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Abstract

Human emotion recognition plays an important role in
human-computer interaction. In this paper, we present
our approach to the Valence-Arousal (VA) Estimation Chal-
lenge, Expression (Expr) Classification Challenge, and Ac-
tion Unit (AU) Detection Challenge of the 5th Workshop
and Competition on Affective Behavior Analysis in-the-
wild (ABAW). Specifically, we propose a novel multi-modal
fusion model that leverages Temporal Convolutional Net-
works (TCN) and Transformer to enhance the performance
of continuous emotion recognition. Our model aims to
effectively integrate visual and audio information for im-
proved accuracy in recognizing emotions. Our model out-
performs the baseline and ranks 3 in the Expression Classi-
fication challenge.

1. Introduction
Facial Expression Recognition (FER) can be used in

a variety of applications, such as emotion recognition in
videos, facial recognition for security purposes, and even in
virtual reality applications. Many facial-related tasks have
achieved high accuracies, such as face recognition and face
attribute recognition. Despite this, the capacity to compre-
hend the emotions of a person is still not adequate. The
subtle distinctions between emotional expressions can lead
to ambiguity or uncertainty in the perception of emotions,
which makes it harder to assess the emotion of a person.
Therefore, the scale of most of the FER datasets are not
sufficient to build a robust model.

The appearance of AffWild and AffWild2 dataset and the
corresponding challenges [5–12, 12–14, 30] boost the de-
velopment of affective recognition study. The Aff-Wild2
dataset contains about 600 videos with around 3M frames.
The dataset is annotated with three different affect at-
tributes: a) dimensional affect with valence and arousal; b)
six basic categorical affect; c) action units of facial mus-
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cles. To facilitate the utilization of the Aff-Wild2 dataset,
the ABAW5 2023 competition was organized for affective
behavior analysis in the wild.

Multi-modal emotion recognition has been proven to be
a more effective approach than single-modality emotion
recognition, as it can utilize the complementary informa-
tion between modalities to capture a more complete emo-
tional state while being less susceptible to various noises.
This improved recognition ability and generalization ability
of the model can lead to more accurate and reliable results.

Considering the fact that visual and audio information
contains much emotional information, we propose to use
multi-modal features for continuous facial emotion recog-
nition and design a network structure based on TCN and
Transformer for feature fusion. Visual and audio features
are first fed into their respective TCN modules, then the fea-
tures are concatenated and fed into the Transformer encoder
for learning, and finally, an MLP is used for prediction. Our
approach can unify visual and audio features into a temporal
model, designing an efficient emotion recognition network
with Transformer, thereby improving the evaluation accu-
racy of Valence-Arousal Estimation, Action Unit Detection,
and Expression Classification.

The remaining parts of the paper are presented as fol-
lows: Sec 2 describe the study of facial emotion recogni-
tion and multi-modal fusion technique. Sec 3 describes our
methodology; Sec 4 describes the experiment details and
the result; Sec 5 is the conclusion of the paper.

2. Related Work

Many previous studies were focusing on the fusion of
visual and audio features for emotion recognition. Juan et
al. [19] presented a network that used traditional audio fea-
tures and visual features extracted with a pre-trained CNN
model. Vu et al. [28] built a multi-task model for valence-
arousal estimation and facial expressions prediction. The
authors applied the distillation knowledge architecture for
training and prediction because the dataset does not include
labels for all two tasks. One of the approaches using the
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multi-modal mechanism for facial emotion recognition was
proposed by Tzirakis et al. [26], where the visual and audio
features are extracted with the CNN module and are con-
catenated to feed into the LSTM network. Nguyen et al.
[18] proposed a network consisting of a two-stream auto-
encoder and an LSTM to integrate visual and audio sig-
nals for emotion recognition. Zhang et al. [31] proposed
a multi-modal multi-feature approach that extracts visual
features from 3D-CNN and audio features from a bidirec-
tional recurrent neural network. Srinivas et al. [21] propose
a transformer architecture with encoder layers to integrate
audio-visual features for expression tracking. Tzirakis et
al. [25] use attention-based methods to fuse the visual and
audio features.

Previous studies have proposed some useful networks on
the Aff-wild2 dataset. Kuhnke et al. [15] combine vision
and audio information in the video and construct a two-
stream network for emotion recognition and achieving high
performance. Yue Jin et al. [4] propose a transformer-based
model to merge audio and visual feature.

Temporal Convolutional Network (TCN) was proposed
by Colin Lea et al. [16], which hierarchically captures rela-
tionships at low-, intermediate-, and high-level time scales.
Jin Fan et al. [3] proposed a model with a spatial-temporal
attention mechanism to catch dynamic internal correlations
with stacked TCN backbones to extract features from dif-
ferent window sizes.

The Transformer mechanism proposed by Vaswani et al.
[27] has achieved high performance in many tasks, so many
researchers exploit Transfomer for affective behavior stud-
ies. Zhao et al. [32] proposed a model with spatial and
temporal Transformer for facial expression analysis. Jacob
et al. [17] proposed a network to learn the relationship be-
tween action units with transformer correlation module.

Inspired by the previous work, in this paper we proposed
a multi-modal fusion model with TCN and Transformer to
enhance the performance of emotion recognition.

3. Methodology
In this section, we describe in detail our proposed

method for tackling the three challenging tasks of affective
behavior analysis in the wild that are addressed by the 5th
ABAW Competition: Valence-Arousal Estimation, EXPR
Classification, and AU Detection. We explain how we de-
sign our model architecture, data processing, and training
strategy for each task and how we leverage multi-modal to
improve our performance.

3.1. Preprocessing

We extract the audio stream from the video and prepro-
cess it by converting it to a mono channel with a sample
rate of 16, 000 Hz. This allows us to reduce the noise and
complexity of the audio signal. Some of the video frames

do not contain valid faces, either due to missing or not de-
tected by the face detector. To handle this issue, we replace
these frames with the closest frame that has valid face de-
tection. This ensures that we have a consistent sequence of
facial images for each video.

3.2. Audio Features

We use Wav2Vec2-emotion [22] to extract the audio fea-
tures that capture the emotional content of speech.

Wav2Vec2-emotion is a model based on Wav2Vec2-
Large-Robust, which is pre-trained on 960 hours of Lib-
riSpeech audio with a sampling rate of 16kHz. The model
is then fine-tuned on 284 instances of MSP-Podcast data,
which contains emotional speech from different speakers
and scenarios. The feature vector dimension is 512, which
represents a high-level representation of the acoustic signal.

To align the audio features with the video frames, we re-
size the features to match the length of each frame using
interpolation. This ensures that we have a consistent tem-
poral resolution for both modalities.

3.3. Visual Features

We extract four visual feature vectors using different
models that capture various aspects of facial appearance and
expression.

The first feature vector is extracted using ArcFace
[2] from insightface, which has been pre-trained on the
Glint360K dataset [1] for face recognition. This vector en-
codes the identity and pose of the face with a dimension of
512.

The second feature vector is extracted using
EfficientNet-b2 [23, 24], which has been pre-trained
on the VGGFace2 dataset [20] for face identification and
fine-tuned on the AffectNet8 dataset. This vector captures
the facial attributes and expressions with a dimension of
1280.

The third and fourth feature vectors are extracted using
a model from DAN [29], pre-trained on MSCeleb, and fine-
tuned on RAF-DB and AffectNet8. These vectors represent
the global and local features of the face with a dimension of
512 each.

3.4. Split Videos

Videos are first split into segments with a window
size w and stride s. Given the segment window w
and stride s, a video with n frames would be split into
[n/s] + 1 segments, where the i-th segment contains
frames

{
F(i−1)∗s+1, . . . , F(i−1)∗s+w

}
.

In other words, videos are cut into some overlapping
chunks, each with a fixed number of frames. The purpose
of doing this is to break down the video into smaller parts
that are easier to process and analyze. Each chunk has some
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Figure 1. The architecture of our proposed model. The model consists of four components: pre-trained feature extractors for audio and
visual features, TCN with three temporal blocks, Transformer encoder, and MLP for final prediction.

degree of overlap with the previous and next ones so that no
information in the video is missed.

3.5. Modeling

We denote audio features as fa
i and visual features as fv

i

corresponding to the i-th segment.

3.5.1 Temporal Convolutional Network

Each feature is fed into a dedicated Temporal Convolutional
Network (TCN) for temporal encoding, which can be for-
mulated as follows:

gvi = TCN (fv
i )

gai = TCN (fa
i )

where gvi denotes visual features, gai denotes audio features.
Then, visual features and audio features are concatenated,
denotes as gci .

gci = [gvi , g
a
i ]

This means that we use a special type of neural network that
can capture the temporal patterns and dependencies of the
features over time. The TCN takes the input feature vector
and applies a series of convolutional layers with different
kernel sizes and dilation rates to produce an output feature
vector. The output feature vector has the same length as the
input feature vector but contains more information about the
temporal context. For example, the TCN can learn how the
sound and image change over time in each segment of the
video. The output feature vectors for both sound and image
are then combined together by concatenating them along a
dimension. This creates a new feature vector that contains
both audio and visual information for each segment of the
video.

3.5.2 Temporal Encoder

We utilize a transformer encoder to model the temporal in-
formation in the video segment as well, which can be for-
mulated as follows:

hi = TransformerEncoder (gci ) .

The Transformer encoder only models the context within
a single segment, thereby ignoring the dependencies be-
tween frames across segments. To account for the context
of different frames, overlapping between consecutive seg-
ments can be employed, thus enabling the capture of the de-
pendencies between frames across segments, which means
s ≤ w.

We use another type of neural network that can learn
the relationships and interactions among the features within
each segment. The transformer encoder takes the input fea-
ture vector that contains both audio and visual information
and applies a series of self-attention layers and feed-forward
layers to produce an output feature vector. The output fea-
ture vector has more semantic meaning and representation
power than the input feature vector. For example, the trans-
former encoder can learn how different parts of the sound
and image relate to each other in each segment of the video.
However, the transformer encoder does not consider how
different segments of the video are connected or influenced
by each other. To solve this problem, we can make some
segments overlap with each other so that some frames are
shared by two or more segments. This way, we can cap-
ture some information about how different segments affect
each other. The degree of overlap is controlled by two pa-
rameters: s is the length of a segment and w is the sliding
window size. If s is smaller than or equal to w, then there
will be some overlap between consecutive segments.

3.5.3 Prediction

After the temporal encoder, the features hi are finally fed
into MLP for regression, which can be formulated as fol-
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lows:
yi = MLP(hi)

where yi are the predictions of i-th segment. For VA chal-
lenge, yi ∈ Rl×2. For EXPR challenge, yi ∈ Rl×8. For AU
challenge, yi ∈ Rl×12 .

The prediction vector contains the values that we want to
estimate for each segment. The MLP consists of several lay-
ers of neurons that can learn non-linear transformations of
the input. The MLP can be trained to minimize the error be-
tween the prediction vector and the ground truth vector. The
ground truth vector is the actual values that we want to pre-
dict for each segment. Depending on what kind of challenge
we are solving, we have different types of ground truth vec-
tors and prediction vectors. For the VA challenge, we want
to predict two values: valence and arousal. Valence mea-
sures how positive or negative an emotion is. Arousal mea-
sures how active or passive an emotion is. For the EXPR
challenge, we want to predict eight values: one for each ba-
sic expression (anger, disgust, fear, happiness, sadness, and
surprise) plus neutral and other expressions. For the AU
challenge, we want to predict twelve values: one for each
action unit (AU1, AU2, AU4, AU6, AU7, AU10, AU12,
AU15, AU23, AU24, AU25, AU26).

3.6. Loss Functions

VA challenge: We use the Concordance Correlation Co-
efficient (CCC) between the predictions and the ground
truth labels as the measure, which is defined as in Eq 1.
It measures the correlation between two sequences x and y
and ranges between -1 and 1, where -1 means perfect anti-
correlation, 0 means no correlation, and 1 means perfect
correlation. The loss is calculated as Eq 2.

CCC(x, y) =
2 ∗ cov(x, y)

σ2
x + σ2

y + (µx − µy)
2

where cov(x, y) =
∑

(x− µx) ∗ (y − µy)

(1)

LVA = 1− CCC (2)

EXPR challenge: We use the cross-entropy loss as the
loss function, which is defined as in Eq 3.

LEXPR = − 1

N

∑
i

M∑
c=1

yic log(pic) (3)

where yic is a binary indicator (0 or 1) if class c is the
correct classification for observation i. pic is the predicted
probability of observation i being in class c, M is the num-
ber of classes. The multiclass cross entropy loss function
measures how well a model predicts the true probabilities
of each class for a given observation. It penalizes wrong

predictions by taking the logarithm of the predicted proba-
bilities. The lower the loss, the better the model.

AU challenge: We employ BCEWithLogitsLoss as the
loss function, which integrates a sigmoid layer and binary
cross-entropy, which is defined as in Eq 4.

LAU = − 1

N

∑
i

[yi · log(σ(xi))+(1−yi) · log(1−σ(xi))]

(4)
where N is the number of samples, yi is the target label for
sample i, xi is the input logits for sample i, σ is the sig-
moid function The advantage of using BCEWithLogitsLoss
over BCELoss with sigmoid is that it can avoid numerical
instability and improve performance.

4. Experiments and Results
4.1. Experiments Settings

All models are trained on an Nvidia GeForce GTX 3090
GPU which has 24GB of memory. We use AdamW opti-
mizer and cosine learning rate schedule with the first epoch
warmup. The learning rate is 3e − 5, the weight decay is
1e− 5, the dropout prob is 0.3, and the batch size is 32.

For VA Challenge, we use Wav2Vec2-emotion, Eff,
RAF-DB, and AffectNet8 as the input features.

For EXPR Challenge, we use two types of input features:
Eff and AffectNet8 as described above.

For AU Challenge, we use three types of input features:
Eff, RAF-DB, and AffectNet8 as described above.

For all three challenges, we split videos using a segment
window w = 300 and a stride s = 200. This means we di-
vide each video into segments of 300 frames with an overlap
of 100 frames between consecutive segments. This helps
us capture the temporal dynamics of facial expressions and
emotions.

4.2. Overall Results

Table 1 displays the experimental results of our proposed
method on the validation set of the VA, EXPR, and AU
Challenge, where the Concordance Correlation Coefficient
(CCC) is utilized as the evaluation metric for both valence
and arousal prediction, and F1-score is used to evaluate the
result of EXPR and AU challenge. As demonstrated in the
table, our proposed method outperforms the baseline sig-
nificantly. These results show that our proposed approach
using TCN and Transformer-based model effectively inte-
grates visual and audio information for improved accuracy
in recognizing emotions on this dataset.

Table 2, Table 3, and Table 4 display the overall test re-
sults on the three challenges. Notably, Netease Fuxi and
SituTech achieved the first and second highest scores in all
three challenges, surpassing other teams significantly, in-
dicating their exceptional performance in these challenges.
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Experiment Feature Valence Arousal F1-score

VA Eff, AffectNet8, RAF-DB, Wav2Vec2-emotion 0.5505 0.6809 -
EXPR Eff, AffectNet8 - - 0.4138
AU Eff, AffectNet8, RAF-DB - - 0.5248

Table 1. Performance of our method on the validation dataset of three experiments

Teams Total Score CCC-V CCC-A

SituTech 0.6414 0.6193 0.6634
Netease Fuxi 0.6372 0.6486 0.6258
CBCR 0.5913 0.5526 0.6299
Ours 0.5666 0.5008 0.6325
HFUT-MAC 0.5342 0.5234 0.5451
HSE-NN-SberAI 0.5048 0.4818 0.5279
ACCC 0.4842 0.4622 0.5062
PRL 0.4661 0.5043 0.4279
SCLAB CNU 0.4640 0.4578 0.4703
USTC-AC 0.2783 0.3245 0.2321
baseline 0.201 0.211 0.191

Table 2. The overall test results on VA challenge. The bold fonts
indicate the best results.

Teams F1

Netease Fuxi 0.4121
SituTech 0.4072
Ours 0.3532
HFUT-MAC 0.3337
HSE-NN-SberAI 0.3292
AlphaAff 0.3218
USTC-IAT-United 0.3075
SSSIHL DMACS 0.3047
SCLAB CNU 0.2949
Wall Lab 0.2913
ACCC 0.2846
RT IAI 0.2834
DGU-IPL 0.2278
baseline 0.2050

Table 3. The overall test results on EXPR challenge. The bold
fonts indicate the best results.

Our team ranks fourth in the VA challenge, third in the
EXPR challenge, and sixth in the AU challenge. Our team’s
performance demonstrates our competitive standing in the
challenges, with notable achievements in the VA, EXPR,
and AU challenges.

Teams F1

Netease Fuxi 0.5549
SituTech 0.5422
USTC-IAT-United 0.5144
SZFaceU 0.5128
PRL 0.5101
Ours 0.4887
HSE-NN-SberAI 0.4878
USTC-AC 0.4811
HFUT-MAC 0.4752
SCLAB CNU 0.4563
USC IHP 0.4292
ACCC 0.3776
baseline 0.365

Table 4. The overall test results on AU challenge. The bold fonts
indicate the best results.

4.3. Ablation Study

In this section, we perform several ablation studies on
these three experiments to compare the contribution of dif-
ferent features. From Table 6, it can be seen that almost
every feature contributes to the VA prediction task, and the
combination of 4 visual features: Eff, ArcFace, AffectNet8,
RAF-DB, and the audio features: Wav2Vec2-emotion reach
the highest CCC score on VA experiment. Table 7 shows
that the use of Eff and AffectNet8 can reach the highest F1-
score in the EXPR experiments. Table 8 shows that Eff,
AffectNet8, and RAF-DB can reach the highest F1-score in
the EXPR and AU experiments. The cross-validation result
of the VA, EXPR, and AU experiments are reported in Ta-
ble 5. Fold 0 is exactly the original data from the ABAW
dataset.

5. Conclusion
Our proposed approach utilizes a combination of a Tem-

poral Convolutional Network (TCN) and a Transformer-
based model to integrate visual and audio information for
improved accuracy in recognizing emotions. The TCN cap-
tures relationships at low-, intermediate-, and high-level
time scales, while the Transformer mechanism merges au-
dio and visual features. We conducted our experiment on
the Aff-Wild2 dataset, which is a widely used benchmark
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Task Evaluation Metric Partition Method Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Valence

CCC

Validation Ours 0.5505 0.6455 0.5889 0.5394 0.5406
Baseline 0.24 - - - -

Test Ours 0.5504 0.4979 0.5008 0.4979 0.4875
Baseline 0.211 - - - -

Arousal
Validation Ours 0.6809 0.6259 0.6539 0.6468 0.6591

Baseline 0.20 - - - -

Test Ours 0.5805 0.5396 0.6325 0.5037 0.5569
Baseline 0.191 - - - -

EXPR F1-score
Validation Ours 0.4138 0.4350 0.3614 0.3959 0.4234

Baseline 0.23 - - - -

Test Ours 0.3406 0.2979 0.3532 0.3293 0.3427
Baseline 0.2050 - - - -

AU F1-score
Validation Ours 0.5248 0.5524 0.5000 0.5060 0.5393

Baseline 0.39 - - - -

Test Ours 0.4735 0.4822 0.4887 0.4818 0.4720
Baseline 0.365 - - - -

Table 5. Results for the five folds of three tasks

Visual Features Audio Features Valence Arousal

ArcFace None 0.5013 0.6054
AffectNet8 None 0.5392 0.6629
RAF-DB None 0.5109 0.6579
Eff None 0.5208 0.6467
Eff, ArcFace None 0.5216 0.6519
Eff, ArcFace, AffectNet8 None 0.5345 0.6532
Eff, ArcFace, AffectNet8, RAF-DB None 0.5429 0.6613
Eff, ArcFace, AffectNet8, RAF-DB Wav2Vec2-emotion 0.5505 0.6809

Table 6. Ablation study of features on the validation dataset of VA experiment.

Visual Features Audio Features F1-score

ArcFace None 0.3512
AffectNet8 None 0.3937
RAF-DB None 0.3928
Eff None 0.4018
Eff, ArcFace None 0.4015
Eff, AffectNet8 None 0.4138
Eff, RAF-DB None 0.4012
Eff, AffectNet8, ArcFace None 0.4093
Eff, AffectNet8, RAF-DB None 0.4087
Eff, AffectNet8 Wav2Vec2-emotion 0.4028

Table 7. Ablation study of features on the validation dataset of
EXPR experiment.

dataset for emotion recognition. Our results show that our
method significantly outperforms the baseline. Finally, our

Visual Features Audio Features F1-score

ArcFace None 0.4598
AffectNet8 None 0.4894
RAF-DB None 0.4915
Eff None 0.5118
Eff, ArcFace None 0.5042
Eff, AffectNet8 None 0.5215
Eff, RAF-DB None 0.5155
Eff, AffectNet8, ArcFace None 0.5109
Eff, AffectNet8, RAF-DB None 0.5248
Eff, AffectNet8, RAF-DB Wav2Vec2-emotion 0.5134

Table 8. Ablation study of features on the validation dataset of AU
experiment.

team ranks fourth in the VA challenge, third in the EXPR
challenge, and sixth in the AU challenge.
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