

Abstract

Automated checkout systems have become increasingly

popular as the state-of-the-art deep learning models are

efficient and accurate enough for this to become a reality.

However, challenges still exist due to the differences

between synthetic training data and real-life products, the

blurred product images captured during the checkout

process, and discontinuous detections due to product

similarities or tracking misses. This paper presents a

robust deep learning YOLO-based pipeline, DACNet, that

counters the above challenges. During training, data

augmentation involving overlaying training images onto

expected backgrounds creates a more diverse and accurate

training dataset. When inferencing, selective deblurring is

also incorporated to enhance the clarity of the items to be

recognized while maintaining efficiency. And to improve

accuracy further, we introduced a retrospective checking

algorithm that analyzes previous detections and corrects

any inaccuracies due to flickering detections or incorrect

tracking results. Together, this pipeline ensures a network

that produces reliable training results and high prediction

accuracies even in complex retail environments with

multiple items present. The proposed method has been

submitted to 2023 AI City Challenge by NVIDIA and

achieved a top-3 finish on the test set A with an F1-score

of 0.8254. Our code is open sourced here:

https://github.com/cycv5/AICityChallenge.

1. Introduction

Powered by the recent development of deep learning

neural networks, automated checkout systems are rising in

popularity. The systems provide a method for efficient and

accurate scanning and counting of products that enables a

seamless shopping experience. Ideally, when retail items

are placed in a designated area or moved across a camera,

images are captured and analyzed. And each item in the

images is recognized and counted in order to produce the

final price for the customer. However, training such a

neural network requires a large and diverse dataset which

could be difficult to collect and organize. Therefore,

synthetic data generated from 3D scans of retail products

can provide a well-organized dataset containing a large

number of images within a relatively short timeframe.

Despite its efficiency, training on synthetic data poses

multiple challenges to the real-life task of checking out

customers. One of the main issues is the gap between the

training images and real-life images captured during

checkout. A deep learning network also needs to consider

blurred images, unstable detections, and missed items due

to the movements of the products.

This paper presents a robust pipeline (DACNet) for

training a deep-learning neural network and applying it in

a retail checkout setting. It uses the YOLOv8 [1, 2]

algorithm as the main detector and classifier of the retail

items, and StrongSORT [1, 3] as the tracking algorithm.

In short, the main contributions of this paper are as

follows:

- Experiments on Data Augmentation: Synthetic

images are copied to a background that resembles

the checkout counter, and minor adjustments are

made to the products so that they look as close to

real-life products as possible. The results are

compared with direct training on the original

images, proving that data augmentation plays a

crucial role in training.

- Selective Deblurring: Motion blur is one of the

causes of inaccuracies during inferencing. A

deblurring algorithm can reduce the blur

considerably and improve the accuracy of

classification. Due to the added complexity and

processing time, only a few key frames from a video

stream will be deblurred for a better prediction.

- Retrospective rectification: Neural network

detections have their imperfections. Items could

have duplicate detections and false detections. A

good post-processing algorithm needs to be in place

to filter out the noises. The proposed algorithm

checks the previously recorded items, specifically

their timestamp, on-screen time, and class, to

determine if the current recording of an item is valid

or not.

Together with accurate hand segmentations and region

of interest (ROI) detection, the proposed method is robust

and versatile. After training on 116,500 images from 116

DACNet: A Deep Automated Checkout Network with Selective Deblurring

 Yichen Cai Aoran Jiao

University of Toronto, St George Campus

27 King’s College Cir, Toronto, Ontario, Canada
{charles.cai, aoran.jiao}@mail.utoronto.ca

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5278

classes of retail products, it is evaluated in the 2023 AI City

Challenge Track 4. Compared to other state-of-the-art

methods, DACNet obtained a top-3 finish with an F1-score

of 0.8254.

The rest of the paper is organized as follows. Section 2

reviews the existing related works, Section 3 details the

DACNet pipeline and algorithms, Section 4 reports the

experimental results and discussions, and finally, Section 5

is the conclusion of this paper.

2. Related Works

We frame the AI City Track 4 challenge as a DTC

(Detect-Track-Count) problem. This section introduces

previous work done on the DTC problem and how we

bridge the gap in the context of retail objects.

2.1. Object Detection

Object detection involves the identification and

localization of target objects from background images or

videos and is therefore key for this challenge. Traditional

computer vision algorithms such as SIFT (Scale-Invariant

Feature Transform), SURF (Speeded-Up Robust Features),

and BRIEF (Binary Robust Independent Elementary

Features) rely heavily on extracted feature descriptors and

are used with traditional machine learning algorithms such

as SVM and KNN. [4] With the rise of deep learning and

the availability of larger datasets, deep learning-based

computer vision models such as CNN tend to outperform

traditional algorithms. [4, 5] Therefore, we focus on the

review of these models such as YOLO (You Only Look

Once), RetinaNet, R-CNN, and SSD.

Two popular approaches to object detection are one-

stage and two-stage models. One-stage models such as

YOLO, SSD, and EfficientDet require a single step in

predicting the location and type of the object while two-

stage models such as R-CNN use an RPN (Region Proposal

Network) to generate the ROI (Region of Interest) in the

first stage and refine them in the second stage with

classifier and bounding box regression. [6] One-stage

detectors tend to be faster but less accurate than two-stage

detectors [7, 8].

R-CNN proposed by Girshick et al. [9] is a two-stage

model combining region proposals with CNN features

reaching an mAP of 53.3% in the VOC 2012 dataset. Fast

R-CNN [10] and Faster-RCNN [11] further develop the

idea by improving the speed and accuracy of predictions

and proposing RPN to share full-image convolutional

features and decrease the computation bottleneck.

YOLO is a one-stage, unified, real-time model proposed

by Redmon et al. [12] that uses a single NN to predict

bounding boxes and probabilities. There are many

extensions and improvements on the original YOLO model

such as YOLOv3 [13], YOLOv5 [14], YOLOv7 [15],

YOLOX [16], and most recently, YOLOv8 by Ultralytics

[2].

RetinaNet [17] and SSD [18] are two other popular one-

stage models. Lin et al. trained the RetinaNet with a focal

loss that retains the speed of one-stage detectors and

surpasses the accuracy of two-stage detectors. SSD uses a

similar single-shot detector with multi-scale feature maps

and convolutional predictors.

2.2. Tracking

SOT (Single object tracking), MOT (Multiple object

tracking), and OOT (Online object tracking) are common

tracking tasks. SORT (Simple online real-time tracker) is

the most suitable method for this challenge. SORT

combines common tracking algorithms including Kalman

Filter and Hungarian algorithm with a high FPS of 260 Hz

[19]. DeepSORT [20] mitigates occlusion and missed

frames of the tracked object with a deep association metric

learned by a CNN. StrongSORT [3] further improves on

the missing association and detection of DeepSORT by

introducing an appearance-free link model and Gaussian-

smoothed interpolation, achieving state-of-the-art for

many public benchmarks. ByteTrack [21] is another MOT

model which associates every detection box and uses

similarities between tracklets to reduce false positives and

negatives for low-score detection bounding boxes.

Figure 1: System Architecture Diagram

5279

2.3. Hand Segmentation

To correctly detect and track objects, it is crucial to

avoid false negatives due to occlusions. The retail objects

are often occluded by hands during checkout. Therefore,

segmenting and inpainting hands would improve the

performance of our model. CNN is widely used in this

context. Dadashzadeh et al. proposed a two-stage CNN-

based HGR-Net which localizes the hand region and

segmentation in the first stage and identifies the hand

gesture in the second. [22]. There are also large-scale

RGB-based datasets for robust hand segmentation and

detection training such as Ego2Hands [23].

2.4. Deblurring

Video deblurring is a key step to improving detection

accuracy. Motion deblurring and denoising methods

consist of more traditional filtering techniques such as the

Radon transform and directional filters [24], Haar Wavelet

transform [25], super resolution techniques [26], as well as

deep learning-based methods which use CNN and data-

driven approaches to accumulate information between

frames [27, 28].

2.5. Retail Object Recognition Datasets

Public datasets of retail object recognition fuel the

development of better models and techniques. The AI City

Challenge [29] provides 116,500 synthetic training data

under different lighting and angle conditions from more

than 100 types of retail items. Other datasets such as the

RP2K [30] also consist of a large number of products and

rich annotations.

2.6. Bridging the Gap

Our research aims to bridge the gap between theoretical

models and their practical applications in this challenge.

We evaluate, combine, and improve on the state-of-the-art

models and techniques for the DTC problem.

3. DACNet

Our model, DACNet (Deep Automated Checkout

Network) is trained and evaluated based on the architecture

diagram shown in Figure 1. Our software stack consists of

3 components: preprocessing, training, and postprocessing.

In preprocessing, we address the main challenge of the

domain gap between the synthetic training data and the real

inference test videos. The simulation-to-real transfer aims

to augment the retail products onto realistic generated

background images under various lighting conditions,

angles, and orientations.

We choose to deploy YOLOv8 as our main model. The

training process takes in a YOLOv8 large model, tunes the

hyperparameters with the Adam optimizer, and uses

ensemble learning to better perform inference.

In postprocessing, we have 6 modules including hand

segmentation and inpainting, tray detection, selective

deblurring, object tracking, retrospective rectification, and

non-linear frame shifting to transform the detection results

to the output text file containing the object class ID and

time of appearance.

3.1. Data Augmentation for Training

The training data is provided in 116,000 synthetic

images generated by Unity. It is key to bridging the domain

gap between the simulated training data and the real-world

test data. First, to ensure the robustness and diversity of the

products in the training data. We perform augmentation by

randomly changing the brightness, reflectivity (to simulate

different lighting conditions), size, and orientation of the

input items, as Figure 2 shows.

 Inspired by the One Research Framework [31], random

backgrounds with rotations, horizontal, and vertical

reflections are generated to fit multiple augmented items

onto the same image. This bridges the domain gap between

synthetic and real-world data and reduces the total number

of training images and potential training time. Random

items are placed onto the central region of the background

with potential overlaps in between to simulate the

occlusion in real life. The coordinates and size of the

bounding boxes are extracted from the segmentation masks

Figure 2: Augmented data VS original synthetic data

5280

provided by the original dataset.

 The randomness and diversity of the training data

augmentation mean we could train multiple models with

different versions of the augmented data and perform

ensemble learning with different models.

 Lastly, the augmented data is divided into training and

validation sets and converted into the YOLO data format

for training.

3.2. Training the Model

The training hyperparameters of our model including

learning rate, batch size, and dropouts are fine-tuned by

gradient-based stochastic optimizer - Adam [32]. Each

model is trained until the validation loss converges and the

training loss plateaus. The independently trained models

with different variations of augmentation are then

combined using ensembled learning and averaging the

output confidence score as the final result.

3.3. Preprocessing before Inferencing

Before processing a frame from an input video stream

through the backbone classifier, two preprocessing steps

are taken – hand segmentation and ROI detection.

When a customer checks out an item, their hands may

inadvertently come into contact with the products. This

could cause additional noises that impact the prediction

accuracy. To mitigate this, we first remove the hands by

masking them with a color that is similar to the

background. This part of the algorithm is implemented

using EgoHOS [33], an egocentric hand segmentation

algorithm based on MMSegmentation [34]. EgoHOS is

trained on a large set of images containing two hands and

is able to output a mask of the hands. In our model, a new

class, namely HandSegmentor is created to handle the hand

segmentation module. When initialized, it reads the pre-

trained model on hand segmentation [33] and prepares the

MMSegmentation network for inferencing. Each frame

will be processed by the HandSegmentor and output a

mask () that represents the hands area with non-zero

entries. Then all the non-zero entries are collected and on

the original input images, pixels on those indices will be

replaced by a predefined color that is close to the

background (e.g., [168,168,168]). The result of the hand

segmentation will be a tensor that has the same shape as

the original ().

The next step is to recognize the region of interest (ROI),

which is crucial to accurately count only the products that

are being checked out. In 2023 AI City Challenge Track 4,

this area is defined by a white tray. The proposed method

uses only efficient mathematical methods provided by

OpenCV [35] and is applicable to any ROI detection task

with a relatively clear boundary. Initially, a default ROI is

input to the algorithm as the fail-safe result. Then the

detection starts with turning the image into grayscale and

applying Gaussian Blur to it. This removes a significant

number of noises created by lighting and different shades

of colors. A Canny tool is used next to find the edges of the

image. Then, an image gradient is calculated using Scharr

derivatives to highlight the edges for the final step, flood

fill [35]. OpenCV provides a flood fill algorithm that fills

the geometry (up until an edge is met) from an input

coordinate and returns the resulting rectangle coordinates,

representing the ROI. The choice for the input coordinate

is based on real-life scenarios, it needs to be within the ROI

itself. In our algorithm, we decided to go with the middle

of the input video frame first and move to a slightly

different location for a second try if the first attempt is

unsuccessful (the bounding box is unreasonably

small/large given the input image). If the second attempt is

also unsuccessful, we would output the default estimate of

the ROI. Note that it is unnecessary to do ROI detection

every frame as the ROI rarely changes. Thus, we only

update the ROI every frame until a non-default, calculated

bounding box is found, and after that, it will update every

5 seconds with any new calculated result.

3.4. Image Deblurring

Motion blur is another leading cause of wrong or missed

detections of products. Depending on how a product is

moved into and out of the camera view, some images

captured could be blurry. A fast and powerful deblurring

algorithm can help significantly.

NAFNet [36] is one of the state-of-the-art deep learning

algorithms that do image restoration efficiently. It

eliminates the need for non-linear activation functions in a

network. Instead, they are replaced with multiplication or

Figure 3: Hands are masked by a color similar to the background.

Figure 4: A comparison between the original video frame and the

deblurred version by NAFNet.

5281

simply removed. The architecture is mainly a

convolutional neural network, with a simplified channel-

based attention mechanism and the Simple Gate (an

operation that replaces regular non-linear activations).

We used a pre-trained image deblurring model on the

REDS (Realistic and Dynamic Scenes) dataset [37] for our

purpose. And applying the NAFNet before sending the

images to the classifiers enables it to recognize some items

that were previously unrecognizable. Again, we need to

keep in mind that deblurring takes a large amount of time

and space complexity despite the efficient algorithm by

NAFNet. Therefore, a selective approach is used. Every

time a new detection is found by the backbone algorithms

that is within the ROI, the deblurring function will be

called once. This ensures that the number of times the

deblurring function is called is O(n) where n is the number

of items being scanned. This approach keeps the majority

of the frames at a low processing time while only around

1% of the frames will be deblurred. Once the deblurring is

applied to a frame, its classification result will be weighted

higher in the resulting dictionary (introduced in Section

3.5) due to its clarity. This will impact the final calculations

in favor of the classification made with a deblurred image.

3.5. Backbone Algorithms

The backbone of our system consists of two major parts,

a YOLOv8 classifier, and a StrongSORT tracking

algorithm [3]. A video frame first goes into our trained

YOLOv8 model, as with all the YOLO models, it only

takes one forward pass to determine the locations and types

of everything it sees in the frame. For our use case, 116

categories for classification, we decided to utilize a large

YOLOv8 variant. With a single Tesla T4 GPU, the

inference speed for YOLOv8l alone is around 50ms.

Compared to the classic YOLOv5 [38], The v8 model

performs 7.96% better in terms of �������� with a similar

processing speed (both with the large variant and on the

COCO dataset). One of the benefits of using YOLOv8 is

its state-of-the-art architecture [2]. For instance, YOLOv8

has anchor-free detections. It predicts the objects directly

on the center points of them instead of from known anchor

boxes. Those anchor boxes could be misleading, especially

used on custom datasets like ours. Additionally, there are a

few structural changes to make this new YOLO model

efficient and accurate.

Once the YOLOv8 network has its prediction results, it

will be fed into the StrongSORT algorithm along with the

original image. StrongSORT is an improved DeepSORT

algorithm, with around 8.5% improvement in IDF1 on the

MOT20 dataset with similar processing speed. One of the

main improvements for StrongSORT is its ability to

recognize and tackle movements of objects. StrongSORT

first uses an ECC (enhanced correlation coefficient

maximization) to account for motioned noise caused by

movements. Then a modified Kalman filter that

emphasizes non-linear motions is used to calculate the

weightings during each update across frames. Lastly, for

object association, StrongSORT directly includes the

motion information (in addition to appearance) for more

accurate tracking. Overall, it results in a good tracking

algorithm for our use case.

With the two backbone algorithms, we are able to

generate a result dictionary in the format of:

{unique_index:(timestamp_in_frame, {class: count})}.

Within the dictionary, keys (unique_index) represent the

unique indices that are assigned to each tracked object in

the input video of a checkout scenario. The values in this

dictionary are tuples. The first element in the tuple is the

time stamp (timestamp_in_frame) of the first appearance

inside the ROI of this object indicated by the unique_index.

The second element is again a dictionary object where the

keys are predicted classes of this object and the values are

the number of frames in which this object is classified as

that class. Classes with higher frame counts indicate a

higher probability that this particular object belongs to this

class. Classification on deblurred images will receive a

boosted frame count (e.g., 1 deblurred frame classification

counts as 5 regular frames). Note that there could be

multiple entries in this inner dictionary as there could be

incorrect classifications.

3.6. Retrospective Rectification and Output

With the resulting dictionary, a final algorithm is applied

to it for a better and more consistent result. This algorithm

can be separated into 2 stages: backward correction and

forward recording. Both backward and forward algorithms

process the resulting dictionary from the previous step

hence it does not need to look at each frame of the input

video, reducing the complexity significantly. The

dictionary ordering is kept in a separate list object. A

“detection” is defined by an entry in the resulting

dictionary. It has a unique index as its key, one timestamp,

and possibly multiple classes and frame count for each

class. In our rectification algorithm (backward and forward

algorithms), for most parts, we only look at the class with

the maximum frame count in each detection.

The backward stage starts with the last detections in the

resulting dictionary going backward. The idea is for an

unstable detection, the tracker could lose track of the item

at some point during the time that the item is within ROI.

The item could be briefly categorized as something else for

a brief time and went back to its correct classification, but

the tracker could think of it as a new, unseen item. For each

new detection, we would retrospectively check the

previous detections. When previous detections within a

certain range (and within a certain timestamp) as the exact

5282

same classification, we would consider them as one entry.

The algorithm would add the frame count of the later

detections to the previous detections and set the later

detections’ frame count to 0. See Algorithm 1 for details.

The next step is the forward recording (Algorithm 2),

which will be the step where the result of the checkout is

generated. To avoid extraneous detections, there will be a

threshold calculated for a detection to be valid. This

threshold is based on the average speed (in frames) of all

the items moving across the field of view in the input video,

upper and lower bounds are set (arbitrarily and subject to

finetuning) to ensure a more generalizable result. The

average speed is calculated per video or checkout session.

Checkout sessions in real life can easily be segmented by

payments from the customers. With the forward algorithm,

it loops through the result dictionary, and with any

significant detections (frame count larger than the

threshold defined above), it will check if the same item is

recorded already, determined by the previous recorded

items and timestamp. If the current item has not yet been

recorded, it will add a new entry to the final result of this

checkout session.

Algorithm 1: Backward Checking
1 for i from (length_result_dict – 1) to 0:

2 cur_tstamp, cls_dict = timestamp and classes from

 current detection i

3 max_cls = max frame count class in cls_dict

4 for 3 previous detections in result_dict (if exists):

5 prev_tstamp, prev_cls_dict = timestamp and

 classes from previous detection

6 prev_max_cls = max frame count class in

 prev_cls_dict

7 if max_cls == prev_max_cls and (cur_tstamp –

 prev_tstamp – prev_cls_dict[pre_max_cls]) <

 threshold:

8 prev_cls_dict[pre_max_cls] +=

 cls_dict[max_cls]

9 cls_dict[max_cls] = 0

10 break

Algorithm 2: Forward Recording
1 for i from 0 to (length_result_dict – 1):

2 cur_tstamp, cls_dict = timestamp and classes from

 current detection

3 max_cls = max frame count class in cls_dict

4 if cls_dict[max_cls] > threshold:

5 if max_clss == previous recorded class:

6 check the timestamp difference, write to output

 file if it is larger than 18 frames else skip

7 else:

8 write to output file

9 update previous recorded class according to the

current detection

Optionally, one more step can be added before writing

to the resulting file. In our use case, we deliberately added

paddings to the ROI to have a more generous detection area

because we cannot expect customers to always fit the

products exactly inside the ROI area within the camera

view. Although that gives fewer misses for detections, it

does cause the recorded timestamp to be earlier than it

should be. This does not affect our rectification algorithms

as they only care about the timestamp differentials instead

of the absolute timings of the product recognitions. But for

a better, more accurate timestamp, a non-linear shift can be

applied to the final result. Since the resulting dictionary

from the backbone algorithms has the frame count from

each detection, we know the speed for each item going

across the ROI. Based on this speed, we added a timestamp

padding to the result, more specifically, around 1/5 of the

time it spends within the ROI.

4. Experiments & Discussion

4.1. Setup

The models are trained on the hardware platform with 2

NVIDIA GeForce RTX 3090 GPUs with 24 GB dedicated

Figure 5: Loss, Precision, Recall, and mAP curves for YOLOv8 training.

5283

RAM each. The CPU of the platform is Intel (R) Core (TM)

i9-9980XE @ 3.00GHz.

4.2. Experiments and Result

The preliminary result of the proposed DACNet is tested

on test set A of the 2023 AI City Challenge Track 4. It is

evaluated in F1-scores. Each detection from the input test

video needs two pieces of information: class and timestamp

(in the input video). True positives (TP) are detections with

the correct classes and timestamps. False positives (FP) are

detections of products recorded in the final output yet not

actually present in the test video. Lastly, false negatives

(FN) are missing detections of items that appeared in the

video.

 (1)

We first conducted a simple experiment on the original

synthetic dataset provided by the 2023 AI City Challenge

with the segmentation masks. We aimed to train a

YOLOv8 network for instance segmentation. However, the

overall result was not satisfactory (F1-score < 0.1). The

instance segmentation task added too much complexity in

terms of localization which was unnecessary given our

final objective. Also, the original synthetic images have

two major disadvantages: out of context and out of scale.

The synthetic training data has random backgrounds which

caused difficulties for the model when it was tested with

the test set. Furthermore, the sizes of products were ignored

as they were all stretched to 640*640 for our training.

The above problems can be addressed through our data

augmentation step (Section 3.1). With the augmented

training data, the result improves drastically. Without the

deblurring and the retrospective rectification step, the test

accuracy is already better, with an F1-score above 0.5.

Given this promising result, we started training for more

epochs. Convergence is reached at around 100 epochs as

shown in Figure 5, and we decided to employ an early-

stopping strategy at 100 epochs. Adding the full pipeline to

the test, the model achieved an F1-score of 0.8254, which

is the 3rd best result in the public leaderboard of 2023 AI

City Challenge Track 4 as shown in Table 1. The

progression of our experimental result is recorded in Table

2, note that some recorded F1-scores are based on partial

test sets.

Table 1: Top teams in AI City Challenge 2023 Track 4

Rank Team ID F1-Score

1 33 0.9792

2 21 0.9787

3 (*) 13 0.8254

4 1 0.8177

5 23 0.7684

6 200 0.6571

Table 2: Effectiveness of various components of DACNet

Method F1-Score

YOLOv8 trained on original dataset <0.1

YOLOv8 trained on the augmented dataset 0.52

YOLOv8 trained on augmented dataset + Hand

Segmentation

0.77

YOLOv8 trained on augmented dataset + Hand

Segmentation + Selective Deblurring

0.81

YOLOv8 trained on augmented dataset + Hand

Segmentation + Selective Deblurring +

Retrospective Rectification

0.8254

4.3. Discussion

The 3 main contributions proposed in this paper

considerably improve the overall result of the pipeline. In

particular, the data augmentation enhances the accuracy of

the system by bridging the gap between standalone

synthetic data and real-life footage from a checkout

counter. We would also highlight the importance of

maintaining relative sizes between objects during training.

In addition, the rectification algorithm refines the object

detections by leveraging the temporal relationships and

various heuristics, leading to a substantial improvement in

the final result.

Despite the promising F1-score, it is worth noting that

the training data only consists of synthetic images. As the

project is deployed to a real-life platform, more data can be

collected during the process hence more accurate datasets

can be collected and trained on. Additionally, a possible

extension to this project would be integration with barcode

scanning to counter the ever-changing packaging and a vast

number of products in a retail store.

5. Conclusion

In this paper, we presented a robust pipeline for an

automated checkout system that utilizes the state-of-the-art

deep learning neural networks like YOLOv8 and

StrongSORT. The pipeline also addresses the challenges of

training with synthetic data, motion blur, and unstable

detection results. It uses some combinations of existing

methods as well as some novel algorithms to tackle the

above challenges, resulting in good prediction accuracy.

That ensures a smooth checkout experience for the

customers. And with our DACNet achieving a top-3 finish

in the 2023 AI City Challenge Track 4, it proves that it is a

strong foundation for a full-scale real-life checkout system

that could revolutionize the shopping experience for

consumers.

5284

References

[1] M. Broström, "Real-time multi-object tracking and

segmentation using Yolov8 with StrongSORT and OSNet

(Version 8.0)," [Computer software], DOI:

https://doi.org/https://zenodo.org/record/7629840

[2] YOLO by Ultralytics. (Version 8.0.0), Ultralytics. [Online].

Available: https://github.com/ultralytics/ultralytics

[3] Y. Du et al., “StrongSORT: Make DeepSORT Great

Again,” arXiv:2202.13514 [cs], Feb. 2023, Accessed: Mar.

01, 2023. [Online]. Available:

https://arxiv.org/abs/2202.13514#

[4] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli,

G. V. Hernandez, L. Krpalkova, D. Riordan, and J. Walsh,

“Deep learning vs. Traditional Computer Vision,” Advances

in Intelligent Systems and Computing, pp. 128–144, 2019.

[5] Lee, A.: Comparing deep neural networks and traditional

vision algorithms in mobile robotics. Swarthmore

University, 2015.

[6] Lohia, A.; Kadam, K.D.; Joshi, R.R.; Bongale, D.A.M.

Bibliometric Analysis of One-Stage and Two-Stage Object

Detection. Libr.Philos. Pract. 2021, 4910, 34

[7] P. Soviany and R. T. Ionescu, “Optimizing the trade-off

between single-stage and two-stage deep object detectors

using image difficulty prediction,” 2018 20th International

Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), 2018.

[8] X. Lu, Q. Li, B. Li, and J. Yan, “Mimicdet: Bridging the gap

between one-stage and two-stage object detection,”

Computer Vision – ECCV 2020, pp. 541–557, 2020.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich

feature hierarchies for accurate object detection and

semantic segmentation,” 2014 IEEE Conference on

Computer Vision and Pattern Recognition, 2014.

[10] R. Girshick, “Fast R-CNN,” 2015 IEEE International

Conference on Computer Vision (ICCV), 2015.

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:

Towards real-time object detection with region proposal

networks,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You

only look once: Unified, real-time object detection,” 2016

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[13] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018.

[14] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-yolov5:

Improved yolov5 based on transformer prediction head for

object detection on drone-captured scenarios,” 2021

IEEE/CVF International Conference on Computer Vision

Workshops (ICCVW), 2021.

[15] Wang, C. Y., Boschkovskiy, A., and Liao, H. Y. M. (2022).

YOLOv7: Trainable bagof-freebies sets new state-of-the-art

for real-time object detectors. arXiv preprint

arXiv:2207.02696. doi: 10.48550/arXiv.2207.02696

[16] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian

Sun. YOLOX: Exceeding YOLO series in 2021. arXiv

preprint arXiv:2107.08430, 2021.

[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar,

“Focal loss for dense object detection,” 2017 IEEE

International Conference on Computer Vision (ICCV), 2017.

[18] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y,

Berg AC (2016) SSD: single shot MultiBox detector. In:

Leibe B, Matas J, Sebe N, Welling M (eds) Computer

vision—ECCV 2016. Springer, Cham, pp 21–

37. https://doi.org/10.1007/978-3-319-46448-0_2.

[19] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple

online and realtime tracking,” 2016 IEEE International

Conference on Image Processing (ICIP), 2016.

[20] N. Wojke, A. Bewley, and D. Paulus, “Simple online and

realtime tracking with a Deep Association metric,” 2017

IEEE International Conference on Image Processing (ICIP),

2017.

[21] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo,

W. Liu, and X. Wang, “ByteTrack: Multi-object tracking

by associating every detection box,” Lecture Notes in

Computer Science, pp. 1–21, 2022.

[22] A. Dadashzadeh, A. T. Targhi, M. Tahmasbi, and M.

Mirmehdi, “HGR‐Net: A fusion network for hand gesture

segmentation and recognition,” IET Computer Vision, vol.

13, no. 8, pp. 700–707, 2019.

[23] Fanqing Lin, Brian Price, and Tony Martinez. Ego2hands: A

dataset for egocentric two-hand segmentation and detection.

In arXiv:2011.07252, 2020.

[24] L. Zhong, S. Cho, D. Metaxas, S. Paris and J. Wang,

"Handling Noise in Single Image Deblurring Using

Directional Filters," 2013 IEEE Conference on Computer

Vision and Pattern Recognition, Portland, OR, USA, 2013,

pp. 612-619, doi: 10.1109/CVPR.2013.85.

[25] Sada M M, Mahesh M G. Image deblurring techniques–a

detail review. Int. J. Sci. Res. Sci. Eng. Technol, 2018, 4: 15

[26] T. Yamaguchi, H. Fukuda, R. Furukawa, H. Kawasaki, and

P. Sturm, “Video Deblurring and super-resolution technique

for multiple moving objects,” Computer Vision – ACCV

2010, pp. 127–140, 2011.

[27] Su S, Delbracio M, Wang J et al (2017) Deep video-

deblurring. 2017 IEEE Conference on Computer Vision and

Pattern Recognition: pp. 1279–1288

[28] K. Zhang, W. Ren, W. Luo, W.-S. Lai, B. Stenger, M.-H.

Yang, and H. Li, “Deep image deblurring: A survey”

International Journal of Computer Vision, pp. 2103–2130,

2022.

[29] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C.

Chang, Y. Yao, L. Zheng, M. Shaiqur Rahman, A.

Venkatachalapathy, A. Sharma, Q. Feng, V. Ablavsky, S.

Sclaroff, P. Chakraborty, A. Li, S. Li, and R. Chellappa,

“The 6th AI City Challenge,” 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2022.

[30] J. Peng, C. Xiao, and Y. Li. RP2K: A large-scale retail

product dataset for fine-grained image classification.

arXiv:2006.12634, 2021.

[31] Pham, L. H. (2022). One: One Research Framework.

GitHub. https://github.com/phlong3105/one

[32] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[33] L. Zhang, S. Zhou, S. Stent, and J. Shi, “Fine-Grained

Egocentric Hand-Object Segmentation: Dataset, Model, and

Applications,” arXiv:2208.03826 [cs], Aug. 2022,

Accessed: Apr. 07, 2023. [Online]. Available:

https://arxiv.org/abs/2208.03826

5285

[34] MMSegmentation Contributors. (2020). OpenMMLab

Semantic Segmentation Toolbox and Benchmark [Computer

software]. https://github.com/open-

mmlab/mmsegmentation

[35] OpenCV. Open source computer vision library, 2015.

[36] L. Chen, X. Chu, X. Zhang, and J. Sun, “Simple Baselines

for Image Restoration,” arXiv:2204.04676 [cs], Aug. 2022,

Accessed: Mar. 07, 2023. [Online]. Available:

https://arxiv.org/abs/2204.04676v4

[37] N. Challenge, “REDS,” REalistic and Diverse Scenes

dataset realistic and dynamic scenes.

[38] G. Jocher, “ultralytics/yolov5,” GitHub, Aug. 21, 2020.

https://github.com/ultralytics/yolov5

5286

