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Abstract

Emotion reaction intensity (ERI) estimation aims to esti-
mate the emotion intensities of subjects reacting to various
video-based stimuli. It plays an important role in human
affective behavior analysis. In this paper, we proposed a
effective solution for addressing the task of ERI estimation
in the fifth Affective Behavior Analysis in the wild (ABAW)
competition. Based on multi-modal information, We first
extract uni-modal features from images, speeches and texts,
respectively and then regress the intensities of 7 emotions.
To enhance the model generalization and capture context
information, we employ the Temporal Augmentation mod-
ule to adapt to various video samples and the Temporal SE
Block to reweight temporal features adaptively. The exten-
sive experiments conducted on large-scale dataset, Hume-
Reaction, demonstrate the effectiveness of our approach.
Our method achieves average pearson’s correlations coeffi-
cient of 0.4160 on the validation set and obtain third place
in the ERI Estimation Challenge of ABAW 2023.

1. Introduction
Human affective behavior analysis is a rapidly growing

field that has gained great attention in recent years, which
involves the analysis and quantify human emotions from
various modalities of data. It is capable of endowing ma-
chines with emotional intelligence and significantly con-
tributes to human-computer interaction (HCI) [15,44], such
as interactive games and movies, virtual customer service
agents [40], and automatic emotion analysis systems.

While deep learning has made remarkable strides in the
field of image understanding, predicting human emotions
from videos remains a challenging task. This is largely due
to the absence of large-scale emotional datasets and the un-
certain labels. In order to promote the development of this
topic, a sequence of Affective Behavior Analysis in-the-
Wild (ABAW) [23,27,51] competition is organized. ABAW
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competition involves collecting high-quality and large-scale
emotional datasets [19, 20, 22, 24–26, 28–30], namely Aff-
wild1, Aff-wild2 and Hume-Reactions, and exploring more
efficient deep learning models and algorithms for emotion
analysis. The recent fifth ABAW (ABAW5) competition
is split into four challenges, including (1) Valance-Arousal
(VA) Estimation Challenge; (2) Expression (Expr) classi-
fication Challenge; (3) Action Unit (AU) Detection Chal-
lenge and (4) Emotional Reaction Intensity (ERI) Estima-
tion Challenge. This work only focuses on the fourth chal-
lenge (ERI) to estimate the emotional intensities of sub-
jects reacting to various video-based stimuli. This task is
based on Hume-Reaction dataset and each sample within
the dataset has been self-annotated by the subjects them-
selves for the emotional intensity involving 7 mentioned
emotional experiences, including Adoration, Amusement,
Anxiety, Disgust, Empathic-Pain, Fear and Surprise.

In this paper, we proposed a multi-modal framework
with temporal augmentation module for reaction emotional
intensity estimation. Although most information of sub-
ject’s emotion can be captured from visual modality, the
acoustic and text modal characteristics can also be an im-
portant way of conveying information and can supplement
visual features. Therefore our method consists of three
branches to extract uni-modal features from images, audios
and texts respectively. These multi-modal features are then
integrated for estimating emotional intensity.

For visual branch, we employ vision transformer (ViT)
[11], which has achieved great success in image recogni-
tion, as our visual encoder to extract spatial features from
the facial expression images. Besides, Masked Autoencoder
(MAE) [16, 36] has recently been shown to be effective in
pre-training Vision Transformers (ViT) for image analysis
due to its superior generalization capability. Therefore, we
first perform the self-supervised task of reconstructing the
original image from only partial image and train the MAE
on our private large-scale facial expression dataset. Then,
we further finetune the MAE encoder on static expression
classification task based on public dataset AffectNet [37].
These spatial features extracted from singe frames in a se-
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quence collectively form the video feature. Due to the vary-
ing length of videos and the diversity of video samples, we
only focus on 32 frames from each video. These frames
are randomly selected by a temporal augmentation module
to ensure representative coverage of the video content. Af-
ter that, we use temporal SE Block [18] and Bidirectional
GRUs (BiGRUs) [9] to extract the temporal context infor-
mation and output final visual features.

For acoustic and text branch, we first employ Hu-
BERT [45] and DeBERTa [17] to extract the acoustic and
text features from audios and texts respectively. Then we
obtain the global temporal contextual information by the
temporal convolutional network and the temporal trans-
former encoder. Finally, features of images, speeches and
texts are fused together by late fusion strategy to estimate
the emotional reaction intensity.

To demonstrate the effectiveness of our framework,
extensive experiments are conducted on Hume-Reaction
dataset. The results show that our model achieves excel-
lent performance and outperforms the baseline method by a
significant margin. Our contributions can be summarised as
follows:

• This work proposes a multi-modal framework that
consists of visual, acoustic and text branches for mo-
tion reaction intensity estimation.

• This work introduces a temporal augmentation module
in visual branch to improve the generalization capabil-
ity of the model.

2. Related Works

2.1. Uni-modal features

Visual features. The facial expression in the image
plays an important role to analysis human affective behav-
ior. Based on the anatomy, a standardized classification of
facial expressions is presented, called Facial Action Coding
System (FACS). FACS describes facial expression as com-
binations of elementary components called Action Units
(AU). Thanks to the rapid development of deep learning,
model-based features are being utilized by more and more
methods [7,21,32] due to its superior performance and pow-
erful generalization ability. These methods train the neural
networks on the task of facial expression recognition based
on the large-scale dataset. Besides that, another work [36]
introduces a robust facial representation model MAE-Face
for AU analysis, which can also be used as a visual feature
extractor for other tasks of emotion analysis. MAE-Face is
trained in self-supervised manner and is capable of learning
a high-capacity model from a large-scale face image.

Audio modality. Some traditional acoustic features
are widely in human affective analysis, like Mel-frequency

Cepstral Coefficients (MFCCs), spectrogram, Linear Pre-
dictive Cepstral Coefficients (LPCCs) and Perceptual Lin-
ear Prediction (PLP). These features can derive from the au-
dio signals without learning. In recent years, model-based
features learned by neural networks become the preferred
one since feature extraction is automatic. It is also ben-
efit from the abundance of data and the growth of com-
putation power. Wav2vec 2.0 [4], HuBERT [45] are both
large pre-trained language model based on self-supervised
approaches for speech representation learning and can be
used to extract robust acoustic features from audio signals.

Text modality. Text is also important for human to con-
vey information and communicate with others. In the tasks
of Natural Language Processing, words or sentences are
usually converted into vectors through embedding models,
such as Word2Vec [48] and Glove [39]. The vectors are
chosen carefully such that they capture the semantic and
syntactic qualities of words. Later, a family of masked-
language models, called BERT [10], is published in 2018
by Google. BERT is based on the transformer architecture
and pre-trained simultaneously on language modeling and
next sentence prediction tasks. After pre-training, BERT
learns latent representations of words or sentences in con-
text. Recently, by introducing the disentangled attention
mechanism and the enhanced mask decoder, DeBERTa [17]
significantly improves the efficiency of model pre-training
and the performance of downstream tasks in Natural Lan-
guage Processing.

2.2. Emotional reaction intensity estimation

Emotional Reaction Intensity (ERI) estimation challenge
was first presented in MuSe 2022 [1]. The goal of this task
is to estimate 7 emotional intensity of subjects reacting to a
wide range of various video-based stimuli, including Ado-
ration, Amusement, Anxiety, Disgust, Empathic-Pain, Fear
and Surprise.

The baseline in [8] use GeMAPS [14] and DeepSpec-
trum [2] to extract audio features, and VGGFACE 2 [7]
and Facial Action Units (FAU) [13] to extract visual fea-
tures. And then a Long Short-Term Memory (LSTM)-RNN
is used to aggregate the temporal information. The uni-
modal visual features extracted through FAU achieves the
best mean Pearson’s Correlation Coefficient (ρ) of 0.2801
on the development set of Hume-Reaction. The approaches
submitted to MuSe 2022 also involve other visual features,
including Resnet-18 [32] trained on AffectNet, ViPER [42]
and FaceRNET [21]. And the best results is obtained by
Resnet-18 [32], which achieves ρ of 0.3893. Most works
show that combining the audio and visual modalities lead
to worse results than the uni-modal visual models. How-
ever, the TEMMA model [32] who wins the championship
in MuSe 2022 improves the metric of ρ by 0.075 through
merging visual features and audio features extracted by
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Figure 1. Illustration of our multi-modal framework with for emotional reaction intensity estimation.

ResNet-18 and DeepSpectrum, respectively, in comparison
to uni-modal visual model.

3. Method
This section describes our multi-modal framework for

estimating the emotional intensities of subjects in a video.
As illustrated in Figure 1, our method consists of three
branches to extract uni-modal features from images, audios
and texts in a video respectively. Then we apply a late fu-
sion strategy for regressing the 7 emotion intensities based
on multi-modal information.

3.1. Visual branch

We denote the input face images for visual branch as
Xv ∈ {I1, I2, .., It, ...IT }, where T is the number of total
frames and It is the t-th image in a video.

Temporal augmentation. Due to the significant differ-
ences in the number of frames T , we adopt a segment-based
sampling strategy similar to that used in Temporal Segment
Networks (TSN) [47]. This method enables the model to
learn temporal feature of the entire video, regardless of its
length. Furthermore, it can also be viewed as the process
of temporal augmentation by randomly sampling in each
segment of the video, which can enhance the temporal gen-
eralization ability of the model.

Specifically, for a sequence of images Xv , we divide it
into K segments {X 1

v ,X 2
v , ...,XK

v } with the same frame
number. And then we sample one image from each
segment randomly to form new image sequence X̂v ∈
{I1, I2, .., IK} with K frames.

ViT encoder. Based on sampling K frames, We use
vision transformer (ViT) model as the visual encoder to
extract spatial features f ∈ RK×denc from each frame
in X̂v , where denc is the feature dimension of the out-

put in ViT encoder. To acquire robust visual features, our
ViT encoder is pre-trained with two stages. In the first
stage, we employ the masked auto encoding (MAE) method
for self-supervised pre-training of ViTs on the large-scale
face image datasets, including AffectNet [37], CASIA-
WebFace [49], CelebA [33] and IMDB-WIKI [41]. In spe-
cific, the model with a ViT encoder and a ViT decoder need
to reconstruct raw pixel values by masking a large portion
(75%) of the image patches. MAE allows for learning high-
capacity models with superior generalization ability. We
only preserve the encoder of MAE as our visual encoder.

In the second stage, we finetune the visual encoder com-
bined with two linear layers on the task of expression clas-
sification based on AffectNet dataset [37]. This stage aims
to further extract the features for the specific task, emotion
analysis, which is more related to our final task, emotion in-
tensity estimation. Our model achieves the top-1 accuracy
of 69.77% and F1 score of 0.3515 on the test set of Affect-
Net. After that, we fix the ViT model as our visual encoder
to extract spatial features from single frame.

Temporal SE block. To construct informative tempo-
ral features, we employ temporal Squeeze-and-Excitation
(SE) block similar with SENet [18] along temporal chan-
nel to adaptively recalibrate frame-wise feature responses.
Temporal SE block first fuses frame-wise spatial informa-
tion by average global pooling within each image and then
produces the per-frame re-weighted features f ∈ RK×dse

by a simple self-gating mechanism, where dse is the dimen-
sion of the features outputted by temporal SE block.

Subsequently, we employ a BiGRU block to aggregate
the feature sequence and extract context information. Bi-
GRU block consists of two BiGRU layers following a layer
normalization [3] and a linear layer. To further augment the
feature representation capacity, we additionally use a linear
layer to produce the final 64-dimensional visual features fv .
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3.2. Audio branch

For audio branch, we use advanced HuBERT [45] as the
encoder to extract 768-dimensional acoustic features from
audios. HuBERT is a large language model trained by self-
supervised approaches for speech representation learning.
Different from previous self-supervised model, HuBERT
forces the model learn the combined acoustic and language
features by applying the prediction loss over the masked re-
gions only. Then, a temporal convolutional network based
on causal convolutions [5,38] is used to aggregate local tem-
poral context. Causal convolutions is able to keep the order-
ing when then model extract temporal informations from
the data sequences. After that, we employ a transformer en-
coder to capture global temporal information and output the
final 64-dimensional audio features fa.

3.3. Text branch

For text branch, we use DeBERTa [17] as our encoder to
extract 1024-dimensional features from text. Note that we
utilize Speech2Text [46] model to convert the speech into
text. Speech2Text is a transformer-based seq2seq model de-
signed for speech recognition and translation proposed by
Meta-FAIR. To ensure the accuracy of text extraction, we
used the Fuxi Youling Crowdsourcing Platform and Fuxi
Agent-Oriented Programmin (AOP) System for data anno-
tation and verification. Because some video clips do not
contain any textual information, we use 768-dimensional
vectors of zeros to replace them. Finally, similar to the
speech branch, we use a temporal convolution block and a
transformer encoder to produce 64-dimensional textual fea-
tures ft.

3.4. Multi-modal fusion

Signals from different modalities are supplementary and
complementary to each other in expressing emotional in-
formation. To avoid overfitting to a certain modality dur-
ing training, we employ a late fusion strategy for the final
estimation. In specific, we simply use a concatenation of
three features fv, fa, ft extracted by visual, audio and text
branch, respectively. To enhance the generalization abil-
ity of the model, two fully connected layers following a
dropout layer are adopted to estimate the emotional intensi-
ties. Because the value range of labels is between 0 and 1,
we add a sigmoid activation function to normalize the pre-
dicted results to (0,1). The process can be formulated as:

ŷ = Sigmoid(FC(concat(fv, fa, ft))) (1)

where ŷ denotes the predicted intensity.

3.5. Loss function

Our experiments perform emotional reaction intensity
estimation, which is to regress values from 0-1 for 7 emo-

tions. We take the mean squared error (MSE) loss as fol-
lows:

LMSE = − 1

N

N∑
i=0

∥yi − ŷi∥2 , (2)

where N is the mini-batch size and yi and ŷi are the ground-
truth and predicted intensity for i-th utterance, respectively.

4. Experiment
4.1. Dataset

We conduct our experiment on the large-scale Hume-
Reaction dataset, which consists of more than 70 hours of
audios and videos involving 2222 subjects from the United
States (1,138) and South Africa (1,084). The age of these
subject varies from 18.5 years old to 49.0 years old. Each
sample in Hume-Reaction records the reaction of subjects
to a wide range of various video-based stimuli. Then these
videos are self-annotated by the subjects themselves for
the 7 emotional intensities in a range from 1-100, includ-
ing Adoration, Amusement, Anxiety, Disgust, Empathic-
Pain, Fear, Surprise. The total number of videos in Hume-
Reaction is 25067. And these videos are split into training,
development and test set with 15806, 4657 and 4604 sam-
ples.

4.2. Experimental Setting

We extract frames from videos in Hume-Reaction dataset
by OpenCV and then crop the face images by the Open-
Face [6] detector. All images are resize to 224 × 224 pixels
before fed into the model. We implement our experiment
based on PyTorch framework and trained on NVIDIA A100
GPUs. The optimization uses the AdamW optimizer [35]
with an initial learning rate of 0.0001. During training pro-
cess, we adjust the learning rate according to the CosineAn-
nealing policy [34] with the minimum learning rate of 1e-
7 and the number of restart epochs of 5. We set the size
of mini-batch to 16. Additionally, The training duration of
each model is governed by an early-stopping strategy with
the patience of 10 epochs. During training, we employ the
Exponential Moving Average (EMA) strategy with a decay
rate of 0.999 to enhance the stability of training process.
Furthermore, we also apply image augmentation to improve
the generalization ability of models, including RandomRo-
tation, RandomHorizontalFlip and ColorJitter.

4.3. Metric

For emotional intensity eatimation, the average Pear-
son’s Correlations Coeffient (ρ) across 7 emotions is used
for evaluation, which can be calculated as:

ρ =
1

7

7∑
c=1

Cov (yc, ŷc)

δycδŷc

(3)

5780



Val Set Adoration Amusement Anxiety Disgust Empathic-Pain Fear Surprise Average
fold1 0.4142 0.4594 0.4380 0.4147 0.3456 0.4405 0.4508 0.4233
fold2 0.4263 0.4568 0.4299 0.4214 0.3695 0.4509 0.4214 0.4252
fold3 0.4371 0.4919 0.4125 0.4079 0.3674 0.4515 0.4041 0.4246
fold4 0.4024 0.4692 0.4423 0.4046 0.3938 0.4622 0.4280 0.4289
fold5 0.3988 0.4619 0.4235 0.3933 0.3553 0.4343 0.4293 0.4138

Table 1. The results of 5-fold cross-validation.

where Cov(·) represents the covariance, and yc and ŷc de-
notes the ground truth and the predicted results of the c-th
emotion intensity, respectively. δyc

and δŷc
is the standard

deviation of yc and ŷc.

4.4. Experimental results

Comparison on development set. We first train and
evaluate our models with multi-modal features on the train-
ing and development set of Hume-Reaction, respectively.
The results compared with other methods can be seen in Ta-
ble 2. It is obvious that the visual feature provides the most
information about the emotional intensity. Our model used
ViT features pre-trained with two stages achieves the best
performance and achieves a Pearson’s Correlations Coeffi-
cient (ρ) of 0.3925 on development set, which is better than
the Resnet-18 used in TEMMA by 0.032. And we also try
other structures to extract visual features or combine mul-
tiple features, like IResNet100 [12] and Inception [43], but
these methods all worse than the model with only ViT fea-
tures. Then we train our model with only audio branch.
Previous works use acoustic features of eGeMAPS or Deep-
Spectrum. Here, we try another advanced acoustic feature
HuBERT. The results shows that the model with HuBERT
is slightly better than DeepSpectrum by 0.0015.

Although audio provides less information than images,
it can be used as a supplement to image features. The com-
bination of visual feature and audio feature leads to a better
performance and achieves the ρ of 0.4098.

Some videos in the dataset have textual information
while others do not. Nevertheless, the appearance of text
in some videos may provide additional information about
subjects’ reaction emotions. Therefore we also try to ex-
tract texts from speeches and then encode the sentence texts
by pre-trained large language model. In this work, we use
DeBERTa as our text encoder. The experiments show that
introducing textual information can indeed further improve
performance by 0.052 and achieves 0.4150.

Comparison on test set. In the ERI sub-challenge of
ABAW5, we need to predict the labels of the test set of
Hume-Reaction dataset. Our method achieves a average ρ
of 0.4046 and win the third place in this track.

5-fold cross-validation. To further enhance the gener-
alization ability and test the models’ performance, we use
5-fold cross-validation to train multiple models and then en-

Method Visual Audio Text ρ

Baseline [8] FAU - - 0.2840
Baseline [8] VGGFACE 2 - - 0.2488

FaceRNET [21] REC - - 0.3590
TEMMA [32] Resnet-18 - - 0.3893

Ours ViT - - 0.3925
Baseline [8] - eGeMAPS - 0.0583
Baseline [8] - DeepSpectrum - 0.1087

TEMMA [32] - DeepSpectrum - 0.1835
Ours - HuBERT - 0.1850

Baseline [8] VGGFACE 2 DeepSpectrum - 0.2382
TEMMA [32] Resnet-18 DeepSpectrum - 0.3968

Ours ViT HuBERT - 0.4098
Ours ViT HuBERT DeBERTa 0.4150

Table 2. Comparisons of experimental results on the development
set of Hume-Reaction dataset.

Team Rank p
HFUT-CVers [31] #1 0.4734

USTC-IAT-United [50] #2 0.4380
Ours #3 0.4046

SituTech #4 0.3935
CASIA-NLPR #5 0.3865

Table 3. Final competition results on the test set of Hume-Reaction
dataset.

semble them. We combine the training and development set
of Hume-Reaction dataset. And then we split them into 5
folds randomly and train the model on 4 folds of them and
take the rest on as the validation set. The results can be
found in Table 1

Ablation study. As can be seen in Table 4, we also
conduct extensive experiments with different settings to
further investigate the effectiveness of our used compo-
nents, including Temporal Augment, Temporal SE, EMA
and mixup. We also the select the number of segments used
in Temporal Augment by experiments, which is 32 in this
work.

5. Conclusion
In this work, we propose a multi-modal framework for

emotional intensity estimation. We explore multiple effec-
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Method
Temporal
Augment

Temporal SE EMA Mixup
#frames

(K)
ρ

Ours × × × × 128 0.3942
Ours × × × × 64 0.3940
Ours × × × × 32 0.3958
Ours × × × × 16 0.3850
Ours ✓ × × × 32 0.4041
Ours ✓ ✓ × × 32 0.4058
Ours ✓ ✓ ✓ × 32 0.4115
Ours ✓ ✓ ✓ ✓ 32 0.4150

Table 4. Comparisons of our methods with different settings on
the development set of Hume-Reaction dataset.

tive features for different modalities and incorporate tem-
poral augment module to improve the model’s generaliza-
tion ability. Our method shows superior performance and
achieves third place in the ERI sub-challenge of ABAW5.
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Sundberg, Elisabeth André, Carlos Busso, Laurence Y Dev-
illers, Julien Epps, Petri Laukka, Shrikanth S Narayanan,
et al. The geneva minimalistic acoustic parameter set
(gemaps) for voice research and affective computing. IEEE
transactions on affective computing, 7(2):190–202, 2015. 2

[15] Lin Gong and Hongning Wang. When Sentiment Analysis
Meets Social Network: A Holistic User Behavior Model-
ing in Opinionated Data, page 1455–1464. Association for
Computing Machinery, New York, NY, USA, 2018. 1

[16] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 1

[17] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu
Chen. Deberta: Decoding-enhanced bert with disentangled
attention. arXiv preprint arXiv:2006.03654, 2020. 2, 4

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2, 3

5782



[19] Dimitrios Kollias. Abaw: Learning from synthetic
data & multi-task learning challenges. arXiv preprint
arXiv:2207.01138, 2022. 1

[20] Dimitrios Kollias. Abaw: Valence-arousal estimation, ex-
pression recognition, action unit detection & multi-task
learning challenges. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2328–2336, 2022. 1

[21] Dimitrios Kollias, Andreas Psaroudakis, Anastasios Ar-
senos, and Paraskeui Theofilou. Facernet: a facial ex-
pression intensity estimation network. arXiv preprint
arXiv:2303.00180, 2023. 2, 5

[22] D Kollias, A Schulc, E Hajiyev, and S Zafeiriou. Analysing
affective behavior in the first abaw 2020 competition. In
2020 15th IEEE International Conference on Automatic
Face and Gesture Recognition (FG 2020)(FG), pages 794–
800. 1

[23] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Face behavior a la carte: Expressions, af-
fect and action units in a single network. arXiv preprint
arXiv:1910.11111, 2019. 1

[24] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Distribution matching for heterogeneous multi-
task learning: a large-scale face study. arXiv preprint
arXiv:2105.03790, 2021. 1

[25] Dimitrios Kollias, Panagiotis Tzirakis, Alice Baird, Alan
Cowen, and Stefanos Zafeiriou. Abaw: Valence-arousal
estimation, expression recognition, action unit detection &
emotional reaction intensity estimation challenges. arXiv
preprint arXiv:2303.01498, 2023. 1

[26] Dimitrios Kollias, Panagiotis Tzirakis, Alice Baird, Alan
Cowen, and Stefanos Zafeiriou. Abaw: Valence-arousal
estimation, expression recognition, action unit detection &
emotional reaction intensity estimation challenges. arXiv
preprint arXiv:2303.01498, 2023. 1

[27] Dimitrios Kollias, Panagiotis Tzirakis, Mihalis A Nicolaou,
Athanasios Papaioannou, Guoying Zhao, Björn Schuller,
Irene Kotsia, and Stefanos Zafeiriou. Deep affect prediction
in-the-wild: Aff-wild database and challenge, deep architec-
tures, and beyond. International Journal of Computer Vision,
pages 1–23, 2019. 1

[28] Dimitrios Kollias and Stefanos Zafeiriou. Expression, affect,
action unit recognition: Aff-wild2, multi-task learning and
arcface. arXiv preprint arXiv:1910.04855, 2019. 1

[29] Dimitrios Kollias and Stefanos Zafeiriou. Affect analysis
in-the-wild: Valence-arousal, expressions, action units and a
unified framework. arXiv preprint arXiv:2103.15792, 2021.
1

[30] Dimitrios Kollias and Stefanos Zafeiriou. Analysing affec-
tive behavior in the second abaw2 competition. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3652–3660, 2021. 1

[31] Jia Li, Yin Chen, Xuesong Zhang, Jiantao Nie, Yangchen Yu,
Ziqiang Li, Meng Wang, and Richang Hong. Multimodal
feature extraction and fusion for emotional reaction intensity
estimation and expression classification in videos with trans-
formers. arXiv preprint arXiv:2303.09164, 2023. 5

[32] Jia Li, Ziyang Zhang, Junjie Lang, Yueqi Jiang, Liuwei An,
Peng Zou, Yangyang Xu, Sheng Gao, Jie Lin, Chunxiao Fan,
et al. Hybrid multimodal feature extraction, mining and fu-
sion for sentiment analysis. In Proceedings of the 3rd Inter-
national on Multimodal Sentiment Analysis Workshop and
Challenge, pages 81–88, 2022. 2, 5

[33] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
the IEEE international conference on computer vision, pages
3730–3738, 2015. 3

[34] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 4

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 4

[36] Bowen Ma, Rudong An, Wei Zhang, Yu Ding, Zeng Zhao,
Rongsheng Zhang, Tangjie Lv, Changjie Fan, and Zhipeng
Hu. Facial action unit detection and intensity estima-
tion from self-supervised representation. arXiv preprint
arXiv:2210.15878, 2022. 1, 2

[37] Ali Mollahosseini, Behzad Hasani, and Mohammad H Ma-
hoor. Affectnet: A database for facial expression, valence,
and arousal computing in the wild. IEEE Transactions on
Affective Computing, 10(1):18–31, 2017. 1, 3

[38] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. arXiv preprint arXiv:1609.03499,
2016. 4

[39] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543,
2014. 2

[40] AA Rizzo, G Lucas, J Gratch, G Stratou, LP Morency, R
Shilling, and S Scherer. Clinical interviewing by a virtual
human agent with automatic behavior analysis. In 2016 Pro-
ceedings of the international conference on disability, virtual
reality and associated technologies, pages 57–64, 2016. 1

[41] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep ex-
pectation of real and apparent age from a single image with-
out facial landmarks. International Journal of Computer Vi-
sion, 126(2):144–157, 2018. 3

[42] Kai Simon and Georg Lausen. Viper: augmenting automatic
information extraction with visual perceptions. In Proceed-
ings of the 14th ACM international conference on Informa-
tion and knowledge management, pages 381–388, 2005. 2

[43] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander Alemi. Inception-v4, inception-resnet and the im-
pact of residual connections on learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 31,
2017. 5

[44] Chenhao Tan, Lillian Lee, Jie Tang, Long Jiang, Ming Zhou,
and Ping Li. User-level sentiment analysis incorporating so-
cial networks. page 1397–1405, New York, NY, USA, 2011.
Association for Computing Machinery. 1

[45] Benjamin van Niekerk, Marc-André Carbonneau, Julian
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