facial expressions is a vital step to-
wards building machines that can better understand human
behaviour and interact appropriately. In recent years, auto-
matic facial expression recognition (FER) has made tremen-
dous progress and become an important problem in machine
learning and computer vision applications.

Affective facial expressions can be represented using
various different approaches:

• Facial Action Coding System (FACS) [6], where facial
actions and muscle movements are described as a com-
bination of different Action Units (AUs). The FACS
model however does not directly describe the affective
state.

Figure 1. The nature of facial expressions is complex, making it
difficult to categorize expressions into single emotion categories
(red - ground truth). We propose to derive these variability from
the dimensional affect space into soft mixed labels (green - pro-
posed).

• Categorical models [5], where the facial expression is
commonly represented as one of six basic emotions
(happiness, surprise, sadness, anger, disgust, fear) or
neutral.

• Dimensional models as for example [27] that use a
continuous multi-variate space, such as valence (pleas-
antness of the stimulus) and arousal (intensity for the
emotion caused by the stimulus).

Despite the different models of affect, most FER sys-
tems are based on the categorical approach, which have yet
to achieve the capabilities necessary for building meaning-
ful human-machine interactions. This is due to the chal-
lenge of categorizing facial expressions into a single basic
emotion: humans rarely display high-intensity prototypical
facial expressions, whereas mixed emotional states are far
more common in everyday situations. This causes the cat-
egorical model to suffer greatly from both intra-class vari-
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ations and inter-class similarities in the presence of unreli-
able labels. These unreliable labels do not provide proper
feedback during training and often impede the learning of
discriminative features, causing many supervised learning
algorithms to fail. This problem is especially prevalent in
large scale in-the-wild FER datasets, where noisy, ambigu-
ous, poor-quality images and low annotator agreement are
common [32]. This makes annotating facial expressions
with a single class label very difficult.

In contrast, the dimensional model of affect [27] pro-
vides clear advantages over the categorical approach when
it comes to representing the full spectrum of human affec-
tive states. Other similar models of affect include adding
a third dimension of dominance (degree of control caused
by stimulus) [21]. Alternative formulations include emo-
tion distribution learning where the probabilities for each
emotion class are modelled, thus allowing discrete labels to
better represent the ambiguities of facial expressions [36].
These methods include using multi-label classification [15]
or multi-class classification [17] to represent the different
blends of emotion classes present in the underlying image.
Unfortunately, manually annotating a large amount of in-
the-wild facial images with multiple labels is expensive and
labour-intensive.

In this work, we further build on the fact that ambigu-
ous facial expressions contain mixtures of the different ba-
sic emotions [17, 26], and that these uncertainties can be
directly derived from the dimensional affect model. Our
dual-domain affect fusion accounts for both types of affect
representation, by explicitly considering the interpretations
of emotions in both image and label space.

Our contributions can be summarized as follows:

• We bridge the gap between dimensional and categori-
cal affect by developing a novel dual-domain label fu-
sion method, which models uncertainty in FER clas-
sification tasks by exploiting the underlying relation-
ships with valence/arousal values.

• We propose two strategies (Mixture of Gaussians and
Euclidean distance based) to derive such relationships
and compare the two.

• We show that our framework provides lower calibra-
tion error and easily complements other calibration
strategies.

• Finally, we validate our framework on a synthetic lab-
oratory dataset (MorphSet) as well as two of the largest
in-the-wild FER datasets (AffectNet and Aff-Wild).
Our approach achieves state-of-the-art performance on
AffectNet for both dimensional and categorical tracks.

2. Related Work

2.1. Facial Expression Recognition

Traditionally, FER systems comprise three different
phases namely, facial detection, feature extraction, and fi-
nally regression or classification. Current state-of-the-art
methods usually involve deep learning, where a convolu-
tional neural network (CNN) is used to automatically ex-
tract deep features and trained in an end-to-end fashion.
This includes methods such as network ensembles with
shared representations [29], which hierarchically combine
abstract features such as lines, edges and colors with local
features such as nose, mouth and eyes. CNNs are sensi-
tized to the size of the input images, as in-the-wild images
typically vary in size; [30] used super-resolution to allevi-
ate this issue. [12] applied 3D morphable models to affect
synthesis on neutral images to the desired target affect. [33]
developed region attention networks (RAN) for facial im-
ages with occlusions and varying pose. For more details on
other methods used in categorical FER tasks, please refer to
recent survey papers [18, 36].

2.2. Learning with Uncertainties

Ambiguous facial expressions often cause uncertainty
amongst annotators. Traditionally FER datasets were col-
lected procedurally in controlled laboratory environments,
where participants were asked to categorize photographs
of acted expressions into basic emotions [7, 16, 25]. This
would allow expressions to be represented as a distribution
rather than a single emotion, as different annotators may
feel differently about each photograph, and even the same
annotator may have multiple mixed emotions to each pho-
tograph [26]. However, as FER datasets grow larger, this
procedural method of collecting annotations becomes very
expensive.

Popular in-the-wild FER datasets such as AffectNet [22]
and Aff-Wild2 [14] typically only provide one-hot labels for
categorical affect. However, in-the-wild images often con-
tain a mixture of different emotions, and one-hot encodings
are insufficient to capture the underlying diverse emotions
of these images. Furthermore, the subjectivity of emotions
makes it difficult to annotate certain facial expressions, as
some emotions are highly similar to each other. For exam-
ple, expressions of ”Contempt” and ”Anger” are visually
indistinguishable and should not be hard-assigned to a sin-
gle emotion class.

Regularization techniques such as uniform label smooth-
ing have been shown to help the model become less over-
confident by regarding each incorrect class as equally prob-
able [23]. However, some classes in FER are intrinsically
closer than others. For example, the correct class label
”Fear” may be mistaken for ”Surprise” more often than
for ”Disgust”. Clearly, the smoothing between the incor-
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Figure 2. Learning representations for both dimensional and categorical affect are shared through an encoder, class likelihoods are derived
from the dimensional space and dual-domain label fusion is performed on-the-fly to introduce uncertainties into the categorical labels.

rect classes of FER is non-uniform and should be reliably
represented as a probability distribution [19,26]. For exam-
ple, [37] proposed Emotion Distribution Learning to map a
face image to an emotion probability distribution. [30] con-
sidered the prior distribution of each class in the training
set to smooth the labels. [32] used Self Cure Networks to
suppress the impact of uncertain samples, thus preventing
overfitting on uncertain images. [3] proposed Auxiliary La-
bel Space graphs to leverage topological information from
labels.

3. Proposed Methodology

In contrast to prior works, we investigate the underlying
relationships between dimensional and categorical affect.
As shown in Figure 2, our proposed dual-domain affect fu-
sion framework directly formulates mixed-class likelihoods
from the dimensional valence/arousal (VA) space and per-
forms label fusion in order to obtain probabilities that best
represent each facial expression. Our framework jointly
considers the categorical and dimensional models of affect
and comprises the following two modules, which are de-
scribed in more detail below:

1. Mixed Label Formulation extracted from the dimen-
sional affect space using either Mixture of Gaussians
or Euclidean distance-based methods.

2. Dual-Domain Affect Label Fusion combines dimen-
sional labels with categorical labels for FER classifi-
cation tasks.

3.1. Mixed Label Formulation

3.1.1 Gaussian Mixture Labels

A probabilistic approach to deriving a set of soft mixed la-
bels for facial expression classification would be to model
the dimensional affect space with a Gaussian Mixture
Model (GMM). The GMM is a linear superposition of dif-
ferent Gaussians which create highly complex probability
density functions that can be used to approximate any con-
tinuous density with arbitrary accuracy.

We use the notations as per [2] and formulate the GMM
for dimensional affect as follows:

p(xn) =

K∑
k=1

πkN (xn|µk,Σk) (1)

where xn represents each VA point in dimensional affect
space, N (xn|µk,Σk) describes each Gaussian and p(xn)
denotes the marginal distributions/normalizer. The sets of
parameters used to define the properties of each Gaussian
component in the GMM are represented with πk,µk,Σk.
Specifically πk represents the prior distribution, µk repre-
sents the centroids and Σk represents the covariance matri-
ces for each of the k classes or components respectively.
These sets of parameters can be computed directly from
the VA annotations present in the dimensional affect space.
A set of conditional probabilities p(y|xn)GMM (mixed la-
bels) can be obtained using Bayes’ Theorem:
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p(y|xn)GMM =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µk,Σk)

(2)

The GMM for the training set of AffectNet is visualized
in Figure 3, where each of the k classes belongs to a differ-
ent Gaussian in the GMM. As we traverse along different
areas of the GMM, changes for each point xn in the di-
mensional affect space would also provide different condi-
tional class probabilities when transitioning from one Gaus-
sian component to another.

Figure 3. GMM formulation for AffectNet, showing different con-
ditional class probabilities corresponding to different points in the
dimensional affect space.

3.1.2 Euclidean Mixture Labels

Apart from the probabilistic approaches, another intuitive
method would be to directly rank classes that are semanti-
cally closer with higher probabilities and reduce the prob-
abilities of classes that are further away. This would allow
the model to also consider the next most likely classes. In-
spired by the work on soft ordinal labels [4], we propose a
distance based method to use the relationships of VA anno-
tations and map these values into a probability distribution
across k classes.

We compute the probabilities p(y|xn)Euclid using the
Euclidean distances from the centroids µk to rank each VA
point in the training set:

p(y|xn)Euclid =
max ||xn − µk||22

||xn − µk||22
(3)

This allows the dimensional relationships between the
emotion classes to be mapped into a probability distribution.
These distributions are then further normalized into valid
likelihoods such that

∑K
p(y|xn)Euclid = 1. For instance,

data points which are closer to a certain centroid µk should
be mapped to that class.

Since certain emotion classes or facial representations
may be intrinsically closer than others, our proposed formu-
lations for mixed labels are non-uniform and do not regard

the incorrect classes with equal probabilities, unlike label
smoothing.

3.2. Dual-Domain Affect Label Fusion

Due to the ambiguity of facial expressions in certain im-
ages, some VA values may have been incorrectly annotated,
leading to a loss in training accuracy when solely using
mixed labels derived from the dimensional affect space. To
counteract this problem, we propose to fuse the ground truth
one-hot labels with the distributions obtained from the di-
mensional affect space.

Prior research [13, 34] has shown that facial expressions
share both the categorical and dimensional affect space.
Performing label fusion would further allow both models
of affect to complement one another. We propose that the
degree of fusion between the two distributions is coupled by
a hyperparameter α:

p(y|xn)fused = αp(y|xn)GT + (1− α)p(y|xn)V A (4)

where p(y|xn)fused represents the resultant fused categor-
ical distributions, p(y|xn)V A are either the Euclidean or
GMM distributions obtained directly from the dimensional
space, and p(y|xn)GT denotes the one-hot encoded vector
representing the ground truth class label. An example of
our label fusion method is further illustrated in Figure 4.
The fused result is a soft mixed label which contains a com-
bination of different probabilities derived from the ground
truth label and VA annotations.

Figure 4. Dual-domain fusion accounts for labels from both cate-
gorical and dimensional affect spaces. The distributions obtained
from dimensional affect may not always coincide with the true
class; fusion is proposed to preserve training accuracy.

3.3. Loss Functions

In order to tackle the class-imbalances commonly found
in FER tasks, we adopt the same weighted cross entropy
loss as per [22]. The class weights Wk can be computed
using:

Wk =
Nmax

Nk
, (5)
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where Nmax represents the number of training samples in
the majority class. In the event of an evenly balanced class
distribution, the class weights Wk are equal to one.

The weighted cross entropy loss between the softmax
predictions and fused labels y can be computed as:

LCE = − 1

N

N∑
n

Wky log
exp(θT fn)∑K
j exp(θT

j fn)
(6)

where θ represents the weights and fn represents the input
features to the fully connected layer.

We follow [1] and further maximise the cosine similarity
(sim) between softmax predictions and fused labels:

LCS = Wk(1− sim(y,
exp(θT fn)∑K
j exp(θT

j fn)
)) (7)

For affect regression, we minimize the Euclidean dis-
tance between the valence/arousal predictions and annota-
tions. Since the training samples for each class are imbal-
anced, we also apply the same set of weights Wk during
training.

L2 =
1

N

N∑
n

Wk||xn − x̂n||22 (8)

In order to jointly learn both dimensional and categorical
affect, the final objective function is given by:

L = L2 + LCE + LCS (9)

4. Experiments and Results
4.1. Datasets

AffectNet [22] is the largest image database for in-the-
wild facial expression recognition. It comprises 450,000
manually annotated images collected from the Internet. The
dataset provides VA annotations and eight class labels for
categorical affect (the ”Contempt” class is added to the typ-
ical seven basic emotions). We randomly split a subset of
training images for validation while selecting hyperparame-
ters, thereafter we retrain the model using the entire training
set. As the test set is not released, we follow the evaluation
protocol proposed by the authors in order to keep compar-
isons fair. We report the performance of our method on the
validation set, which contains 4,000 images for categorical
affect and 4,500 for dimensional affect.

AffWild [35] is the largest video database for in-the-
wild facial expression recognition which contains VA anno-
tations. To derive class labels for a corresponding VA label
and frame, we borrow the parameters πk,µk,Σk computed
from the training set of AffectNet and assign categorical la-
bels from the dimensional space. Aff-Wild contains 252
videos for training and 46 videos for testing. This translates

to a total of roughly 1M+ frames with valence/arousal an-
notations and class expressions. We performed a random
80-20 training/test split on the Aff-Wild training videos for
our experiments. We were unable to use the given Aff-Wild
test set since the official test set does not contain any VA
annotations. We also did not use Aff-Wild2 [14] since the
VA labels do not intersect with the class labels.

MorphSet [31] is a synthetically augmented dataset gen-
erated from a collection of laboratory datasets [7, 16, 25]. It
comprises seven different categorical class labels and a rel-
atively balanced distribution between classes. The dataset
provides multiple expressions per identity and comes with
highly consistent VA annotations. We randomly split the
dataset based on the different subjects into roughly 63,000
images for training and 16,000 images for testing.

4.2. Implementation Details

For our experiments we use Resnet-18 CNN [8] as
the backbone architecture. The input images are resized
to 224 × 224 pixels, along with typical data augmenta-
tion strategies such as colour jitter, random horizontal flips
and random affine transformations, which would allow the
model to regularize better to unseen samples. The parame-
ters µk,Σk from dimensional affect were computed within
one standard deviation.

We use a batch size of 256 and an initial learning rate
of 2.5e-4 with a decay factor of 0.5 every 30 epochs. The
fusion hyper-parameter α is empirically set to 0.5. Effects
of the fusion hyper-parameter will be discussed further in
the Ablation Studies. The network is optimized using the
Adam optimizer [11] and Stochastic Weighted Averaging
(SWA) [10] from the Pytorch library. All experiments are
manually seeded for reproducibility and trained on a 8GB
NVIDIA GeForce RTX 2070 GPU for 50 epochs. The
code is made available at https://github.com/dexterdley/RC-
AffectNet .

4.3. AffectNet Benchmarking

4.3.1 Categorical Affect Classification

We compare our results for 8 category classification against
the state-of-the art methods in Table 1. For fair compar-
isons, we only include methods which do not use additional
training data. We find that learning with dual-domain affect
label fusion greatly improves the performance for categori-
cal affect classification. This is largely due to the ability of
mixed VA labels to encapsulate information about the other
classes from the dimensional affect space.

4.3.2 Dimensional Affect Regression

Predicting values for dimensional affect is commonly re-
garded as a regression problem. Due to the nature of highly
skewed training samples, we find an improvement in overall
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Algorithm 1: The Dual-Domain Affect Fusion
Framework

Data: Training Set D;

1: Initialize model parameters θ
2: for each mini-batch N ∈ D do
3: for each sample n ∈ {1, ..., N} do
4: return p(y|xn)va − getMixedLabels()

5: return p(y|xn)fused − LabelFusion()

6: Compute LCE + LCS from p(y|xn)fused
7: Compute L2 from xn

8: Update θ by gradient descent
9: return θ

10:
11: Function LabelFusion():
12: αp(y|xn)GT + (1− α)p(y|xn)va
13: return p(y|xn)fused

14: Function getMixedLabels():
15: return p(y|xn)va

Method Accuracy F1
AffectNet [22] 58.00 58.00
Wide Ensemble [29] 59.30 -
Auxillary Label [3] 59.35 -
RAN [33] 59.50 -
SCN [32] 60.23 -
Pyramid super res. [30] 60.68 -
Deep 3DMM [12] 60.00 59.00
Weighted Cluster [24] 60.70 60.49
Ours 61.93 61.93

Table 1. Classification performance of different methods on Af-
fectNet (8 categories).

regression errors and correlation values when adding class
weights Wk to the weighted regression loss as formulated
in Equation 8.

RMSE CCC
Method Valence Arousal Valence Arousal
Mobile CNN [9] 0.41 0.37 - -
AffectNet [22] 0.37 0.41 0.60 0.34
CAAE [20] 0.45 0.41 0.49 0.41
Wide Ensemble [29] 0.36 0.33 - -
Deep 3DMM [12] 0.37 0.38 0.62 0.54
Ours 0.34 0.33 0.66 0.55

Table 2. Regression performance for valence and arousal predic-
tions on AffectNet. RMSE values closer to zero are better, whereas
CCC values closer to one are better.

We compare our proposed method against the current
state-of-the-art methods in Table 2, by achieving RMSE of
0.34 and 0.33 for valence and arousal respectively. We also
obtain higher concordance correlation coefficients (CCC)
for both valence and arousal predictions.

Figure 5. Error plots for valence and arousal using L2 loss (top)
with RMSE of 0.427 & 0.39 vs. weighted L2 loss (bottom) with
RMSE of 0.33 & 0.30.

These improvements in the performance are further il-
lustrated using Figure 5. The overall root mean squared
error (RMSE) for both valence and arousal scatter plots is
generally lower when using weighted L2 loss as compared
to using regular L2 loss. The error reduction is most no-
ticeable in the top left quadrant in the 2D space, where mi-
nority classes such as ”Contempt” and ”Fear” reside. This
coincides with the intention of applying weights to cause
the network to pay more attention to samples that belong to
the minority classes.

5. Analysis and Discussion

In this section, we conduct in-house experiments on Af-
fectNet, Aff-Wild, and MorphSet. Firstly, we evaluate the
robustness of our proposed method under synthetic label
noise. Secondly, we show the effects of the fusion hyper-
parameter α. Lastly, we visualize the features learnt by the
network trained using different methodologies.

5.1. Evaluation under Synthetic Label Noise

We evaluate our proposed method under different set-
tings of categorical label noise, whereby a percentage of the
training labels (10%, 20% or 30%) are randomly flipped
to other classes. For the Aff-Wild experiments, we as-
sign p(y|xn)GMM to each corresponding VA annotation.
The one-hot formulations are assigned to the argmax of
p(y|xn)GMM . For these experiments the fusion hyperpa-
rameter α is set to 0.5
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In Table 3, we compare the typical one-hot label formu-
lation against both the Euclidean and GMM fusion formula-
tions and find that label fusion from the dimensional affect
space is especially helpful for FER classification tasks even
under the injection of synthetic categorical label noise. In
the case where label noise is not added, the improvements
of label fusion are marginal ∼0.49%. The benefits of la-
bel fusion become more pronounced when label noise is
increased to 30%, outperforming the baseline one-hot for-
mulation by up to 14.9%, 0.46% and 5.06% on AffectNet,
Aff-Wild, and MorphSet respectively. This suggests that
dual-domain label fusion helps the network generalize to
unseen samples on both in-the-wild and laboratory datasets
by preventing it from making over-confident predictions.

Noise One-hot Fusion Fusion
(%) (Euclidean) (GMM)

A
ff

ec
tN

et 0 0.6017 0.6066 0.5945
10 0.5842 0.5943 0.5920
20 0.5193 0.5890 0.5748
30 0.4336 0.5822 0.5746

A
ff

-W
ild

0 0.2227 0.2235 0.2325
10 0.2130 0.2322 0.2174
20 0.2184 0.2322 0.2305
30 0.2221 0.2242 0.2267

M
or

ph
Se

t 0 0.8999 0.8912 0.8922
10 0.8939 0.8649 0.9030
20 0.8709 0.8514 0.8866
30 0.8377 0.8224 0.8883

Table 3. F1 scores for different methods on AffectNet, Aff-Wild,
and MorphSet subjected to different values of synthetic categorical
label noise.

5.2. Effects of Fusion Hyperparameter α

The differences between one-hot labels and fused labels
can be further evaluated by comparing the effects of the hy-
perparameter α in our label fusion module. The hyperpa-
rameter α directly influences the degree of fusion between
the dimensional and categorical labels.

As shown in Table 4, the best performing value of α
is found to be 0.5, where both the highest classification
scores and lowest regression errors are observed on Affect-
Net and MorphSet. Notably, solely using the mixed labels
from the dimensional affect space would result in poorer
performance as compared to directly using the categori-
cal labels. However, the decrease in performance is only
marginal ∼1%, suggesting that mixed labels drawn from
the dimensional space are enough for classification without
the need for additional class annotations.

When label fusion is performed, both accuracy and F1
are improved by 1-2% when α = 0.5. For the regression

Fusion Regression Classification
α RMSE V RMSE A Accuracy F1

A
ff

ec
tN

et

0.0 0.344 0.301 0.5715 0.5643
0.3 0.337 0.298 0.5958 0.5950
0.5 0.333 0.302 0.6048 0.6066
0.7 0.337 0.296 0.6046 0.6040
1.0 0.337 0.302 0.5845 0.5843

M
or

ph
Se

t 0.0 0.063 0.069 0.9414 0.9417
0.3 0.063 0.067 0.9500 0.9503
0.5 0.060 0.065 0.9557 0.9561
0.7 0.063 0.072 0.9457 0.9464
1.0 0.071 0.081 0.9511 0.9511

Table 4. Model performance for different values of fusion hyper-
parameter α on AffectNet and MorphSet

tasks on AffectNet, the fused labels only help to reduce
the overall regression errors slightly, and they do not play
a big part in further lowering the RMSE values for valence
or arousal. Surprisingly, the regression errors on MorphSet
are significantly lower when label fusion is performed, by
a margin of 0.011 and 0.016 for valence and arousal re-
spectively. We suspect the differences in improvements to
be due to the fact that AffectNet is collected in-the-wild
and generally contains noisier annotations than MorphSet,
which is much more controlled.

5.2.1 Qualitative Analysis

We show qualitative examples using GradCAM [28] for
each of the different methods across each dataset in Figure
6. GradCAM produces a visual heatmap which highlights
the important features used for predictions by utilizing the
gradients propagating through the final convolutional layer.
Each row in Figure 6 shows a randomly sampled image
from AffectNet, Aff-Wild, and MorphSet.

The corresponding columns show features learnt by the
network trained with different labels, followed by training
with additional label noise. We observe that the models
trained using one-hot labels have less consistent heatmaps
across different datasets. When additional synthetic label
noise is injected into the training set, we observe that the
learnt heatmaps of the one-hot variant to fluctuate signifi-
cantly as compared to the Euclidean or GMM fusion vari-
ant. The additional information drawn from the dimen-
sional space directly helps the network to reduce overconfi-
dence, thereafter improving generalization performance to
unseen samples. Features learnt using our proposed fusion
mainly focus on the important regions of the face and re-
main relatively consistent even under the influence of addi-
tional label noise.
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Figure 6. Comparisons of the features learnt using different fusion
methods under GradCAM analysis.

6. Conclusions
Facial expressions are complex, and the typical one-hot

encoding may not fully represent the different underlying
emotions. We presented a novel method to derive mixed
labels via a dual-domain affect fusion method which com-
bines dimensional affect with categorical labels. We pro-
posed two methods to derive mixed labels from dimensional
space and show the benefits of dual-domain affect fusion as
well as the features learnt using different variants of fusion.
Our method outperforms the current state of the art, and ex-
periments yield robust performance against synthetic label
noise.
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