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Abstract

Motion Prediction (MP) of multiple surrounding agents
in physical environments, and accurate trajectory fore-
casting, is a crucial task for Autonomous Driving Stacks
(ADS) and robots. Current methods for MP use end-to-end
pipelines, where the input data is usually a HD map and
the past trajectories of the most relevant agents; leveraging
this information is a must to obtain optimal performance.
In that sense, a reliable Autonomous Driving (AD) system
must produce fast and accurate predictions to ensure traffic
safety.

In this work, we tackle Multi-Agent Motion Prediction
using an end-to-end pipeline that combines Deep Learning
(DL) and heuristic scene understanding. Our model uses
as input the map of the scene, the past trajectories of the
agents, and additional information about the scene geome-
try and agents e.g., type of agent, lane distribution.

We design our model using powerful attention mecha-
nisms with GNNs to enhance agents interactions, heuristic
proposals as preliminary plausible information and a mo-
tion refinement module to further improve temporal consis-
tency. We achieve SOTA results on the Argoverse 2 Mo-
tion Forecasting Benchmark reducing in millions of param-
eters previous methods such as GANet, and improving over
LaneGCN. Our code is available at https://github.
com/Cram3r95/argo2goalmp.

1. Introduction
Autonomous Driving (AD) is a trendy research topics in

academia and industry due to its real-world impact. Assum-
ing the surrounding agents have been detected and tracked
i.e. we have their past trajectories during a time interval,
the core task of the perception layer is Motion Prediction
(MP), that is, predicting the future trajectories [2–4] of the
surrounding traffic agents in the environment -also known
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Figure 1. Complex roundabout scenario in Argoverse 2 [1] Mo-
tion Forecasting dataset. We represent: our vehicle (ego), the focal
agent, the relevant agents in the scene, and other agents. We can
also see the ground-truth trajectory of the target agent, our mul-
timodal predictions (with the corresponding confidences). We
also highlight the most important topology of the road, such as
pedestrian crossing and boundaries mark type.

as actors- given the past on-board sensor and map informa-
tion, taking into account the corresponding traffic rules, the
scene, and social interaction among the agents. This is es-
sential for the AV to make safe and reasonable decisions in
the subsequent planning and control module.

These predictions are typically multi-modal i.e. given
the past motion of a particular vehicle and its surround-
ing scene, there may exist more than one possible future
behaviour -also known as modes-. Therefore, MP models
need to cover the different choices that a driver could make
(e.g. going straight, turning, accelerate) as a possible dis-
crete trajectory in the immediate future, or in a probabilistic
manner [5, 6] (e.g. potential area of movement heatmaps).

Traditional methods for motion forecasting [7–9] are
based on physical kinematic constraints and road map in-
formation with heuristics. These approaches fail to capture
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the rich behavior strategies and interaction in complex sce-
narios, in such a way they are only suitable for simple pre-
diction scenes and short-time prediction tasks [10].

Moreover, the advances in Deep Learning (DL) and
the recent emergence of large-scale datasets with high-
definition maps (HD maps) allow us to understand and cap-
ture the complexity of a driving scenario using data-driven
methods [11–13] and achieve the most promising state-of-
the-art results by learning such intrinsic rules, and agent in-
teractions. Thus, the core challenge for MP resides in how
to effectively compute and integrate the surrounding envi-
ronment, both in terms of agents and map information, to
predict multiple reliable trajectories.

Methods based on Graph Neural Networks (GNNs) [14]
[15] have achieved SOTA results on the most relevant
benchmarks for Motion Prediction, though these methods
might lack interpretability and control regarding the graph-
based modules [16]. In this work we focus on attention
transformer-based approaches such as [16–18].

In these DL models, an encoder usually takes into ac-
count: (i) multiple-agents history states (position, veloc-
ity, etc.), and (ii) a High Definition (HD) Map [19] that
includes: intersections, traffic lights and signals, multi-
channel codification or complex vectorization [5, 15]. Note
that obtaining and fusing this information (e.g. actor-to-
actor, map-to-actor) is a research topic by itself [15, 20, 21]
and a core part in the AD pipeline. Here we identify a bot-
tleneck for efficient real-time applications [7, 8], as usually,
more (complex) data-inputs implies higher model complex-
ity and inference time [22].

Predicting the future trajectories of the agents without
considering their nature might not be optimal (e.g. predict-
ing on a pedestrian, a cyclist or a car using the same logic).
For this reason, we integrate additional features related to
the type and properties of agents. Moreover, we also in-
clude heuristic scene understanding to constrain the model
predictions towards the real scene geometry (e.g. plausible
centerlines and lanes).

Most state-of-the-art methods require an overwhelmed
amount of information as input, specially in terms of the
physical context -HD maps-; this usually implies more
model complexity, and these can be inefficient in terms of
computation [19, 22, 23]. However, we reduced notably the
complexity of our model w.r.t previous methods such as
GANet [24] to avoid these possible contraints.

In this paper, we aim to achieve accurate trajectory fore-
casting, yet, using light-weight transformer-based models.
We make the following contributions:

1. We present a SOTA method on the Argoverse 2 Motion
Forecasting Benchmark.

2. Our model uses various attention mechanisms with

GNNs, and a motion refinement module to further im-
prove temporal consistency.

3. In comparison to previous methods that rely only on
past trajectories and HD map, we additionally use in-
formation about the agents (e.g. type of agent) and
the scene geometry (e.g. lane distribution and possible
goal points).

4. Our method reduces in millions of parameters previ-
ous methods such as GANet [24], and improves over
LaneGCN [15].

5. Finally, we provide an open-source framework for MP.

2. Related Work
One of the crucial tasks that Autonomous Vehicles (AV)

must face during navigation, specially in arbitrarily com-
plex urban scenarios, is to predict the behaviour of dynamic
obstacles [4, 25–27].

Traditional methods [10, 25] usually consider only
physics-related factors (e.g. the velocity and acceleration
of the target vehicle) and road-related factors (predictions
must be in the proper lane), and are only suitable for short-
time prediction tasks [10] and simple traffic scenarios, e.g.
constant velocity in a highway (Constant Turn Rate Veloc-
ity, CTRV) where only a single path is allowed.

Recently, Learning-Based MP [3,6,12,20,28–31] have
become increasingly popular since they are able not only
to take into account these above-mentioned factors but also
consider interaction-related factors (like agent-agent [32],
agent-map [12] and map-map [15]) in such a way the al-
gorithm can adapt to more complex traffic scenarios (inter-
sections, sudden breaks and accelerations, etc). SoPhie [2]
is one of the early works on social interactions modelling
and forecasting. Methods based on Graph Neural Networks
(GNNs) [14, 15, 21] have shown very promising results.
MultiPath [13] uses ConvNets as encoder and adopts pre-
defined trajectory anchors to regress multiple possible fu-
ture trajectories. HOME [5, 14] presented a novel repre-
sentation for multi-modal trajectory prediction, where the
model takes as input the context (HD map) and history of
past trajectories, and generates a 2D heatmap of the agent’s
possible future trajectories. GoalNet [33] identifies possi-
ble goal points i.e. potential per-agent endpoints, and uses
a prediction head for each. In this direction, TNT [31]
first samples potential goal points along the lane and gen-
erates trajectories conditioned on the high-scored goals.
DenseTNT [34] also proposes a trajectory prediction model
to output a set of trajectories from a set of inferred goal
candidates. However, even DL methods struggle to model
accurately the multi-modal nature of the trajectories [10].

A fundamental piece in MP is the HD map, methods
usually process the map using rasterization and obtaining a
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multi-channel image with the information encoded though
the different channels [5]. Usually this processing is done
using a CNN as feature extractor. IntentNet [12] uses
a CNN-based detector to extract features from rasterized
maps. MultiPath [13] uses a “Scene CNN” to extract mid-
level features. Nevertheless, these CNN-based methods suf-
fer from expensive computation when extracting features of
graph-structured maps. Moreover, they are limited by the
receptive field of the CNN e.g. local kernels struggle to pro-
cess long lanes. VectorNet [22] is one of the first works in
this direction, the authors propose to encode map elements
and actor trajectories as polylines and then uses a global
interactive graph to fuse the actors motion histories, maps,
and interactions. We find especially related LaneGCN [15],
a method that constructs a map node graph and proposes a
novel graph convolution. On top of that, we explore to in-
clude physics-based heuristic methods to add a preliminary
plausible future area in an interpretable way.

In terms of actors interactions, we make use of Graph-
based methods [21], which construct graph-structured rep-
resentations from the HD maps, preserving the connectivity
of lanes, and therefore the geometry of the scene.

We use as baseline method Wanget al. GANet [24]. This
work combines LaneGCN [15] map processing with a goal
area prediction to ensure the predicted multi-modal trajec-
tories are plausible.

Datasets Large-scale annotated datasets have been pro-
posed to impulse the research on the MP task. The Waymo
Open Motion Prediction [35] and NuScenes Prediction [36]
datasets offer thousands of real driving scenarios and ex-
haustive annotations.

In this work, we focus on the Argoverse 2 [1] Motion
Forecasting dataset and benchmark 1, which improves the
previous one by spanning +2000km over six different cities.
The Argoverse 2 dataset is a high-quality motion forecast-
ing dataset, the real driving scenario are paired with the
corresponding local HD map. Compared to Argoverse 1,
the scenarios in Argoverse 2 are approximately twice longer
and more diverse.

3. Method
Considering the trade-off between curated input data and

complexity, we aim to achieve competitive results on the
Argoverse 2 Motion Forecasting Benchmark [1] using: (i)
the agents past trajectories, additional metadata and their
corresponding interactions, (ii) HD Map graph information
and (iii) a simplified representation of the agents feasible
area as an extra input, which we mention as heuristic pro-
posals. In both map inputs (HD Map graph and heuristic

1https://eval.ai/web/challenges/challenge-page/
2006/overview

proposals) we include topological, geometric and semantic
information to compute the physical context. Fig. 2 shows
an overview of our final approach.

Formulation. Given a sequence of past trajectories
aP = [a−T ′+1, a−T ′+2, ..., a0] for an agent, we aim to
predict its future steps aF = [a1, a2, ..., aT ] up to a fixed
time step T . Running in a specific traffic scenario, each
actor will interact with static HD maps m and the other dy-
namic actors. Therefore, the probabilistic distribution that
we want to capture is p(aF |m, aP , a

O
P ), where aOP denotes

the other actors’ observed states. The output of our model
is AF = {akF }k∈[0,K−1] = {(ak1 , ak2 , ..., akT )}k∈[0,K−1] for
each actor, while motion forecasting tasks and subsequent
decision modules usually expect us to output a set of trajec-
tories. TNT [31]-like methods’ distribution can be approxi-
mated as∑

τ∈T (m,aP ,aO
P )

p(τ |m, aP , a
O
P )p(aF |τ,m, aP , a

O
P ) (1)

where T (m, aP , a
O
P ) is the space of candidate goals de-

pending on the driving context. However, the map space
m is large, and the goal space T (m, aP , a

O
P ) requires care-

ful design. In that sense, some methods expect to ac-
curately predict the actor motion by extracting good fea-
tures. For example, LaneGCN [15] tries to approximate
p(aF |m, aP , a

O
P ) by modeling p(aF |Ma0 , aP , a

O
P ), where

Ma0 is a ”local” map features that is related to the actor state
a0 at final observed step t = 0. To extract Ma0

, they use a0
as an anchor to retrieve its surrounding map elements and
aggregate their features. As stated by [24], computing the
local map information is only a part of the solution, but also
proposing preliminary guidance for the model in a heuristic
way, as well as calculating the goal area maps information
using DL, may be of great importance for accuracy trajec-
tory prediction. Then, our future probability distribution is
enhanced by these preliminary preprocessed proposals and
predicted goals as anchors to explicitly aggregate their sur-
rounding map features as goal areas.

3.1. Preprocessing

As proposed by multiple methods [15] [37], we consider
only the vehicles that are observable at t=0, handling those
agents that are not observed over the full sequence spectrum
(observation length = obslen + prediction length = predlen)
by concatenating a binary flag bti that indicates if the agent
is padded or not. In particular, we filter the static elements
and track fragments scored by Argoverse 2 to get only the
most relevant traffic agents, reducing the number of agents
to be considered in complex traffic scenarios. To further
leverage the symmetries of the problem, we employ a scene
representation that is agnostic about the translation of the
global coordinate frame as well as rotation invariant since
we translate and rotate both the map and social coordinates
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Figure 2. Overview of our Motion Prediction pipeline. We distinguish: 1) Social Encoder, which uses the agent past trajectories (relative
displacements and additional metadata such as the type (e.g. car, cyclist, pedestrian) and category, from less to more important) and the
corresponding heuristic lane proposals to compute the social features, 2) Map Encoder, that constructs a lane graph from the HD Map
and uses a LaneConv operator [15] to extract lane node features, 3) Fusion Cycle, responsible for fusing agents and map latent features, 4)
Goal Areas estimation, to predict some goals and their surrounding (area) features are aggregated to the agents, 5) Multimodal Decoder,
which uses the latent actors with deep area context to generate reliable multi-modal predictions and 6) Motion Refinement, in charge of
enhancing the quality of the future trajectories taking into account the past trajectories, actors latent features and preliminary predicted
trajectories

considering the origin and orientation to align with x-axis
are the features of the focal track at timestep obslen. More-
over, instead of using absolute 2D-BEV (xy plane), the input
for the agent i is a series of relative displacements:

∆νt
i = νt

i − νt−1
i (2)

Where νt
i represents the state vector (in this case, xy po-

sition of the agent i at timestamp t). We additionally com-
pute and codify the object type (bus, pedestrian, vehicle, cy-
clist) and track category (unscored, scored and focal track)
as additional metadata.

In terms of HD Map graph preprocessing, we follow the
same principles than other well-established baselines [15]
[24] by adopting simple form of vectorized map data as our
rep- resentation of HD maps. In this case, the map data is
represented as a set of polylines (lanes) and their connec-
tivity, where each lane contains a centerline (sequence of
2D Bird’s Eye View points), arranged following the lane di-
rection. For any two lanes which are directly reachable, 4
types of connections are given: predecessor, successor, left
neighbour and right neighbour.

Heuristic Proposals In order to compute the heuristic
proposals for each agent, first of all we filter the trajectory
using Least Squares (2nd order) and Savitzky-Golais
filters to obtain smooth values of the velocity, acceleration
and orientation of the corresponding agent in the last
observation frame, calculating the future travelled distance
by extending the smoothed 2nd-order polynom T seconds.
Then, we get all lane candidates within a bubble, given the
agent last observation and Manhattan distance, expanding
the bubble until at least 1 lane is found. Once we have some
preliminary proposals, we employ the Depth First Search
(DFS) algorithm to get all successor and predecessor
candidates, merging the past and future candidates and
removing the overlapping ones.

After removing the overlapping lanes, we select the top-
M lanes based on the scores as proposed by [38], illustrating
a preliminary interpretable motion prediction area in front
of the agent. We include additional metadata such as lane
type (bus, bike, vehicle), presence of intersection or bound-
aries topology (dash, solid, yellow), along with the center-
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line relative displacements. Finally, these heuristic propos-
als are interpolated using a 1st order spline from last agent
observation as start point to an endpoint located in the cen-
terline assuming the initially-computed travelled distance in
the prediction horizon.

3.2. Encoder and Fusion Cycle

The first stage of MP is driving context encoding, which
extracts actors motion features and maps features. In terms
of physical context, we adopt LaneGCN [15] backbone to
encode the scene context for its outstanding performance.
It learns good lane representations which are computation-
ally efficient and preserve map topology. We use a multi-
scale LaneConv network to encode the vectorized map data,
which is consisted of lane centerlines and their connectivity.
We construct a lane node graph from the map data. A lane
node is a short lane segment between two consecutive points
of the lane centerline, represented by the location (the av-
eraged coordinates of its two endpoints) and the shape (the
vector between its two endpoints).

In terms of agent information, several meth-
ods [37] [24] [39] [40] make use of Recurrent Neural
Networks (such as GRUs and LSTMs). LSTMs became
popular because they could solve the problem of vanishing
gradients. Nevertheless, they require a lot of resources to
get trained and become ready for real-world applications.
In particular, they need high memory-bandwidth because
of linear layers present in each cell which the system
usually fails to provide for. In that sense, we replace LSTM
social encoder for an encoder transformer, which is faster
than RNN-based models as all the input is ingested once,
decreasing the computational complexity. We concatenate
the agents past trajectories, additional social metadata and
heuristical proposals (including semantic and topologic
lanes metadata), which is processed by a linear embedding.
Then, positional encoding is added to the output embedding
explicitly to retain the information regarding the order of
past trajectories and future preliminary steps. Finally, these
latent features feed the encoder transformer, leveraging
self-attention mechanism and positional embedding to
learn complex and dynamic patterns from long-term time
series data.

Once both the map and social latent features are com-
puted, we obtain a 2D feature matrix X where each row
Xi indicates the feature of the i-th actor, and a 2D ma-
trix Y where each row Yi indicates the feature of the i-th
lane node. Then, in order to combine the latent social and
physical information, we make use of the well-established
actor-map fusion cycle [15] that transfers and aggregates
feature among actors and lane nodes. Nevertheless, at the
end of the fusion cycle, instead of using an Actor to Actor
(A2A) attention [15] [24] method, which uses standard self-

attention to model final actor features, we employs the use
of a Graph Convolution Operator (GCN), inspired in the ar-
chitecture proposed by [37], to further enhance global agent
interaction.

3.3. Global Interaction Module

After aggregating the map features to the corresponding
actors (Third step in the fusion cycle, as observed in Fig.
2), we compute the interaction among actors in order per-
form global message-passing by constructing an interaction
graph using Crystal-GCN [41] [37], originally developed
for the prediction of material properties, allowing to effi-
ciently leverage edge features.

Before creating the interaction mechanism, we split the
temporal information in the corresponding scenes, taking
into account that each traffic scenario may have a different
number of agents. The interaction mechanism is defined in
[37] as a bidirectional fully-connected graph, where the ini-
tial node features v(0)

i are represented by the latent temporal
information for each vehicle hi,out computed by the motion
history encoder. On the other hand, the edges from node k to
node l is represented as the vector distance (ek,l) between
the corresponding agents at t = obslen in absolute coordi-
nates, where the origin of the sequence (x = 0, y = 0) is
represented by the position of the target at t = obslen:

ek,l = νobslen
k − νobslen

l , (3)

Given the interaction graph (nodes and edges), the
Crystal-GCN, proposed by [41], is defined as:

v
(g+1)
i = v

(g)
i +

N∑
j=0:j ̸=i

σ
(
z
(g)
i,j W

(g)
f + b

(g)
f

)
⊙ µ

(
z
(g)
i,j W

(g)
s + b(g)

s

)
.

(4)

This operator, in contrast to many other graph convolu-
tion operators [21] [15], allows the incorporation of edge
features in order to update the node features based on the
distance among vehicles (the closer a vehicle is, the more is
going to affect to a particular node). As stated by [37], we
use Lg = 2 layers of the GNN (g ∈ 0, . . . , Lg denotes the
corresponding Crystal-GCN layer) with ReLU and batch
normalization as non-linearities between the layers. σ and
µ are the sigmoid and softplus activation functions respec-
tively. Moreover, z(g)i,j = (v

(g)
i ||v(g)

j ||ei,j) corresponds to
the concatenation of two node features in the gth GNN
layer and the corresponding edge feature (distance between
agents), N represents the total number of agents in the scene
and W and b the weights and bias of the corresponding lay-
ers respectively.
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After the interaction graph, each updated node feature
v
(Lg)
i contains information about the latent space of other

agents, specially those which are closer to that particular
node. We can appreciate that instead of applying the previ-
ously mentioned self-attention mechanism, where the latent
space of an agent pays attention to itself, now we are able
to enhance global interaction to model complex behaviours,
specially in roundabouts and intersections.

3.4. Decoding Module

3.4.1 Goals Prediction and Filtering

Goals predictions Since we use GANet [24] as baseline
method, we follow the same approach to predict goal points
i.e. potential destination points for each agent in the scene.

We train the goal predictor as [24] -following the same
network architecture- using a combination of classification
loss and regression loss. Given E predicted goals, we find
a positive goal ê that has the minimum L2 distance w.r.t the
ground truth trajectory endpoint — making the predicted
goal close to the actual goal as much as possible.

This goal prediction module serves to locate goal areas
(e.g. plausible areas of movement within the lanes). In prac-
tice, a drivers behaviour is highly multi-modal and stochas-
tic e.g. the driver can stop, go ahead, turn left or right when
approaching an intersection, or accelerate. Therefore, we
try to make a multiple-goals prediction.

GoICrop Following Wang et al. GANet [24], we choose
the predicted goal with the highest confidence among E
goals as an anchor. This anchor, by definition, approxi-
mates the destination of the agent with the highest proba-
bility based on its past trajectories and the scene context.

Hence, we use the predicted anchors and apply a
GoICrop [24] filtering to implicitly model actors’ interac-
tions in the future. This ROI (Regions of Interest) filter
allows to select the goal points (anchors) for each agent,
considering the their probable interations.

3.4.2 Trajectory Prediction

Finally, we take the updated actor features X as input to pre-
dict K final future trajectories and their confidence scores.
Following our baseline [24] we use a standard multi-modal
decoder with one regression branch estimating the trajec-
tories, and one classification branch predicting the corre-
sponding confidences.

3.5. Motion refinement

We finally apply motion refinement as proposed by
Liu et al. [39] to improve further the temporal consistency
and output more accurate future trajectories. The goal is to

reduce the offset between ground truth trajectory Y and pre-
dicted trajectory Ŷ . We define this offset as ∆Y = Y − Ŷ .

Using this approach, an MLP model is trained to mini-
mize the offset by predicting a residual R that is added to
the original trajectory i.e. we use L2 loss to optimize the
offset as follows:

Loff = ||Y − Ŷ − R̂||2 = ||∆Y − R̂||2. (5)

Note that this method can be applied to the pre-trained
model from previous stages, which is completely func-
tional, as the main function is to improve the output tra-
jectories.

4. Experiments
Experimental settings We use the Argoverse 2 [1]
dataset and benchmark described in Section 2. For each real
driving scenario we have the corresponding local HD map,
past trajectories of the agents, metadata about the agents
(e.g. the ype of agent: cyclist, pedestrian, car), and topo-
logical information about the scene. Each scenario is 11
seconds long. We consider five seconds of the past trajec-
tory (also known as motion history), and we predict the next
six seconds.
Metrics. We follow the widely used evaluation met-
rics [21, 34, 45]. Specifically, MR is the ratio of predictions
where none of the predicted K trajectories is within 2.0 me-
ters of ground truth according to the endpoint displacement
error. Minimum Final Displacement Error (minFDE) is the
L2 distance between the endpoint of the best-forecasted tra-
jectory and the ground truth. Minimum Average Displace-
ment Error (minADE) is the average L2 distance between
the best-forecasted trajectory and the ground truth.
Implementation. We train our model on 2 A100 GPUs
using a batch size of 128 with the Adam optimizer for 42
epochs. The initial learning rate is 1 x 10-3, decaying to 1
x 10-4 at 32 epochs. The latent dimension (regarding map
and social features) in most of our experiments is 128. The
number of attention heads in the social encoder and motion
refinement is 8. The training setup including loss functions
follows GANet [24] official implementation as our baseline.
We set the number of lane proposals to 3, since this is typ-
ically the number of maximum manoeuvres an agent can
carry out (straight, left, right). If the heuristic method com-
putes less lanes than M=3, we pad with zeros.
Augmentations (i) Dropout and swapping random points
from the past trajectory, (ii) point location perturbations un-
der a N (0, 0.2) [m] noise distribution [45].

4.1. Results and Ablation studies

Tables 1 and 2 present the results obtained on the Argo-
verse 2 Motion Forecasting validation and test sets, respec-
tively. We achieve near state-of-the-art performance in both
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Table 1. Comparison of methods in the Argoverse 2 Validation Set. We show the number of parameters for each model, prediction
metrics (minADE, minFDE and brier-minFDE) for the multimodal scenario (k=6) and runtime. Runtime was measured on a single GPU
A100-SXM4 (using batch 128). Our experiments are indicated using †. We use as baseline method GANet [24].

Method Map # Par. (M) minADE (m) ↓ minFDE (m) ↓ brier-minFDE (m) ↓ Runtime (ms) ↓
GANet [24] Yes 6.2 0.806 1.402 2.02 1612
GANet w/o Map Decoder [24] Yes 5.7 0.84 1.55 2.18 1353
GANet w/o Goal Areas [24] Yes 4.5 0.87 1.66 2.29 1134
GANet w/o map [24] No 1.79 1.034 2.212 2.825 838
† CRAT-Pred [37] No 0.53 1.31 2.78 3.65 223

† Ours-base: GANet [24] ActorNet → Attention Transformer Yes 5.0 0.83 1.45 2.07 923
† Ours-m: Ours-base + A2A → C-GCN + Metadata Yes 4.74 0.82 1.43 2.05 892
† Ours-s: Ours-base + A2A → C-GCN + Metadata (64 latent size) Yes 1.2 0.88 1.53 2.15 893
† Ours: Ours-m + Proposals + Motion Refinement Yes 4.92 0.81 1.42 2.04 946

Table 2. Results on Argoverse 2 Test dataset. The ”-” denotes that this result was not reported in their paper. Some numbers are borrowed
from [24]. For all the metrics, the lower, the better.

Method
b-minFDE

(K=6)
MR

(K=6)
minFDE
(K=6)

minADE
(K=6)

minFDE
(K=1)

minADE
(K=1)

MR
(K=1)

DirEC 3.29 0.52 2.83 1.26 6.82 2.67 0.73
drivingfree 3.03 0.49 2.58 1.17 6.26 2.47 0.72

LGU 2.77 0.37 2.15 1.05 6.91 2.77 0.73
Autowise.AI(GNA) 2.45 0.29 1.82 0.91 6.27 2.47 0.71

Timeformer [42] 2.16 0.20 1.51 0.88 4.71 1.95 0.64
QCNet 2.14 0.24 1.58 0.76 4.79 1.89 0.63

OPPred w/o Ensemble [43] 2.03 0.180 1.389 0.733 4.70 1.84 0.615
TENET w/o Ensemble [44] 2.01 - - - - - -

Polkach(VILaneIter) 2.00 0.19 1.39 0.71 4.74 1.82 0.61
GANet 1.969 0.171 1.352 0.728 4.475 1.775 0.597

Ours 1.98 0.185 1.37 0.73 4.53 1.79 0.608

sets, which is on-pair with the most promising pipelines,
while using notably less parameters. As stated throughout
this work, we focus on applying efficient methods to help
understand future interactions among the different agents,
reducing the number of parameters and inference time.

We can appreciate in Table 1 the huge influence of the
physical context both in terms of accuracy and runtime.
GANet [24] shows the best multimodal prediction metrics,
with an approximate amount of 6.2M of parameters of 1612
ms given a batch size of 128 traffic scenarios and an average
number of 30 agents per scene. As expected, progressively
removing the map influence (remove map from decoder, re-
move goal areas estimation) in the model we decrease the
MP performance with a noticeable parameter decrease.

In our case, we study the influence of substituting the
modified ActorNet [15, 24] social encoder proposed by
GANet, which uses RNNs. Our proposal replaces these
by a Linear embedding, a Positional Encoding and Encoder
Transformer. Moreover, we add the aforementioned agent
metadata (object type and track category), and we substi-
tute the Actor to Actor attention of the fusion cycle for a
GCN [37] operator to enhance agents global interaction. It
can be appreciated how we obtained a similar performance

(both with 128 latent dimension in Ours-m, and 64 latent in
Ours-s), reducing the parameters and inference time.

Finally, our best model, which includes heuristic propos-
als that serve as a preliminary multi-modal guidance for the
model and motion refinement to improve the quality of the
final predictions, obtains a performance on pair with [24],
reducing the number of parameters and inference time about
21% and 41% respectively. We can appreciate in Table 2
how our model generalizes well in the test set, with results
(both in uni-modal and multi-modal prediction) up-to-pair
with other state-of-the-art algorithms.

4.2. Qualitative results

We provide advanced qualitative samples in Figure 3,
where we show the HD Map of real traffic scenes, heuris-
tic trajectory proposals in the form of centerlines, and the
multimodal predictions from our model including their re-
spective confidences (the higher, the most probable).

As we discussed in 3, we designed our model to ensure
realistic predictions. We can appreciate that all the pre-
dictions are plausible and constrained to the scene geom-
etry e.g. lane distribution and centerlines. We believe our
heuristic proposals help to regularize the model and pro-
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Figure 3. Qualitative Results on challenging scenarios using our best model. We represent: our vehicle (ego), the focal agent, the relevant
agents in the scene, and other agents. We can also see the ground-truth trajectory of the target agent, our multimodal predictions (with
the corresponding confidences). We also highlight the most important topology of the road, such as pedestrian crossing and boundaries
mark type. We show, from left to right, a general view of the traffic scenario (including and map information), the heuristic proposals for
each agent (we only include the ego and focal agent for simplicity) and the multimodal prediction (k = 6) for the focal agent, including
the corresponding confidences (the higher, the most probable)

duce realistic predictions that would ensure traffic safety.
For simplicity, we only illustrate the heuristic proposals for
the focal agent and ego-vehicle. We believe our software
for qualitative analysis of MP models on the well-known
Argoverse 2.0 [1] is fundamental and a core contribution.

5. Conclusion
In this work we solve the challenging problem of Multi-

Agent Motion Prediction in real driving scenarios. We
present an end-to-end pipeline that combines Deep Learn-
ing (DL) and heuristic scene understanding. Our model uses
as input the map of the scene, the past trajectories of the
agents, and additional information about the scene geom-
etry and agents e.g., type of agent, lane distribution. We
propose a model that integrates attention mechanisms with
GNNs, heuristic goals, and a motion refinement module to
further improve temporal consistency. We achieve SOTA
results on the Argoverse 2 Motion Forecasting Benchmark

reducing in millions of parameters previous methods such
as GANet, and improving over LaneGCN. Our code is pub-
licly available. As future works, we plan to include map-
adaptive lane-loss to improve diverse multiple motion pre-
diction and explore knowledge-distillation to improve the
efficiency for real-world deployment.
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