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Abstract

Recent advances in speech emotion recognition (SER)
have relied on a mix of acted and in-the-wild research
datasets. It is unclear whether annotations in these datasets
are of similar strength or quality, can reliably be detected by
other human annotators, and to what extent emotion clas-
sification knowledge can be transferred between acted and
in-the-wild data. A well known, large in-the-wild dataset
for emotion classification and sentiment analysis is the
CMU-MOSEI video dataset. The raw annotations of CMU-
MOSEI are “soft labels” on a Likert scale. Usually, exper-
iments are performed with a simple binarization of these
fine-grained labels. In this work, we re-annotated 1% of the
data from two acted and two in-the-wild datasets to ana-
lyze the strength of emotion annotation per label, compare
annotation accuracy between acted and in-the-wild data,
and identify an appropriate threshold for CMU-MOSEI la-
bel binarization. We report a significant improvement (7%
increase on weighted average F) using the same model ar-
chitecture in emotion classification by simply identifying a
better threshold for CMU-MOSEI Further, we show that
emotion annotation strength of acted and in-the-wild data
is similar, and that the same model architecture generalizes
to the same extent when trained on acted and tested on in-
the-wild data, and vice-versa.

1. Introduction

Speech Emotion Recognition (SER) is a subset of the
general Automated Emotion Recognition (AER) problem,
where human speech in acoustic signals is used to perform
tasks such as identify emotions, sentiment, predict valence
and arousal etc. [1,2]. The advent of deep learning has led to
an important increase in the accuracy of SER models work-
ing directly on mel-spectrogram representations [3] or the
raw audio waveform [4-6].
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Since deep networks typically thrive on rich datasets,
the SER research community has open-sourced large multi-
modal video datasets annotated with discrete emotion
categories [7, 8] and valence-arousal dimensional values
[9]. In this work, we study one of the key features
that qualitatively distinguishes datasets — i.e., whether a
dataset was built from acted emotions (e.g., IEMOCAP
[10], CREMA-D [11], RAVDESS [12], EMODB [I13]) or
emotions in-the-wild (CMU-MOSEI [14], Aff-Wild2 [15],
MSP-Podcast [16]).

Research algorithms for SER often train or evaluate
models on a mix of acted and in-the-wild datasets. How-
ever, in-the-wild natural emotion may well be out-of-
distribution for acted emotion. In-the-wild datasets pos-
sess the advantage that they contain many different speak-
ers, ethnicities, and accents, as well as environmental noise,
recording quality, background chatter, music, etc. There-
fore, they require deep network models to learn more robust
representations of emotional speech by becoming insensi-
tive to confounding stimuli. With over 65 hours of video
data and more than 1000 speakers, CMU-MOSEI [14] is
the largest in-the-wild dataset. A unique aspect of CMU-
MOSEI is that emotions are annotated on a [0, 3] Likert
scale, which effectively creates soft labels. Previous works
train and evaluate on CMU-MOSEI with hard labels de-
rived by applying a threshold (¢ > 0.) to each emotion an-
notation [17,18]. It is unclear whether this choice of thresh-
old is justified.

The first contribution of this paper is investigating the
degree of knowledge transfer between acted and in-the-
wild datasets and whether inter-annotator agreement varies
across these two types of emotional audio data. The second
contribution of this paper is performing an in-depth analy-
sis of the effect of different thresholds on inter-annotator
agreement and SER model accuracy. For both contribu-
tions, three authors in our work re-annotated a random
subset (1%) of the combination of four datasets: two
acted, namely CREMA-D and RAVDESS, and two in-the-
wild, namely Affwild2 and CMU-MOSEI, to analyze inter-
annotator agreement disaggregated by emotion and dataset
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type. Further, we varied the threshold applied to CMU-
MOSEI labels and report the effect on SER model scores.

The above-mentioned two contributions of this paper led
us to define and shed light on the following research ques-
tions:

¢ RQ1: Are there emotions that are easier to annotate
than others?

¢ RQ2: Is it easier to annotate acted data or in-the-wild
data?

* RQ3: What is the appropriate threshold for the CMU-
MOSEI dataset?

* RQ4: How does changing the threshold for the CMU-
MOSEI dataset affect SER model performance?

¢ RQ5: Is there a transfer between acted and in-the-wild
datasets?

1.1. Related Work

Automated speech emotion recognition is typically stud-
ied using two tasks: (1) Valence-Arousal Estimation [15,19]
or (2) discrete emotion classification [2]. We focus our ef-
forts on the latter (2) in this study. Recently, transformer-
based [20] deep neural network models have reported state-
of-the-art results on benchmark datasets for SER such as for
MSP-Podcast [21], IEMOCAP [22] and CMU-MOSI [6].
The conclusion from these studies is that large pre-trained
models such as HuBERT [4] and wav2vec2 [5] are excellent
initializations for fine-tuning a transformer-based network
on a downstream SER task. Furthermore, they conclude
that optimizing the entire network except the initial convo-
lutional layers is necessary for good performance. We uti-
lize these findings for our architecture in this study, choos-
ing HuBERT base model as a pretrained backbone. Current
weighted average F scores on CMU-MOSEI are on the or-
der of 0.8. Multimodal transformer networks show greater
accuracy, presumably because of the complementary infor-
mation present in text and visual domain such as facial
expressions, gestures and body language [17, 23] reaching
weighted average F7 scores of 0.875.

Although it has been shown that people from different
cultural backgrounds can recognize over 20 emotions in hu-
man speech using cues such as prosody [24,25], and non-
linguistic vocal bursts [26, 27] the understanding of emo-
tional states observed in others also shows cultural differ-
ences [28-31]. Annotators on services like Amazon Me-
chanical Turk often work within specific contexts and cul-
tures, for example, the CMU-MOSEI annotators were based
in India. This may influence the certainty with which emo-
tions are interpreted, regardless of prior experience and in-
struction because there can be subtle differences across cul-
tures . Empirically, this is reflected in the inter-annotator

correlation and the average rating of emotion intensity in
CMU-MOSEI, with stronger emotions receiving higher av-
erage scores on the [0, 3] Likert scale. Thus, the threshold
applied to each sample’s rating to map soft labels to hard
labels is of considerable significance because it reflects the
certainty of the label. We investigate the effect of differ-
ent threshold values on subjective human annotation and
knowledge transfer from CMU-MOSEI.

It has been observed previously that acted emotion may
not reflect real emotion in human study participants [32,33].
Nonetheless, acted emotional speech remains of significant
importance in SER research [0, 25] with IEMOCAP [10]
being regularly used as a benchmark SER dataset. Acted
data is recorded in controlled lab environments. It can often
be exaggerated in comparison to in-the-wild data, which (1)
has a more natural context, (2) is often evoked by stimuli or
self-produced, and (3) is recorded in variable settings. We
investigate whether it is easier to annotate acted data than
in-the-wild data, and whether there is knowledge transfer
between these two types of datasets, and if in-the-wild data
is superior in generalization to acted data because of these
characteristics.

2. Methods

In order to answer our five research questions, we per-
form two main tasks in this paper. The first task consists
of re-annotating samples from four different datasets. In-
sights gained from the first task are used in the second task,
in which we conduct ML experiments with the same four
datasets.

2.1. Datasets

We use the following four datasets in our experiments (a
summary of their characteristics is shown in Table 1):

e CMU-MOSEI [14, 18]: the CMU Multimodal Opin-
ion Sentiment and Emotion Intensity dataset is a large-
scale multimodal dataset for sentiment and emotion
analysis in videos. The dataset consists of 1,000 videos
extracted from YouTube of speakers with a diverse
range of demographics and topics. Each video is an-
notated with continuous and categorical sentiment and
emotion labels. The annotations are obtained using
3 annotators. Their agreement was calculated using
Krippendorff’s alpha [34] and shown in the first nu-
meric column of Table 4. The dataset includes anno-
tations for the following six emotions: anger, disgust,
fear, happiness, sadness, and surprise.

o Aff-Wild2 [15, 19, 35-41]: the Aff-Wild2 dataset is
an extension of the Aff-Wild database [42]. The
dataset contains video recordings of 539 participants
(361 for training and 178 for validation) displaying
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Dataset Label Type Acquisition Orig. Size Relabeled
CMU-Mosei [14] Multi-label, multi-scale  In-the-Wild 22,777 228
Aff-Wild2 [15] Multi-class In-the-Wild 3,180 32
CREMA-D [11] Multi-class Acted 7,442 75
RAVDESS [12] Multi-class Acted 1,104 12

Table 1. We randomly sampled 1% of the data from four com-
monly used datasets in the SER area and re-labeled the sample
using the same approach used by crowdsourcing workers that an-
notated CMU-MOSETI dataset.

spontaneous and posed facial expressions in natural
settings. The videos have been captured under un-
controlled conditions with diverse variations in facial
poses, head motions, and illumination. The dataset in-
cludes the same labels as CMU-MOSEI plus “neutral”.

¢ CREMA-D [11]: Crowd-sourced Emotional Multi-
modal Actors Dataset consists of audio and video
recordings of 91 professional actors (48 men and 43
women) performing 12 sentences and 12 words, each
with different emotions including anger, disgust, fear,
happiness, neutral, sadness, and surprise.

* RAVDESS [12]: The Ryerson Audio-Visual Database
of Emotional Speech and Song is a multimodal
database of emotional speech and song. The dataset
consists of audio and video recordings of 24 profes-
sional actors, who were asked to perform a variety of
emotional expressions, including calm, happy, sad, an-
gry, fearful, surprise, and disgust. The audio record-
ings include speech, as well as sung performances,
while the video recordings include both frontal and
profile views of the actors’ faces. The dataset includes
annotations for the following six emotions: anger,
calm, disgust, fear, happiness, sadness and surprise.
We ignored the samples for “calm” because none of the
other datasets had this label. We also only use speech
samples and not song samples.

2.2. Data Labeling

A cornerstone of this work involves relabeling previ-
ously annotated data from four datasets discussed in Sec-
tion 2.1. To better utilize the varying levels of annotations
provided by CMU-MOSEI, we conducted a smaller-scale
experiment. For this, we employed LabelStudio v1.7.1 ' to
relabel a random sample of 1% of the audio files. We fol-
lowed the same labeling procedure as CMU-MOSEI [14]
and used the same six basic emotions: anger, disgust, fear,
happiness, sadness, and surprise.

Additionally, we annotated 1% of the other datasets
used in this study, namely Aff-Wild2, CREAM-D, and

Thttps://labelstud.io/
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Figure 1. Label studio screenshot of the system used to collect la-
bels from the audio files. The same categories used in the original
CMU-MOSEI dataset were used here.

RAVDESS. We also annotated the estimated age group in
9 categories (teens, 20s, 30s, 40s, 50s, 60s, 70s, 80s, 90s)
and the estimated gender expression of the speaker in the
audio in two options (male/female). These additional tasks
were conducted to compare human performance on similar
annotations.

To create our annotations, three authors of this paper
independently annotated each sampled audio file without
time limits or other constraints. Note that all three annota-
tors hailed from different cultures, countries and native lan-
guages. The labels were then mapped to an integer value as
follows: None — 0, A little — 1, Moderate — 2, Extremely
— 3, as done in the original CMU-MOSEI dataset [ 14]. The
final label for a given sample is given by the average of the
3 annotations and rescaled from O to 1. The possible labels
for any sample in both our annotations and the original ones
range from O to 1 in steps of 0.11.

2.3. Evaluation Metrics

Following the CMU-MOSETI’s original data collec-
tion [18], we calculated the inter-rating agreement among
our 3 independent assessors using Krippendorff’s « coeffi-
cient using the interval data function as the difference func-
tion, except for age, in which we used the nominal func-
tion [34]. Krippendorff’s o = 1 indicates a perfect agree-
ment, « = 0 indicates the complete absence of agreement
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and o < 0 indicates that disagreements are systematic and
exceed what can be expected by chance [34].

After averaging the scores of each assessor, each sam-
ple has a float value from O to 1, which we could inter-
pret as the intensity of that given emotion, as assessed by
the annotators. We calculated the Pearson correlation (7)
between our average and those from the original CMU-
MOSETI dataset for each emotion separately. Pearson’s r
ranges from r = —1 (total negative correalation) to = +1
(total positive correlation).

For the emotion classification task, we needed a thresh-
old to binarize the annotation for each emotion. While the
usual choice is ¢ = 0.01 (e.g., [18]), we measured the
agreement among the two groups of annotators for differ-
ent thresholds using the Cohen’s « coefficient [43]. In par-
ticular, we examined 3 thresholds: low (¢ = 0.01), best
(t = 0.23), and high (¢ = 40) and visualize their results
with a multi-label confusion matrix (MLCM) [44]. The Co-
hen’s x coefficient can also range from -1 to +1, and its
usual interpretation is that values < 0 indicates no agree-
ment, .01 — .20 for none to slight, .21-.40 for fair, .41-.60
for moderate, .61—.80 for substantial, and > .81 for almost
perfect agreement [43].

We report weighted and unweighted (macro) average
F'| scores as well as the Matthews Correlation Coefficient
(MCC), which is a suitable metric for unbalanced datasets,
such as the ones studied in this work [45]. MCC'’s inter-
pretation is the same as Perason’s r interpretation. Finally,
whenever possible, we report the average and the 95% con-
fidence interval around the mean (i.e., value =+ .95 ci).

2.4. Machine Learning Experiments

We conducted our experiments with state-of-the-art tech-
niques based on foundation models for ASR [46]. Simi-
lar to the work of Wagner et al. [6], we used a straight-
forward multi-head architecture on top of a HuBERT-base
transform-based backbone [4]. We freeze the convolutional
layers and only fine-tune the weights in the transformer part
of the backbone during training. We added a two layer
residual feed-forward network to map the encoding gener-
ated by HuBERT-base to emotion logits, after averaging the
encodings over the sequence dimension. Our preliminary
experiments showed that this additional capacity helped im-
prove performance over simply mapping the sequence aver-
aged encoding directly to emotion logits. Our architecture
is shown in Figure 2.

We binarized the labels per emotion using a pre-defined
threshold th and removed samples that did not have any
true emotion after applying the binary threshold. For the
first part of our experiments, we only fine-tuned our mod-
els on CMU-MOSEI, using the sub-sampled training and
validation sets. We then evaluate each model on the CMU-
MOSET test set, and complete CREMA-D, RAVDESS and

Input (768 dim)
Linear( 768 > 256)

12 transformer blocks

e e
‘ Pre-trained Hubert-base ]

Mean of sequence dim - (768 dim) ]

N —

Linear(256 > 768)

Classifier head (Linear)

[ Deep MLP 2x

N—

[ Surprise ] ( Disgust ] { Fear ]
[Happiness] ( Sadness ] ( Anger J

Linear (768 - 32)

Figure 2. Model architecture used for all experiments. After en-
coding a waveform sampled at 16 KHz with a pretrained HuBERT-
base backbone, we mapped the encoded data to emotion logits
through a two layer, residual feed-forward network.

Aff-Wild2 datasets.

For the second part of our experiments, we study the de-
gree of knowledge transfer between acted and in-the-wild
datasets by first training on acted data and testing on in-the-
wild, followed by training on in-the-wild data and testing on
acted data. We used the label threshold for CMU-MOSEI
identified from our analysis of emotion annotation correla-
tion, as previously stated.

In our experiments, we used a batch size of 60 samples,
a learning rate of le — 4, and trained the models for 15
epochs, with early stopping criteria using binary F; and pa-
tience set to 5. We used the AdamW optimizer with Adam
B8 = (0.9,0.99) and weight decay of 1le — 5. We did not
use a learning rate scheduler. Finally, we used binary cross
entropy as the loss function for each label and averaged the
loss to get a scalar value.

3. Results

From the initial 347 audio samples annotated, we re-
moved a total of 30 samples. These samples came from
CMU-MOSEI (16 — 7% of the annotated files) and Aff-
Wild2 (14 — 43%). We dropped these files from our analy-
sis for the following reasons: multiple speakers talking si-
multaneously (7), audio containing a large portion of songs,
music or video-game background (16), or synthetic voice
(2). These samples may have enough visual information to
allow for labeling from the original annotators but were not
suitable for audio-only experiments. We used the remain-
ing 317 samples to analyze agreement between our anno-
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tators, the annotation accuracy across labels by comparing
to the original annotations, and between acted and in-the-
wild datasets. This attempts to answer RQ/ and RQ2 in
Section 3.1. We also used the annotations to answer RQ-3
in Section 3.2 where we compare our annotaitons with the
original set from CMU-MOSEI and derive a threshold for
binarizing label values. Finally, we take our study of thresh-
olds to answer RQ4 and RQ5 in Section 3.3 and assess the
impact of our analysis on ML experiments.

3.1. Studying our inter-rater agreement

RQI1: Are there emotions that are easier to annotate
than others?

To address this research question, we measure the level
of agreement or correlation among the annotators. We look
into Pearson’s r correlation and Krippendorff’sa coefficient
for that.

Tables 2, 3 and 4 illustrate our findings. Table 2 shows
Pearson’s 7 of the new annotations made by the authors of
this paper. While Happiness (r = .45) and Anger (r = .42)
have the highest correlations, Disgust (r = .27), with the
lowest correlation, is not much lower, showing a generally
good level of agreement among our annotators.

Comparing the average of our annotations for each label
with the original annotations for CMU-MOSEI in Table 3,
we find that Pearson’s correlation can go as low as only r =
.05 for Fear. Sadness (r = .27) and Surprise (r = .23) are
in the middle range, while Disgust (r = .46), Happiness
(r = .50), and Anger (r = .51) are the highest values. The
average correlation across emotions is 0.34.

Table 4 shows a deeper picture of our annotations with
Krippendorff’s o disaggregated by emotions and dataset
acquisition method (here, CMU-MOSEI, combined acted
data, combined in-the-wild data and all datasets). With mul-
tiple factors in place, it is difficult to assert that some emo-
tions are easier to annotate than others. For example, Fear
has the highest agreement for the acted datasets (o = .41)
but the lowest for the in-the-wild ones (o« = .09). Similarly,
Happiness seems easier to annotate in-the-wild (o = .39)
than when acted (v = .21). Finally, the last column of Ta-
ble 4 shows that annotating audio for emotions (o = .31)
is a comparatively much harder task than annotating it for
gender (o = .96) or age group (o = .52).

RQ2: Is it easier to annotate acted data or in-the-wild
data?

We measure how easy it is to annotate a dataset by how
much agreement the annotators have. In Table 4, we show
the combinations of datasets with respect to their acquisi-
tion mode (in-the-wild or acted). According to Krippen-
dorff’s a, the acted data (o = .30) is slightly easier to an-
notated than in-the-wild data (o« = .25), but the difference
is small.

Happiness  Sadness Anger  Surprise Disgust Fear‘ Average

Annots 1 and 2 46 .35 .36 27 21 30 | .334£.09
Annots 1 and 3 51 .33 .61 27 41 34| 41£.13
Annots 2 and 3 .37 .25 .30 .36 .20 43 ] .324£.09
Average A45+£.18 31+£.13 42+ 41 30+£.13 27+£.29 36+£.17 ‘ 35+£.12

Table 2. Pairwise Pearson correlation (r) for the 317 audio sam-
ples annotated by our 3 annotators.

Happiness Sadness Anger Surprise Disgust Fear‘ Average

Ours Vs Original .50 27 Sl 23 .46 .05 ‘ 34419

Table 3. Pairwise Pearson correlation (r) for the 212 CMU-
MOSETI annotations intersection between our annotations and the
original ones from CMU-MOSEI [18]. Fear presented the low-
est correlation when comparing our annotations with the original
ones.

RQI and RQ2 are also answered in Table 4. For ex-
ample, Happiness has a higher agreement for in-the-wild
(a = .39) datasets than acted (« = .21), while Fear is a
higher agreement for acted datasets (v = .41) than in-the-
wild (o = .09).

3.2.Identifying a better threshold for CMU-MOSEI
using agreement between new and original an-
notations

RQ3: What is the appropriate threshold for the CMU-
MOSEI dataset?

We make use of Cohen’s « agreement between the origi-
nal CMU-MOSETI annotations and the new annotations cre-
ated by us to find the optimal threshold for the CMU-
MOSEI dataset. Figure 3 shows Cohen’s x agreement per
emotion as the threshold th varies. The left panel shows th
vs Cohen’s x annotations for CMU-MOSEI, and the right
panel for all four datasets combined. In both cases, the high-
est k averaged over emotions was found at th = .23.

We picked 3 thresholds from low to high, and to better
understand what each choice of threshold implies, we plot-
ted their multi-label confusion matrix in Figure 4 [44]. The
trade-off between a lower (th = .01) and a higher (e.g.,
th = .40) threshold is the number of examples for each
emotion that will be available versus the likelihood of these
samples being correctly labeled. The left panel, showing
results for (th = .01) in Figure 4, for instance, shows that
Happiness is often misunderstood as Surprise by the dif-
ferent sets of assessors (first row). On the other extreme,
the right most panel showing results for (th = .4) in Fig-
ure 4 indicates that many of the emotions are not detected
by the our assessors (last column). The diagonal elements
for (th = .23) are consistently higher than either of the
other thresholds, without a reduction in the overall number
of samples detected indicating that it is the best choice for
threshold.
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Emotions CMU-MOSEI [ 18] CMU-MOSEI  Acted Comb  In-the-Wild Comb  All Comb
(Original, n=20477) (n=212) (n=87) (n=230) (n=317)

Happiness 0.41 0.36 0.21 0.39 0.39
Sadness 0.12 0.26 0.24 0.27 0.27
Anger 0.18 0.26 0.40 0.32 0.38
Surprise 0.09 0.12 0.33 0.22 0.29
Disgust 0.21 0.17 0.20 0.20 0.22
Fear 0.02 0.08 0.41 0.09 0.33
Average ‘ 0.17 £0.14 021+0.11 0.30+0.10 0.25+0.11 0.3140.07
Gender - 0.96 0.95 0.96 0.96
Age Group - 0.57 0.33 0.58 0.52

Table 4. Categorical agreement per emotion state calculated using Krippendorff’s o reliability coefficient [
], while the other columns show various slices of the data re-assessed in this work.

the values of the original CMU-MOSEI dataset [

]. The first column shows

The Acted Comb. column shows the combination samples from CREMA-D and RAVESS datasets, while In-the-Wild Comb. merges
CMU-MOSEI and Aff-Wild2 datasets. We also compute « for gender (2 classes) and age group (9 classes).

Only CMU-MOSEI

0.7
Mean
0.6 Happy
Sad
0.54 Anger
3 Surprise
% 0.4 Disgust
f, Highest Mean Kappa Fear
r= (X =0.23, Kappa = 0.30)
@ 0.3 r
<
<]
8]
0.2
0.1
0.0+ T — r T T
0.0 0.2 0.4 0.6 0.8 1.0
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All datasets combined
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B »
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<
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O
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Figure 3. Cohen’s k agreement for all six emotions between the original annotations and our labels. The highest average Cohen’s x of 0.31,
occurred at a CMU label threshold of 0.23. This threshold means that audio files that were labeled as weak by two of the three assessors
(or medium by only one assessor) should receive the final label as FALSE for that emotion.

3.3. Impact on Deep Learning Experiments

RQ4: How does changing the threshold for the CMU-
MOSEI dataset affect SER model performance?

To measure how different thresholds affect the perfor-
mance of SER models, we investigate the same 3 thresh-
olds studied in Section 3.2. In Table 5, we present the
weighted average F7, unweighted average (Macro) F; and
the Matthew’s correlation coefficient (MCC) averaged (£
.95 confidence interval) over emotions for models trained
using different thresholds and tested on datasets. With only
two exceptions, the use of th = .23 reached the high-
est scores across the board. In particular, it seems to be
a good threshold that generalizes well for other datasets,
being the best threshold for all test cases including Aff-
Wild2, CREMA-D and RAVDESS. The average increase
in weighted F; was 7% across test datasets.

RQ5: Is there a transfer between acted and in-the-wild
datasets?

Our final experiments consist of evaluating the transfer
between acted and in-the-wild datasets. For that, we trained
on the training sets of in-the-wild datasets (Aff-Wild2 and
CMU-MOSEI with th = .23) and evaluate it on both acted
(CREMA-D and RAVDESS combined) and the test sets of
in-the-wild data with two different thresholds (th = .01 and
th = .23). Table 6 shows the results of our experiments.
The differences between each pair of experiments was sur-
prisingly low, showing similar levels of information transfer
between acted and in-the-wild datasets.

4. Discussion

In this work, we analyzed the strength, (or overall qual-
ity) of emotion annotations in acted and in-the-wild SER
datasets. We manually re-annotated 1% of the data. How-
ever, one limitation of this is that our annotators only heard
the audio, while the original annotators used video with
audio and transcribed text which could have increased the
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Figure 4. Multi label confusion matrix for the 3 thresholds studied in this work. Left panel, low th = .01; middle panel, best th = .23;
right panel, high th = .40. In each cell, we have both the frequency (top) and the actual counts (bottom) of elements for that cell. The
caption on each panel shows the weighted F'1 score obtained from each confusion matrix.

Training on ‘ Testing on

CMU-MOSEI | CMU-MOSEI CMU-MOSEI CMU-MOSEI Whole Whole Whole

with... Th =0.01 Th=0.23 Th =0.40 Aff-Wild2 CREMA-D RAVDESS
Evaluation Metric = Weighted F}

Th =0.01 75.47+£8.99  81.31+13.54  82.55+14.25  80.76 £17.95 69.43 £ 8.45 72.73£9.95
Th=0.23 76.36 £9.48 89.93+12.34 92.23+13.03 89.23+14.04 78.79+528 78.03+4.46
Th=0.40 72.86 +£14.18  82.20£28.08  84.23£30.89  82.13+27.14  65.324+24.80 63.78 £32.70
Evaluation Metric = Macro F}

Th =0.01 59.67 £ 4.98 51.34 £3.35 4711 +£2.44 46.24 £ 6.49 53.02 £5.48 55.29 £ 8.26
Th=0.23 53.37+£707 56.19+556 53.95+3.82 50.71+2.61 5845+15.13 57.41+13.59
Th =0.40 49.88 £ 6.12 48.08 £8.68  46.30 £ 10.61 45.72 £ 7.44 43.49+£9.27  41.60 £13.81
Evaluation Metric = MCC

Th=10.01 19.92 +10.00 13.87 £9.50 10.34 £8.03 1.27 +2.84 12.92 +£12.79 18.22 +£15.11
Th =0.23 13.54 +£12.99 14.38+13.14 11.98+11.37 3.69+6.01 20.10+2548 18.62+22.00
Th =0.40 7.69 £ 10.65 5.92£7.73 4.95 £ 5.30 0.27+1.71 2.37£6.55 1.79 £ 4.40

Table 5. Results of training models using only CMU-MOSEI with different threshold and testing it with different datasets. Values are
shown as average + 95% confidence. Higher values per set are highlighted in bold.

quality of their annotations. Surprisingly, our results show
that the average agreement between our annotators is higher
than the average agreement among the original annotators
of the CMU-MOSEI dataset. Second, certain labels are
more easily annotated in one type of dataset versus the
other. For example, Fear has the lowest inter-annotator
agreement among both the original annotators of CMU-
MOSEI and our annotations on in-the-wild data. Con-
versely, Happiness had lower agreement values for us on
acted data than in-the-wild. Happiness and Anger are gener-
ally easier to identify and annotate. The average agreement
across labels is similar for both acted and in-the-wild data.
We believe that the number of samples we re-annotated is a
limitation of our approach because minority emotions like
Surprise and certain datasets like RAVDESS (n = 12) were

poorly represented. We encourage further annotation of
such benchmark datasets by the wider community to obtain
more reliable, validated samples. Third, correlation analysis
of the new annotations revealed a better value for threshold-
ing the soft labels in CMU-MOSEI. The new threshold im-
proved the performance of a speech emotion classification
model both on the CMU-MOSEI test set, as well generaliza-
tion on the other three datasets. Note that, simply increasing
the threshold actually reduced performance. Increasing the
threshold may be akin to dataset pruning [47], which has
been shown to improve model performance. We hypothe-
size that there may be more optimal threshold values that
can be estimated with greater number of annotated samples
and more annotators, or simply by running several experi-
ments with more fine-grained thresholds. Finally, we report
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Testing

Training Acted In-the-Wild In-the-Wild

With Th = 0.01 With Th = 0.23
Evaluation Metric = Weighted F
In-the-Wild 76.06 + 3.45 79.80+9.73 89.65 + 11.15
Acted 77.73 + 3.08 79.56 +£10.44 89.93 +£12.77
Evaluation Metric = Macro F}
In-the-Wild 54.55 £ 11.29 54.90 + 7.57 54.58 +4.73
Acted 56.87 +11.80 53.70 + 6.41 54.88 +4.42
Evaluation Metric = MCC
In-the-Wild 15.22 +£21.31 12.48 +13.92 10.58 4+ 10.70
Acted 17.13 +18.86 12.07+£11.63 11.42+10.75

Table 6. Study on learning transfer from in-the-wild and acted
datasets. In-the-wild datasets are Aff-Wild2 and CMU-MOSEI
with th = .23. Acted datasets are CREMA-D and RAVDESS.
Values are shown as average + 95% confidence. Higher values
per set are highlighted in bold.

that acted and in-the-wild datasets show similar levels of
information transfer for this discrete emotion classification
task. This comes as a surprise because the hypothesis is that
in-the-wild datasets have a greater assortment of recording
qualities, ethnicities and speaker identities. However, this
result does agree with the fact that the average agreement of
our annotators was similar for acted and in-the-wild data.

Note that, the fine grained annotations of CMU-MOSEI
may be used in a regression setting, using the concordance
correlation coefficient as a loss (or mean squared error
or similar). However, we believe our argument regarding
emotion label strength would matter nonetheless because it
leads to a smaller, cleaner dataset.

Finally, our annotations, together with the architecture
used in this paper, are publicly available at https: //
github.com/earkick/abaw2023.

5. Conclusion

Our analysis of emotion annotation strength and its im-
pact on subjective agreement and SER model performance
is an important step toward a better understanding of how
we can utilize both acted and in-the-wild SER data. The
community needs even larger SER and multimodal emotion
datasets that can be validated in an open manner by the pub-
lic, for example, as done by the CommonVoice project by
the Mozilla Foundation [48]. We believe that closely ex-
amining research datasets for label uncertainty as well as
how datasets relate to each other are fruitful areas for fur-
ther work aligning with data-centric Al approaches.
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