
 

Abstract 

 

Automated checkout systems have become increasingly 

popular as the state-of-the-art deep learning models are 

efficient and accurate enough for this to become a reality. 

However, challenges still exist due to the differences 

between synthetic training data and real-life products, the 

blurred product images captured during the checkout 

process, and discontinuous detections due to product 

similarities or tracking misses. This paper presents a 

robust deep learning YOLO-based pipeline, DACNet, that 

counters the above challenges. During training, data 

augmentation involving overlaying training images onto 

expected backgrounds creates a more diverse and accurate 

training dataset. When inferencing, selective deblurring is 

also incorporated to enhance the clarity of the items to be 

recognized while maintaining efficiency. And to improve 

accuracy further, we introduced a retrospective checking 

algorithm that analyzes previous detections and corrects 

any inaccuracies due to flickering detections or incorrect 

tracking results. Together, this pipeline ensures a network 

that produces reliable training results and high prediction 

accuracies even in complex retail environments with 

multiple items present. The proposed method has been 

submitted to 2023 AI City Challenge by NVIDIA and 

achieved a top-3 finish on the test set A with an F1-score 

of 0.8254. Our code is open sourced here: 

https://github.com/cycv5/AICityChallenge. 

 

1. Introduction 

Powered by the recent development of deep learning 

neural networks, automated checkout systems are rising in 

popularity. The systems provide a method for efficient and 

accurate scanning and counting of products that enables a 

seamless shopping experience. Ideally, when retail items 

are placed in a designated area or moved across a camera, 

images are captured and analyzed. And each item in the 

images is recognized and counted in order to produce the 

final price for the customer. However, training such a 

neural network requires a large and diverse dataset which 

could be difficult to collect and organize. Therefore, 

synthetic data generated from 3D scans of retail products 

can provide a well-organized dataset containing a large 

number of images within a relatively short timeframe. 

Despite its efficiency, training on synthetic data poses 

multiple challenges to the real-life task of checking out 

customers. One of the main issues is the gap between the 

training images and real-life images captured during 

checkout. A deep learning network also needs to consider 

blurred images, unstable detections, and missed items due 

to the movements of the products. 

This paper presents a robust pipeline (DACNet) for 

training a deep-learning neural network and applying it in 

a retail checkout setting. It uses the YOLOv8 [1, 2] 

algorithm as the main detector and classifier of the retail 

items, and StrongSORT [1, 3] as the tracking algorithm.  

In short, the main contributions of this paper are as 

follows: 

- Experiments on Data Augmentation: Synthetic 

images are copied to a background that resembles 

the checkout counter, and minor adjustments are 

made to the products so that they look as close to 

real-life products as possible. The results are 

compared with direct training on the original 

images, proving that data augmentation plays a 

crucial role in training. 

- Selective Deblurring: Motion blur is one of the 

causes of inaccuracies during inferencing. A 

deblurring algorithm can reduce the blur 

considerably and improve the accuracy of 

classification. Due to the added complexity and 

processing time, only a few key frames from a video 

stream will be deblurred for a better prediction. 

- Retrospective rectification: Neural network 

detections have their imperfections. Items could 

have duplicate detections and false detections. A 

good post-processing algorithm needs to be in place 

to filter out the noises. The proposed algorithm 

checks the previously recorded items, specifically 

their timestamp, on-screen time, and class, to 

determine if the current recording of an item is valid 

or not. 

Together with accurate hand segmentations and region 

of interest (ROI) detection, the proposed method is robust 

and versatile. After training on 116,500 images from 116 
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classes of retail products, it is evaluated in the 2023 AI City 

Challenge Track 4. Compared to other state-of-the-art 

methods, DACNet obtained a top-3 finish with an F1-score 

of 0.8254. 

The rest of the paper is organized as follows. Section 2 

reviews the existing related works, Section 3 details the 

DACNet pipeline and algorithms, Section 4 reports the 

experimental results and discussions, and finally, Section 5 

is the conclusion of this paper.  

2. Related Works 

We frame the AI City Track 4 challenge as a DTC 

(Detect-Track-Count) problem. This section introduces 

previous work done on the DTC problem and how we 

bridge the gap in the context of retail objects.  

2.1. Object Detection  

Object detection involves the identification and 

localization of target objects from background images or 

videos and is therefore key for this challenge. Traditional 

computer vision algorithms such as SIFT (Scale-Invariant 

Feature Transform), SURF (Speeded-Up Robust Features), 

and BRIEF (Binary Robust Independent Elementary 

Features) rely heavily on extracted feature descriptors and 

are used with traditional machine learning algorithms such 

as SVM and KNN. [4] With the rise of deep learning and 

the availability of larger datasets, deep learning-based 

computer vision models such as CNN tend to outperform 

traditional algorithms. [4, 5] Therefore, we focus on the 

review of these models such as YOLO (You Only Look 

Once), RetinaNet, R-CNN, and SSD.  

Two popular approaches to object detection are one-

stage and two-stage models. One-stage models such as 

YOLO, SSD, and EfficientDet require a single step in 

predicting the location and type of the object while two-

stage models such as R-CNN use an RPN (Region Proposal 

Network) to generate the ROI (Region of Interest) in the 

first stage and refine them in the second stage with 

classifier and bounding box regression. [6] One-stage 

detectors tend to be faster but less accurate than two-stage 

detectors [7, 8].  

R-CNN proposed by Girshick et al. [9] is a two-stage 

model combining region proposals with CNN features 

reaching an mAP of 53.3% in the VOC 2012 dataset. Fast 

R-CNN [10] and Faster-RCNN [11] further develop the 

idea by improving the speed and accuracy of predictions 

and proposing RPN to share full-image convolutional 

features and decrease the computation bottleneck. 

YOLO is a one-stage, unified, real-time model proposed 

by Redmon et al. [12] that uses a single NN to predict 

bounding boxes and probabilities. There are many 

extensions and improvements on the original YOLO model 

such as YOLOv3 [13], YOLOv5 [14], YOLOv7 [15], 

YOLOX [16], and most recently, YOLOv8 by Ultralytics 

[2].  

RetinaNet [17] and SSD [18] are two other popular one-

stage models. Lin et al. trained the RetinaNet with a focal 

loss that retains the speed of one-stage detectors and 

surpasses the accuracy of two-stage detectors. SSD uses a 

similar single-shot detector with multi-scale feature maps 

and convolutional predictors.  

2.2. Tracking  

SOT (Single object tracking), MOT (Multiple object 

tracking), and OOT (Online object tracking) are common 

tracking tasks. SORT (Simple online real-time tracker) is 

the most suitable method for this challenge. SORT 

combines common tracking algorithms including Kalman 

Filter and Hungarian algorithm with a high FPS of 260 Hz 

[19]. DeepSORT [20] mitigates occlusion and missed 

frames of the tracked object with a deep association metric 

learned by a CNN. StrongSORT [3] further improves on 

the missing association and detection of DeepSORT by 

introducing an appearance-free link model and Gaussian-

smoothed interpolation, achieving state-of-the-art for 

many public benchmarks. ByteTrack [21] is another MOT 

model which associates every detection box and uses 

similarities between tracklets to reduce false positives and 

negatives for low-score detection bounding boxes.  

Figure 1: System Architecture Diagram  
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2.3. Hand Segmentation 

To correctly detect and track objects, it is crucial to 

avoid false negatives due to occlusions. The retail objects 

are often occluded by hands during checkout. Therefore, 

segmenting and inpainting hands would improve the 

performance of our model. CNN is widely used in this 

context. Dadashzadeh et al. proposed a two-stage CNN-

based HGR-Net which localizes the hand region and 

segmentation in the first stage and identifies the hand 

gesture in the second. [22]. There are also large-scale 

RGB-based datasets for robust hand segmentation and 

detection training such as Ego2Hands [23]. 

2.4. Deblurring 

Video deblurring is a key step to improving detection 

accuracy. Motion deblurring and denoising methods 

consist of more traditional filtering techniques such as the 

Radon transform and directional filters [24], Haar Wavelet 

transform [25], super resolution techniques [26], as well as 

deep learning-based methods which use CNN and data-

driven approaches to accumulate information between 

frames [27, 28].  

2.5. Retail Object Recognition Datasets 

Public datasets of retail object recognition fuel the 

development of better models and techniques. The AI City 

Challenge [29] provides 116,500 synthetic training data 

under different lighting and angle conditions from more 

than 100 types of retail items. Other datasets such as the 

RP2K [30] also consist of a large number of products and 

rich annotations. 

2.6. Bridging the Gap 

Our research aims to bridge the gap between theoretical 

models and their practical applications in this challenge. 

We evaluate, combine, and improve on the state-of-the-art 

models and techniques for the DTC problem.  

3. DACNet 

Our model, DACNet (Deep Automated Checkout 

Network) is trained and evaluated based on the architecture 

diagram shown in Figure 1. Our software stack consists of 

3 components: preprocessing, training, and postprocessing.  

In preprocessing, we address the main challenge of the 

domain gap between the synthetic training data and the real 

inference test videos. The simulation-to-real transfer aims 

to augment the retail products onto realistic generated 

background images under various lighting conditions, 

angles, and orientations. 

We choose to deploy YOLOv8 as our main model. The 

training process takes in a YOLOv8 large model, tunes the 

hyperparameters with the Adam optimizer, and uses 

ensemble learning to better perform inference. 

In postprocessing, we have 6 modules including hand 

segmentation and inpainting, tray detection, selective 

deblurring, object tracking, retrospective rectification, and 

non-linear frame shifting to transform the detection results 

to the output text file containing the object class ID and 

time of appearance. 

3.1. Data Augmentation for Training 

The training data is provided in 116,000 synthetic 

images generated by Unity. It is key to bridging the domain 

gap between the simulated training data and the real-world 

test data. First, to ensure the robustness and diversity of the 

products in the training data. We perform augmentation by 

randomly changing the brightness, reflectivity (to simulate 

different lighting conditions), size, and orientation of the 

input items, as Figure 2 shows.  

  Inspired by the One Research Framework [31], random 

backgrounds with rotations, horizontal, and vertical 

reflections are generated to fit multiple augmented items 

onto the same image. This bridges the domain gap between 

synthetic and real-world data and reduces the total number 

of training images and potential training time. Random 

items are placed onto the central region of the background 

with potential overlaps in between to simulate the 

occlusion in real life. The coordinates and size of the 

bounding boxes are extracted from the segmentation masks 

Figure 2: Augmented data VS original synthetic data 
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provided by the original dataset. 

 The randomness and diversity of the training data 

augmentation mean we could train multiple models with 

different versions of the augmented data and perform 

ensemble learning with different models.  

 Lastly, the augmented data is divided into training and 

validation sets and converted into the YOLO data format 

for training. 

3.2. Training the Model  

The training hyperparameters of our model including 

learning rate, batch size, and dropouts are fine-tuned by 

gradient-based stochastic optimizer - Adam [32]. Each 

model is trained until the validation loss converges and the 

training loss plateaus. The independently trained models 

with different variations of augmentation are then 

combined using ensembled learning and averaging the 

output confidence score as the final result. 

3.3. Preprocessing before Inferencing 

Before processing a frame from an input video stream 

through the backbone classifier, two preprocessing steps 

are taken – hand segmentation and ROI detection. 

When a customer checks out an item, their hands may 

inadvertently come into contact with the products. This 

could cause additional noises that impact the prediction 

accuracy. To mitigate this, we first remove the hands by 

masking them with a color that is similar to the 

background. This part of the algorithm is implemented 

using EgoHOS [33], an egocentric hand segmentation 

algorithm based on MMSegmentation [34]. EgoHOS is 

trained on a large set of images containing two hands and 

is able to output a mask of the hands. In our model, a new 

class, namely HandSegmentor is created to handle the hand 

segmentation module. When initialized, it reads the pre-

trained model on hand segmentation [33] and prepares the 

MMSegmentation network for inferencing. Each frame 

will be processed by the HandSegmentor and output a 

mask ( ) that represents the hands area with non-zero 

entries. Then all the non-zero entries are collected and on 

the original input images, pixels on those indices will be 

replaced by a predefined color that is close to the 

background (e.g., [168,168,168]). The result of the hand 

segmentation will be a tensor that has the same shape as 

the original ( ). 

The next step is to recognize the region of interest (ROI), 

which is crucial to accurately count only the products that 

are being checked out. In 2023 AI City Challenge Track 4, 

this area is defined by a white tray. The proposed method 

uses only efficient mathematical methods provided by 

OpenCV [35] and is applicable to any ROI detection task 

with a relatively clear boundary. Initially, a default ROI is 

input to the algorithm as the fail-safe result. Then the 

detection starts with turning the image into grayscale and 

applying Gaussian Blur to it. This removes a significant 

number of noises created by lighting and different shades 

of colors. A Canny tool is used next to find the edges of the 

image. Then, an image gradient is calculated using Scharr 

derivatives to highlight the edges for the final step, flood 

fill [35]. OpenCV provides a flood fill algorithm that fills 

the geometry (up until an edge is met) from an input 

coordinate and returns the resulting rectangle coordinates, 

representing the ROI. The choice for the input coordinate 

is based on real-life scenarios, it needs to be within the ROI 

itself. In our algorithm, we decided to go with the middle 

of the input video frame first and move to a slightly 

different location for a second try if the first attempt is 

unsuccessful (the bounding box is unreasonably 

small/large given the input image). If the second attempt is 

also unsuccessful, we would output the default estimate of 

the ROI. Note that it is unnecessary to do ROI detection 

every frame as the ROI rarely changes. Thus, we only 

update the ROI every frame until a non-default, calculated 

bounding box is found, and after that, it will update every 

5 seconds with any new calculated result. 

3.4. Image Deblurring 

Motion blur is another leading cause of wrong or missed 

detections of products. Depending on how a product is 

moved into and out of the camera view, some images 

captured could be blurry. A fast and powerful deblurring 

algorithm can help significantly. 

NAFNet [36] is one of the state-of-the-art deep learning 

algorithms that do image restoration efficiently. It 

eliminates the need for non-linear activation functions in a 

network. Instead, they are replaced with multiplication or 

Figure 3: Hands are masked by a color similar to the background.

   

Figure 4: A comparison between the original video frame and the 

deblurred version by NAFNet. 
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simply removed. The architecture is mainly a 

convolutional neural network, with a simplified channel-

based attention mechanism and the Simple Gate (an 

operation that replaces regular non-linear activations). 

We used a pre-trained image deblurring model on the 

REDS (Realistic and Dynamic Scenes) dataset [37] for our 

purpose. And applying the NAFNet before sending the 

images to the classifiers enables it to recognize some items 

that were previously unrecognizable. Again, we need to 

keep in mind that deblurring takes a large amount of time 

and space complexity despite the efficient algorithm by 

NAFNet. Therefore, a selective approach is used. Every 

time a new detection is found by the backbone algorithms 

that is within the ROI, the deblurring function will be 

called once. This ensures that the number of times the 

deblurring function is called is O(n) where n is the number 

of items being scanned. This approach keeps the majority 

of the frames at a low processing time while only around 

1% of the frames will be deblurred. Once the deblurring is 

applied to a frame, its classification result will be weighted 

higher in the resulting dictionary (introduced in Section 

3.5) due to its clarity. This will impact the final calculations 

in favor of the classification made with a deblurred image. 

3.5. Backbone Algorithms 

The backbone of our system consists of two major parts, 

a YOLOv8 classifier, and a StrongSORT tracking 

algorithm [3]. A video frame first goes into our trained 

YOLOv8 model, as with all the YOLO models, it only 

takes one forward pass to determine the locations and types 

of everything it sees in the frame. For our use case, 116 

categories for classification, we decided to utilize a large 

YOLOv8 variant.  With a single Tesla T4 GPU, the 

inference speed for YOLOv8l alone is around 50ms. 

Compared to the classic YOLOv5 [38], The v8 model 

performs 7.96% better in terms of �������� with a similar 

processing speed (both with the large variant and on the 

COCO dataset). One of the benefits of using YOLOv8 is 

its state-of-the-art architecture [2]. For instance, YOLOv8 

has anchor-free detections. It predicts the objects directly 

on the center points of them instead of from known anchor 

boxes. Those anchor boxes could be misleading, especially 

used on custom datasets like ours. Additionally, there are a 

few structural changes to make this new YOLO model 

efficient and accurate. 

Once the YOLOv8 network has its prediction results, it 

will be fed into the StrongSORT algorithm along with the 

original image. StrongSORT is an improved DeepSORT 

algorithm, with around 8.5% improvement in IDF1 on the 

MOT20 dataset with similar processing speed. One of the 

main improvements for StrongSORT is its ability to 

recognize and tackle movements of objects. StrongSORT 

first uses an ECC (enhanced correlation coefficient 

maximization) to account for motioned noise caused by 

movements. Then a modified Kalman filter that 

emphasizes non-linear motions is used to calculate the 

weightings during each update across frames. Lastly, for 

object association, StrongSORT directly includes the 

motion information (in addition to appearance) for more 

accurate tracking. Overall, it results in a good tracking 

algorithm for our use case. 

With the two backbone algorithms, we are able to 

generate a result dictionary in the format of:  

 

{unique_index:(timestamp_in_frame, {class: count})}. 

 

Within the dictionary, keys (unique_index) represent the 

unique indices that are assigned to each tracked object in 

the input video of a checkout scenario. The values in this 

dictionary are tuples. The first element in the tuple is the 

time stamp (timestamp_in_frame) of the first appearance 

inside the ROI of this object indicated by the unique_index. 

The second element is again a dictionary object where the 

keys are predicted classes of this object and the values are 

the number of frames in which this object is classified as 

that class. Classes with higher frame counts indicate a 

higher probability that this particular object belongs to this 

class. Classification on deblurred images will receive a 

boosted frame count (e.g., 1 deblurred frame classification 

counts as 5 regular frames). Note that there could be 

multiple entries in this inner dictionary as there could be 

incorrect classifications. 

3.6. Retrospective Rectification and Output 

With the resulting dictionary, a final algorithm is applied 

to it for a better and more consistent result. This algorithm 

can be separated into 2 stages: backward correction and 

forward recording. Both backward and forward algorithms 

process the resulting dictionary from the previous step 

hence it does not need to look at each frame of the input 

video, reducing the complexity significantly. The 

dictionary ordering is kept in a separate list object. A 

“detection” is defined by an entry in the resulting 

dictionary. It has a unique index as its key, one timestamp, 

and possibly multiple classes and frame count for each 

class. In our rectification algorithm (backward and forward 

algorithms), for most parts, we only look at the class with 

the maximum frame count in each detection. 

The backward stage starts with the last detections in the 

resulting dictionary going backward. The idea is for an 

unstable detection, the tracker could lose track of the item 

at some point during the time that the item is within ROI. 

The item could be briefly categorized as something else for 

a brief time and went back to its correct classification, but 

the tracker could think of it as a new, unseen item. For each 

new detection, we would retrospectively check the 

previous detections. When previous detections within a 

certain range (and within a certain timestamp) as the exact 
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same classification, we would consider them as one entry. 

The algorithm would add the frame count of the later 

detections to the previous detections and set the later 

detections’ frame count to 0. See Algorithm 1 for details. 

The next step is the forward recording (Algorithm 2), 

which will be the step where the result of the checkout is 

generated. To avoid extraneous detections, there will be a 

threshold calculated for a detection to be valid. This 

threshold is based on the average speed (in frames) of all 

the items moving across the field of view in the input video, 

upper and lower bounds are set (arbitrarily and subject to 

finetuning) to ensure a more generalizable result. The 

average speed is calculated per video or checkout session.  

Checkout sessions in real life can easily be segmented by 

payments from the customers. With the forward algorithm, 

it loops through the result dictionary, and with any 

significant detections (frame count larger than the 

threshold defined above), it will check if the same item is 

recorded already, determined by the previous recorded 

items and timestamp. If the current item has not yet been 

recorded, it will add a new entry to the final result of this 

checkout session. 

 

Algorithm 1: Backward Checking 
1 for i from (length_result_dict – 1) to 0: 

2 cur_tstamp, cls_dict = timestamp and classes from   

    current detection i 

3     max_cls = max frame count class in cls_dict 

4     for 3 previous detections in result_dict (if exists): 

5         prev_tstamp, prev_cls_dict = timestamp and    

            classes from previous detection 

6         prev_max_cls = max frame count class in    

            prev_cls_dict 

7         if max_cls == prev_max_cls and (cur_tstamp –  

            prev_tstamp – prev_cls_dict[pre_max_cls]) <  

            threshold: 

8             prev_cls_dict[pre_max_cls] +=    

                cls_dict[max_cls] 

9             cls_dict[max_cls] = 0 

10             break 

 

Algorithm 2: Forward Recording 
1 for i from 0 to (length_result_dict – 1): 

2 cur_tstamp, cls_dict = timestamp and classes from   

    current detection 

3     max_cls = max frame count class in cls_dict 

4     if cls_dict[max_cls] > threshold: 

5         if max_clss == previous recorded class: 

6             check the timestamp difference, write to output                

                file if it is larger than 18 frames else skip 

7         else: 

8             write to output file 

9         update previous recorded class according to the 

current detection 

 

Optionally, one more step can be added before writing 

to the resulting file. In our use case, we deliberately added 

paddings to the ROI to have a more generous detection area 

because we cannot expect customers to always fit the 

products exactly inside the ROI area within the camera 

view. Although that gives fewer misses for detections, it 

does cause the recorded timestamp to be earlier than it 

should be. This does not affect our rectification algorithms 

as they only care about the timestamp differentials instead 

of the absolute timings of the product recognitions. But for 

a better, more accurate timestamp, a non-linear shift can be 

applied to the final result. Since the resulting dictionary 

from the backbone algorithms has the frame count from 

each detection, we know the speed for each item going 

across the ROI. Based on this speed, we added a timestamp 

padding to the result, more specifically, around 1/5 of the 

time it spends within the ROI. 

4. Experiments & Discussion 

4.1. Setup 

The models are trained on the hardware platform with 2 

NVIDIA GeForce RTX 3090 GPUs with 24 GB dedicated 

Figure 5: Loss, Precision, Recall, and mAP curves for YOLOv8 training. 

   

5283



RAM each. The CPU of the platform is Intel (R) Core (TM) 

i9-9980XE @ 3.00GHz. 

4.2. Experiments and Result 

The preliminary result of the proposed DACNet is tested 

on test set A of the 2023 AI City Challenge Track 4. It is 

evaluated in F1-scores. Each detection from the input test 

video needs two pieces of information: class and timestamp 

(in the input video). True positives (TP) are detections with 

the correct classes and timestamps. False positives (FP) are 

detections of products recorded in the final output yet not 

actually present in the test video. Lastly, false negatives 

(FN) are missing detections of items that appeared in the 

video. 

 

                                    (1) 

 

We first conducted a simple experiment on the original 

synthetic dataset provided by the 2023 AI City Challenge 

with the segmentation masks. We aimed to train a 

YOLOv8 network for instance segmentation. However, the 

overall result was not satisfactory (F1-score < 0.1). The 

instance segmentation task added too much complexity in 

terms of localization which was unnecessary given our 

final objective. Also, the original synthetic images have 

two major disadvantages: out of context and out of scale. 

The synthetic training data has random backgrounds which 

caused difficulties for the model when it was tested with 

the test set. Furthermore, the sizes of products were ignored 

as they were all stretched to 640*640 for our training. 

The above problems can be addressed through our data 

augmentation step (Section 3.1). With the augmented 

training data, the result improves drastically. Without the 

deblurring and the retrospective rectification step, the test 

accuracy is already better, with an F1-score above 0.5. 

Given this promising result, we started training for more 

epochs. Convergence is reached at around 100 epochs as 

shown in Figure 5, and we decided to employ an early-

stopping strategy at 100 epochs. Adding the full pipeline to 

the test, the model achieved an F1-score of 0.8254, which 

is the 3rd best result in the public leaderboard of 2023 AI 

City Challenge Track 4 as shown in Table 1. The 

progression of our experimental result is recorded in Table 

2, note that some recorded F1-scores are based on partial 

test sets. 

 
Table 1: Top teams in AI City Challenge 2023 Track 4 

Rank Team ID F1-Score 

1 33 0.9792 

2 21 0.9787 

3 (*) 13 0.8254 

4 1 0.8177 

5 23 0.7684 

6 200 0.6571 

 
Table 2: Effectiveness of various components of DACNet 

Method F1-Score 

YOLOv8 trained on original dataset <0.1 

YOLOv8 trained on the augmented dataset 0.52 

YOLOv8 trained on augmented dataset + Hand 

Segmentation 

0.77 

YOLOv8 trained on augmented dataset + Hand 

Segmentation + Selective Deblurring 

0.81 

YOLOv8 trained on augmented dataset + Hand 

Segmentation + Selective Deblurring + 

Retrospective Rectification 

0.8254 

4.3. Discussion 

The 3 main contributions proposed in this paper 

considerably improve the overall result of the pipeline. In 

particular, the data augmentation enhances the accuracy of 

the system by bridging the gap between standalone 

synthetic data and real-life footage from a checkout 

counter. We would also highlight the importance of 

maintaining relative sizes between objects during training. 

In addition, the rectification algorithm refines the object 

detections by leveraging the temporal relationships and 

various heuristics, leading to a substantial improvement in 

the final result. 

Despite the promising F1-score, it is worth noting that 

the training data only consists of synthetic images. As the 

project is deployed to a real-life platform, more data can be 

collected during the process hence more accurate datasets 

can be collected and trained on. Additionally, a possible 

extension to this project would be integration with barcode 

scanning to counter the ever-changing packaging and a vast 

number of products in a retail store. 

5. Conclusion 

In this paper, we presented a robust pipeline for an 

automated checkout system that utilizes the state-of-the-art 

deep learning neural networks like YOLOv8 and 

StrongSORT. The pipeline also addresses the challenges of 

training with synthetic data, motion blur, and unstable 

detection results. It uses some combinations of existing 

methods as well as some novel algorithms to tackle the 

above challenges, resulting in good prediction accuracy. 

That ensures a smooth checkout experience for the 

customers. And with our DACNet achieving a top-3 finish 

in the 2023 AI City Challenge Track 4, it proves that it is a 

strong foundation for a full-scale real-life checkout system 

that could revolutionize the shopping experience for 

consumers. 
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