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Abstract

As face masks continue to be a part of our daily lives,
the challenge of reconstructing occluded faces remains rel-
evant. While several approaches have been proposed for re-
moving masks from neutral facial images, few have explored
the use of facial expressions as a dominant feature for re-
construction of expressive faces. To address this gap, we
propose an expression-conditioned GAN (ECGAN) for re-
constructing masked faces with a specified expression. Our
approach leverages both the binary segmentation map of the
mask and an expression label to generate high-quality im-
ages. To train our ECGAN in a supervised manner, we syn-
thesize masked images using the RAFDB dataset to create
non-masked-masked pairs of images for training. We eval-
uate of our approach on the RAFDB test set, demonstrating
its effectiveness in generating realistic images that convinc-
ingly belong to the given expression class. This is further
highlighted by comparing it to a baseline model and a state-
of-the-art approach without expression-input. The code is
available at https://github.com/SridharSola/ECGAN.

1. Introduction

The Covid-19 pandemic has forced people to wear
masks, which have remained ubiquitous in society. While
masks are necessary for public health, they pose a signifi-
cant challenge to computer vision systems that rely on facial
features, such as face recognition, expression recognition,
and gender classification. Since masks cover almost half of
the face, important facial features are lost to these systems,
making it difficult for them to perform their intended tasks.
This issue is likely to persist even after the pandemic re-
cedes, as people may continue to wear masks for personal
or cultural reasons.

Various methods have been proposed for reconstructing
masked portions of images, with generative adversarial net-
works (GANs) [8] particularly effective for inpainting holes

Figure 1. Comparison between the approaches of previous works
[5,6,17,21,23] and ours. To the left of the arrow are features used
to generate the output on the right.

in images. However, previous works [7, 12, 13, 16] in this
area have primarily focused on incorporating contextual in-
formation, such as binary segmentation maps and landmark
points, to encourage generative models to produce visually
realistic content. One major semantic feature that has not
been widely used to guide face reconstruction is expression
information.

Expression information is essential for conveying emo-
tions and other social signals, making it crucial for tasks
such as expression recognition, sentiment analysis, and so-
cial robotics. However, facial expressions are notoriously
challenging to classify due to the variation in the ways peo-
ple demonstrate them and the fine face movements involved.
While the field of facial expression recognition (FER) has
contributed large in-the-wild datasets, such as FERPlus [1],
RAFDB [18, 19], AffectNet [22] and recently MSD-E [27],
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most works in this area have focused on classification and
animation tasks, rather than face reconstruction.

In this paper, we propose a novel expression-conditioned
GAN, named ECGAN, that unmasks a masked image, given
an expression. The objective of our proposed method is
to incorporate expression information into the unmasking
process, thereby improving the naturalness and expression
fidelity of the generated images. For this work, we use
the seven basic expression classes: surprise, fear, disgust,
happy, sad, anger, and neutral. Figure 1 shows the dif-
ferent approaches taken toward face inpainting and expres-
sion generation. Our approach builds upon previous works,
particularly the works of Modak et al. [21] and Ud Din et
al. [5], but goes beyond them by explicitly leveraging ex-
pression information to guide the reconstruction process.

To achieve this goal, we first generate binary segmenta-
tion maps using Mask RCNN [9], and then our generator
takes in a masked image, along with the mask segmenta-
tion map and an expression class, and inpaints the masked
region according to the class. We train our model adversar-
ially with two discriminators, Dwhole for the whole image
and Dmask for the masked region. We evaluate the effec-
tiveness of our proposed method on the RAF-DB test set
and demonstrate that it generates images with genuine ex-
pressiveness and realism.

Overall, our proposed method has the potential to ben-
efit a wide range of applications that rely on facial fea-
tures, particularly in the context of face recognition, ex-
pression recognition, and gender classification. By leverag-
ing large FER datasets and previous works in this area, we
demonstrate the effectiveness of our approach and provide
evidence that incorporating expression information signif-
icantly improves the expressiveness of generated images.
Our work highlights the importance of considering expres-
sion information in face reconstruction and paves the way
for future research in this area.

2. Related Work
Face inpainting and expression editing are important re-

search topics in computer vision, with significant progress
made in recent years. Early face inpainting techniques used
traditional image processing methods, such as texture syn-
thesis and exemplar-based methods. However, these meth-
ods suffered from limitations in terms of generating realistic
and natural-looking results.

With the development of deep learning, GAN-based ap-
proaches have become popular for face inpainting. One
of the earliest works in this direction is that of Pathak et
al. [25], who proposed the Context Encoder (CE). Although
the CE was not specifically designed for face images, it
showed promising results on various datasets and was later
extended for face inpainting by several researchers.

Iizuka et al. [15] proposed a globally and locally consis-

tent image completion method that can fill in missing re-
gions in images while preserving the global and local struc-
ture of the input. Zheng et al. [30] proposed a pluralistic im-
age completion method that can generate multiple plausible
results for a given input image. Wang et al. [29] developed
an image inpainting technique via generative multi-column
convolutional neural networks, which utilizes the features
extracted from multiple convolutional columns to generate
high-quality results. Pandey and Savakis [23] proposed an
extreme face inpainting technique with sketch-guided con-
ditional GAN, which can generate plausible results by uti-
lizing additional sketch inputs. Hosen et al. [12] proposed
a hybrid masked face recognition system through face in-
painting, which can recover masked regions and enhance
face recognition performance. Ud Din et al. [5] proposed
a GAN-based network that detects and removes mask ob-
jects in facial images using a two-stage approach, where the
first stage produces binary segmentation for the mask re-
gion and the second stage synthesizes the affected region
with fine details while retaining the global coherency of the
face structure. Modak et al. [21] developed a method for
extracting and rebuilding the mask region of facial images
using landmark detection, Mask R-CNN for mask segmen-
tation.

Expression editing has also been an active area of re-
search, with significant progress made in recent years. Early
works on expression editing used traditional methods, such
as 3D morphable models and facial landmarks. However,
with the development of deep learning, GAN-based ap-
proaches have become popular for expression editing.

Siddiqui [26] proposed FEXGAN-META, a facial ex-
pression generation method with meta humans. Ding et al.
[6] presented ExprGAN, a facial expression editing method
with controllable expression intensity. Zhao et al. [3] de-
veloped DeepFaceEditing, a deep generation method of hu-
man images under arbitrary facial attribute changes. Liu
et al. [28] proposed a nonlinear face morphing method that
can generate high-fidelity and diverse face images with ar-
bitrary expressions. Park et al. [24] presented SEAN, an
image synthesis method with semantic region-adaptive nor-
malization that can generate high-quality images with arbi-
trary attributes and Choi et al. [4] proposed StarGAN v2, a
diverse image synthesis method for multiple domains.

Our proposed method, ECGAN, builds upon these works
by considering both the mask position and expression to
produce more natural-looking results. Our method is based
on a conditional GAN that is trained on a dataset of masked
face images with different expressions. The key contribu-
tion of our method is the use of expression-guided inpaint-
ing to improve the naturalness of the generated images.

Overall, the research on face inpainting and expression
editing has seen significant progress in recent years, with
various techniques and methods proposed for generating
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high-quality and natural-looking results. However, there are
still many challenges and limitations in these areas, such as
dealing with complex image backgrounds, preserving the
identity and personal characteristics of the input images,
and ensuring the consistency and correctness of the gener-
ated results.

3. Approach
Our approach first generates a binary segmentation mask

of the image, which is used, along with the masked image
and an expression class, to generate an unmasked image,
which is evaluated as real or fake by two discriminators:
Dwhole and Dmask. We discuss the architecture for each of
these below.

3.1. Mask Segmentation

As in the work of Modak et al. [21], we segment the
mask from the image using a Mask RCNN-based architec-
ture. The Mask R-CNN [9] is an extension of Faster R-
CNN, which is commonly used to classify and identify var-
ious objects in an image. The model has two phases, with
object recognition implemented using the Faster R-CNN ar-
chitecture and semantic segmentation using a Fully Convo-
lutional Network (FCN). With this approach, Mask R-CNN
generates a binary object mask, Ibin, for each item in the
image – in our case, for the mask. This mask is binary;
pixels containing the mask are 1 and others are 0.

3.2. Unmasking Generator

The purpose of the editing generator, Gunmask, is to
fill in the regions left behind after removing the mask in
an image, while maintaining structural and appearance con-
sistency with the ground truth image. It has a CNN-based
encoder and decoder. The encoder part consists of five con-
volution blocks, where each block is a convolution layer
followed by Leaky relu activation and instance normaliza-
tion layers. The encoding convolution layers have a kernel
size of 3, stride of 1, and no padding. The decoder archi-
tecture is the mirror image of the encoder architecture, with
deconvolution layers instead of convolution layers, which
have a kernel size of 3, stride of 2, and padding of 1.

Gunmask also employs shortcut skip connections be-
tween the encoder and decoder to combine local informa-
tion with global information by concatenating the result of
deconvolution layers with feature maps from the encoder at
the same level, which assists in generating more accurate
and consistent results. It also uses a squeeze and excitation
block [14] at the output of the first three blocks of the en-
coder. Additionally, four layers of atrous convolution [2]
with rates of 2,4,8,16 are used between the encoder and de-
coder, which helps capture a large field of view and ensure
consistency in the missing part generation with the rest of
the face image.

Different from other face inpainting generators,
Gunmask takes an input image Imasked, the binary mask
from the mask segmentation generator Ibin, and the
reshaped embedding of the class label c, to generate an
unmasked image, Iunmasked. Thus,

Iunmasked = Gunmask(Imasked, Ibin, c) (1)

3.3. Discriminators

The two discriminators, Dwhole and Dmask, both have
four contracting convolution blocks similar to the encoder
part of the generator. As noted in previous works, this is
done to encourage the unmasking editor to inpaint more
realistic facial features in the masked region, while main-
taining an overall coherent reconstructed image. Similar to
other works on conditional GANs, our discriminators take
in class information given to the generator to further im-
prove the generator’s performance on different expression
classes. However, Dmask does not take in the whole image
and takes in the partial unmasked portion of the unmasked
image Iunmasked, called Igen.

3.4. Loss Functions

We train the overall unmasking model by a combination
of the following loss functions.
Reconstruction Loss: To penalize the network when it
generates images different from the non-masked, we use a
reconstruction loss between the generated image Iunmasked

and the non-masked image pair Inm, by combining L1 loss
and structural similarity loss.

Lrec = L1 + Lssim (2)

Discriminator Loss: To train the discriminators to cor-
rectly identify real and fake inputs we train discriminator
losses as below. Suppose M represents masked images and
NM represents non-masked images, then we optimize for:

Lwhole = −EInm∈NM [log(Dwhole(Inm, Ibin, c))]

+EImasked∈M [log(1−Dwhole(Gunmask

(Imasked, Ibin, c), Ibin, c))]

(3)

The same loss for Dmask is used, Lmask, except we pass
only the masked regions of the non-masked image Inm and
the unmasked image Iunmasked.
Adversarial Loss: We train the generator and the discrim-
inators adversarially using the following losses:

Lwhole adv = −EImasked∈M [log(Dwhole(Gunmask

(Imasked, Ibin, c), Ibin, c))]
(4)

Again, we use a similar loss for Dmask called
Lmask adv , while passing the required mask area to the dis-
criminator.
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Figure 2. Architecture of ECGAN. The masked image, reshaped class embedding, and binary map are concatenated as input to the
generator. The unmasked output is passed to the discriminators along with the original non-masked image.

Figure 3. Sample non-masked-masked pairs from RAFDB (left to
right: surprise, fear, disgust, happy, sad, anger, and nuetral).

Perceptual Loss: In order to generate natural looking un-
masked images, we employ a pretrained VGG-19 network
to generate the feature maps of the non-masked image and
unmasked image. The perceptual loss computes the dis-
tance between the ith layer’s feature maps, ϕi of Inm and
Iunmasked as below:

Lper =

layers∑
i=1

||ϕi(Inm)− ϕi(Iunmasked)||2 (5)

Finally, we combine these losses to a total loss we use for
training:

Ltotal = λwholeLwhole + λmaskLmask

+λwhole advLwhole adv + λmask advLmask adv

+λrec(Lrec + Lper)

(6)

This is our final loss conditioned on expression labels.

4. Experiments
Our experiments are designed to test our hypothesis that

expression classes provide key information to ECGAN to
reconstruct expressive faces. Apart from providing stan-
dard metrics for the reconstructed images, we test this us-
ing ResNet-18 [10] trained on RAFDB on the unmasked
images to determine how distinguishable they are, in terms
of expression. These unmasked images are on the RAFDB
test set – images not previously seen by the generator dur-
ing training. We now discuss the implementation details,
datasets used for training and testing, and discuss results
from our experiments.

4.1. Datasets

RAF-DB: The Real-world Affective Face Database
(RAFDB) [18,19] contains 29,762 real-world facial images.
RAFDB is annotated using 7 basic emotions: happy, neu-
tral, surprise, sad, angry, disgust, fear. For this work, 12,271
images are used for training and 3,068 images for testing. A
face mask was synthetically placed covering the mouth and
nose regions for these images using an online tool 1 similar
to Covid-19 scenario. Thus, we had 12,271 and 3,068 pairs
of non-masked and masked images for training and testing

1https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset

5911



respectively. Examples of images from the training set are
given in Figure 3.

4.2. Implementation Details

We implement the models in PyTorch. The binary map
for the masked images are generated using the mask seg-
mentation network. The unmasking generator and discrim-
inators are loaded with pre-trained weights for face inpaint-
ing on CelebA [20]. The pretrained weights are the result
of training the architecture without labels – which is same
as that of Ud Din et al. [5] – on CelebA for 40,000 itera-
tions. We transform the class label into a tensor the same
size as the image using an embedding layer and reshap-
ing it. Then, the masked images, resized to 256 × 256,
are concatenated with the binary mask and embedding ten-
sor as shown in Figure 2. Since we use a batch size of 3,
a 3 × 13 × 256 × 256 tensor is the input to our model.
Adam optimizer is used to train all three models – the gen-
erator, and both discriminators. The generator, Gunmask,
and Dwhole are trained for 20,000 iterations with an ini-
tial learning rate of 0.0003. Dmask is introduced to the
training process after the 20, 000th iteration, and a total
of 45,000 iterations are performed. As for the hyperpa-
rameters of Ltotal, we set them according to Ud Din et
al. [5] λwhole = 0.3, λmask = 0.7, λwhole adv = 0.3,
λmask adv = 0.7, λrec = 100. The training is done on
a Tesla P100 GPU. We test ECGAN on the test set of
RAFDB – RAFDB test – and generate Fake RAFDB test.
To test for expressiveness, we use ResNet-18 pretrained on
RAFDB, achieving 85.20% classification accuracy on the
unseen RAFDB test.

4.3. Discussion

The goal of our work is to reconstruct the masked re-
gion of the face with an expression. The image generated
by ECGAN must accurately reflect the specified expression
class, be realistic, and closely resemble the non-masked im-
age pair, in that order of priority. In this section, we discuss
the results of our approach with regard to this. Figure 4
shows examples of inpainted images. Clearly, ECGAN can
convincingly reconstruct the face, given an expression. We
further analyze its performance below.

Expression Fidelity: To determine how well ECGAN
generates expressions, we make use of Facial Expression
Recognition. The pre-trained ResNet-18 for FER, when
tested on Fake RAFDB test, achieved a classification accu-
racy of 78.54%. Figure 5 shows the resulting confusion ma-
trices. The performance on ‘Happy’ and ‘Neutral’ expres-
sions remain largely the same, while there is a dip in the re-
maining. The worst affected classes are ‘Fear’ and ‘Anger’,
indicating the difficulty ECGAN had in reconstructing the
mouth regions to express these. Apart from being difficult
to generate, the number of such images in the training data

is also limited. Notably, the performance on the ‘Happi-
ness’ class slightly increased, meaning ECGAN generates
recognizably happy faces. This could be because we loaded
pretrained weights trained on CelebA which is dominated
by neutral and happy images.
To further determine how well ECGAN generates facial fea-
tures, we visualize the feature map produced by ResNet-18
on t-sne plots, shown in Figure 6. The features of ‘Surprise’,
‘Anger’, ‘Happy’, ‘Sad’, and ‘Neutral’ images are similarly
distributed for both RAFDB test and Fake RAFDB test.
However, the features of ”Fear” and ”Disgust” are not well
separated from the others. Therefore, ECGAN can generate
discriminative features in most cases, but generates weak
features for ‘Fear’ and ‘Disgust’.

Quantitative Results: While our task of expression-
based inpainting is not suitable to be evaluated effectively
by structural similarity (SSIM), or Fretchet distance (FID)
[11], we provide them, nonetheless. FID is provided using
a pre-trained VGG-19 network. The SSIM values provided
are (1-ssim), meaning a score closer to 0 is better. In ad-
dition, we provide the mean perceptual loss to determine
how visually realistic the unmasked images are. The re-
sults are provided for each expression in Table 1. While the
SSIM scores are low, the FID scores are still high, meaning
there is a significant difference in the facial features pro-
duced. The perceptual loss score, while not significantly
high, is not as low as that obtained in pure face reconstruc-
tion works. This is expected as the expression generation
task is much harder. Finally, we can correlate the higher
scores to the poorer performance of FER in Figure 5, in-
dicating the challenge in generating hard expressions like
’Fear’, and ’Anger’.

4.4. Ablation Study

Effect of Label Input
To test how much the class input affects expression re-
construction, we inhibited the label input to ECGAN and
generated images on test set of RAFDB set, referred as
Fake RAFDB test no Label. Sample images can be seen
in Figure 4(d). Clearly, these images lack the expression
component compared to Fake RAFDB test Figure 4(c).

As we can see from the t-SNE plot in Figure 6(b-c), the
features of Fake RAFDB test no Label are not as distinct
as that of Fake RAFDB test. Also, ResNet-18 gets more
confused with ”Disgust” in this case as seen in Figure 5(c).
The poorer performance of FER, in this case, confirms
our hypothesis that expression classes significantly aid
ECGAN in generating faces with high expression fidelity.
The performance metrics are presented in Table 1

Effect of Binary Mask
To determine the impact of the binary segmentation map,
we only provide ECGAN with the input image Imasked and
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Figure 4. (a) Non-masked images from RAFDB test. (b) Synthetically masked input images. (c) Unmasked image results. (d)
Fake RAFDB no Label. (e) Fake RAFDB no Map. (f) Images unmasked by DeepGAN [5]. The class given to the model (when given) is
shown on top.

Figure 5. Confusion plots of ResNet-18 on (a) RAFDB test. (b) Fake RAFDB test. (c) Fake RAFDB no Label.(d) Fake RAFDB no Map.
Y-axis are true labels and X-axis are predicted ones.
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Figure 6. ResNet-18 Features of (a) RAFDB test, (b) Fake RAFDB test, (c) Fake RAFDB no Label, and (d) Fake RAFDB no Map.

Fake RAFDB test Fake RAFDB test no Label Fake RAFDB test no Map

Expression SSIM FID Perceptual Loss SSIM FID Perceptual Loss SSIM FID Perceptual Loss

Surprise 0.52 338.92 1.34 0.40 170.76 1.36 0.51 148.61 1.58
Fear 0.64 668.68 1.39 0.44 503.79 1.42 0.50 556.89 1.63
Disgust 0.53 482.43 1.22 0.42 109.93 1.31 0.51 422.26 1.68
Happy 0.53 410.27 1.28 0.42 122.70 1.33 0.52 408.81 1.71
Sad 0.55 429.36 1.32 0.42 179.88 1.34 0.52 370.95 1.71
Anger 0.62 396.95 1.46 0.44 124.41 1.44 0.52 362.88 1.81
Neutral 0.55 244.75 1.21 0.42 139.28 1.27 0.52 328.71 1.72

Table 1. Performance metrics for different generated image sets in terms of Structural Similarity (SSIM), Frechet Inception Distance (FID),
and Perceptual Loss.

the class embedding c. The generated images on test set of
RAFDB set are referred as Fake RAFDB no Map, shown
in Figure 4(e), which we evaluate. The sample images show
how artifacts remain in the absence of the binary map which
is reflected in the high perceptual loss value in Table 1. The
t-SNE plot and resulting confusion matrix can be seen in
Figure 6(d) and Figure 5(d) respectively. Therefore, the bi-
nary map plays a crucial role in directing the generator to
the region that needs to be in-painted.

Expression Recognition Comparison
As the goal of our work is to reconstruct a face with given
emotion label, we test whether an emotion classifier is able
to detect the emotion correctly on reconstructed face by
training ECGAN without conditional label and similarly

ECGAN without masked map. This is shown in Figure 7.
Clearly, in the absence of mask map and emotion label,
there is drop of accuracy of 12.5% -13.5% when tested us-
ing images of Fake RAFDB test. This demonstrates that
both binary map as well as class label play an important
role in ECGAN.

4.5. Comparative Study

We perform a comparative study with the architecture of
Ud Din et al. [5], which we refer to as DeepGAN. We note
that the objectives of their work and ours, though similar,
are not the same, and this comparison is done only to give
a complete demonstration of how expression labels impact
the generation of expressive faces. We train DeepGAN on
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Figure 7. Expression recognition performance comparison on i)
RAFDB test, ii) Fake RAFDB test, iii) Fake RAFDB no Label,
iv) Fake RAFDB no Map using ResNet-18 trained on RAFDB
train set

Figure 8. Confusion plot for FER on images generated by Deep-
GAN. Y-axis are true labels and X-axis are predicted ones.

Figure 9. t-SNE plot for ResNet-18 on images generated by Deep-
GAN.

RAFDB with the same training setup as in Section 4.2. Ex-
amples of the unmasked images are shown in Figure 4(f)
and the metrics are given in Table 2. From the quantitative
results it is evident that the model generates high quality
images similar to the ground truth. However, on inspecting
the images unmasked by DeepGAN, it becomes clear that
the model is unable to retain any of the expression infor-
mation. In this regard, our model clearly comes out on top.
On performing FER comparison, we find that images gener-

Expression SSIM FID Perceptual Loss

Surprise 0.08 149.76 0.56
Fear 0.11 411.91 0.63
Disgust 0.08 99.96 0.54
Happy 0.08 118.95 0.55
Sad 0.08 128.49 0.57
Anger 0.11 106.78 0.66
Neutral 0.57 97.98 0.42

Table 2. Metrics for DeepGAN

ated by DeepGAN result in only 55.2% accuracy – 23.3%
lower than the accuracy when tested on our generated im-
ages. Further, the confusion matrix and t-SNE plot in Fig-
ure 8 and Figure 9 respectively, show that the images gen-
erated by DeepGAN are skewed toward the ‘neutral’ class.
These results, along with those in the ablation study in Sec-
tion 4.4, provide strong support for our hypothesis on the
importance of expression labels to generate animated faces.

5. Conclusion

In this paper, we have proposed an expression-
conditioned approach to GAN-based face inpainting with
an expression. We provided the expression label to the
generator and discriminators during training and testing,
and demonstrated how this generates not only high qual-
ity unmasked faces, but also images that are distinguishable
based on expression. The qualitative and quantitative results
demonstrate how the expression class significantly guides
the generator to successfully reconstruct the masked region
with an expression. The unmasking of expression classes
with low inter-class variation in the lower face region is su-
perior to classes with high inter-class variation. However,
the ablation and comparative study illustrated how the ex-
pression labels play a crucial role in generating expressive
faces. All in all, this work provides evidence for the effi-
cacy of expression conditioned GANs for further research
in expression-aware face inpainting.
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