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Abstract

To detect the start time and end time of each action in
an untrimmed video in the Track 3 of AI City Challenge,
this paper proposes a powerful network architecture, Multi-
Attention Transformer. The previous methods extract fea-
tures by setting a fixed sliding window whitch means a fixed
time interval, and predict the start and end times of the ac-
tion. We believe that adopting a series of fixed windows
will corrupt the video feature containing contextual infor-
mation. So we present a Multi-Attention transformer mod-
ule which combines the local window attention and global
attention to fix this problem. The method equipped with
features provided by VideoMAE achieved a score of 66.34.
Then use the time correction module to improve the score
to 67.23 on validation set A2. Finally, we have achieved
third place on Track3 A2 dataset of the AI City Challenge
2023. Our code is available at: https://github.
com/wolfworld6/Aicity2023-Track3.

1. Introduction

Distracted driving can be very dangerous. Today, devel-
opments in naturalistic driving research and computer vi-
sion technology provide much needed solutions to elimi-
nate and reduce the occurrence of distracted driving behav-
ior. Naturalistic driving studies are essential for studying
driver behavior. They can help us capture driver behavior
in traffic environments and analyze driver distractions while
driving, which is one of the keys to reducing distracted driv-
ing. Track 3 of AI City Challenge offers video footage of
drivers in the car, which covers three different perspectives
and contains 16 different types of driver actions. For this
track, participants were asked to implement an algorithm to
label the various actions in the video and recognize when
they started and when they ended.
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This task can be considered as a temporal action local-
ization (TAL) task in the field of video understanding. The
videos in this task are usually long unedited videos, but the
time interval of each individual action is relatively short.
In temporal action localization algorithms, an intuitive idea
is to pre-define a set of sliding windows of different time
lengths and slide them over the video, such as S-CNN [17],
TURN [6] and CBR [5]. Then, the action categories are
judged one by one for the temporal intervals within each
sliding window. Inspired by the two-stage target detec-
tion algorithm, the algorithms based on candidate temporal
intervals first generate some candidate temporal intervals
from the video that may contain actions, and then judge
the action classes within each candidate temporal interval
and correct the interval boundaries, such as R-C3D [19]
and TAL-Net [3]. In addition, the idea of single-stage tar-
get detection can also be applied to temporal action local-
ization, such as SSAD [12] and GTAN [15]. Currently,
transformer models have shown remarkable performance
in various fields of computer vision such as object detec-
tion [2], [21], [10], [9], image classification [4], [13], and
video understanding [7], [14]. However, when using trans-
former model for long-duration videos, the increase in the
number of video frames will lead to a significant increase
in computation. Gedas Bertasius et al. [1] conducted exten-
sive experiments and found a method of separable space-
time attention, which opened the door for transformer mod-
els’ application to long video understanding. Secondly, as
the duration of different actions can vary greatly, it is chal-
lenging to extract the appropriate features by setting a fixed
window and patch size in transformer models. Kai Han
et al. [8] proposed the Transformer in Transformer (TNT)
model, which fused the features of the outer patches and the
inner patches, enriching feature information and improving
feature expression.

Motivated by the aforementioned observations, we pro-
posed a Multi-Attention transformer module, which is used
to model not only the relationship between those different
clip windows, but also the relationship within global win-
dows. Besides, we design a Time Correction module to fuse
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Model Rearview Dashboard Right side
Uniformer-L 88.28 84.47 83.07
VideoMAE-L 89.62 89.23 84.62

Table 1. The classification results on the A1 validation.
UniformerV2-L is trained for 35 epoch, while VideoMAE-L is
trained for 30 epoch.

Model Datasets Feature
VideoMAE-L Internvideo Hybraid FL(hybrid)(1024)
VideoMAE-L ego-4d FL(ego)(1024)
VideoMAE-H Kinetics-400 FH(k400)(1280)

Table 2. Public models pretrained on different datasets and feature
dimensions extracted on A2 dataset.

and correct the prediction results with high confidence, and
obtain a more accurate result.

2. Method
2.1. Data Preprocess

We detect the human body in the video and crop each
frame. To ensure the stability of the video, we perform hu-
man body detection for each frame of the video and save
the one with the largest detection area as the crop standard
for the whole video, avoiding background shaking caused
by different detection sizes in different frames. The crop
operation retains the information related to the human body
and removes the redundant information. On the one hand,
it reduces the interference of other noise to the action fea-
tures. On the other hand, it makes model learn human ac-
tions more easily.

2.2. Feature Extraction

We perform multiple experiments on different video rep-
resentation models and three views of A1 videos. Video-
MAE [18] is adopted for feature extraction on Rear and
Dashboard views in this paper because of it’s better perfor-
mance as shown in Tab. 1. Public weights pretrained on dif-
ferent datasets are adopted and fine-tuned on A1 data. The
weights used in this paper is shown in the Tab. 2. We fine-
tune different models on the videos from Rear and Dash-
board views respectively and extracted the features of A2
dataset.

2.3. Temporal Action Localization

Actionformer [20] combines multi-scale feature repre-
sentation with local self-attention, and uses a lightweight
decoder to classify every moment and estimate the corre-
sponding action boundary. As shown in Fig. 1, on the ba-
sis of Actionformer, we propose a Multi-Attention trans-
former, which is applied to model not only the relationship
between those different clip windows, but also the relation-
ship within global windows.

Multi-Attention As shown in the right of Fig. 1, in the
multi-scale channel transformer encoder, the feature f1 ex-
tracted from the video segment is input to layerNorm, multi-
head attention and window attention, and then downsam-
pled to obtain feature f̃1. The feature f̃1 is re-entered
into the encoder, and the feature f̃2 is obtained after lay-
erNorm, multi-head attention, window attention and down-
sampled. This operation is repeated N-1 times to obtain
f̃2, f̃3, ... ˜fN . After that, f̃2, f̃3, ... ˜fN are input into the
multi-scale channel transformer decoder for decoding, and
the category information and the corresponding time infor-
mation of the actions are regressed through different fully
connected layers.

In the multi-head attention module, feature fusion is per-
formed between all the input features; since the input fea-
tures are arranged according to the time segments of the
video, the multi-head attention module will make use of
the information in the time axis. In the window attention
module, feature fusion is performed both for video segment
features at adjacent locations and for all features, but the
difference is that the feature fusion is performed only in the
channel dimension.

Our model has N transformer layers with multi-scale to
capture actions at different temporal scales. Each layer is
composed of local multi-headed self-attention (MSA) and
global multi-head self-attention(GMSA). To capture actions
at different attention, the operation is formulated as:

N∑
i=1

MSAi +GMSAi, (1)

Where MSAi refers to MSA in the i-th layer, GMSAi

refers to GMSA in the i-th layer. A standard transformer
block structure includes multi-head self-attention (MSA)
and multi-layer perceptron (MLP). For efficiency, we em-
ploy a Multi-Attention module, contists of Clip Window
Attention Module and Global Attention Module which can
learn the information from different representation sub-
spaces from different areas. Specifically, the embedding of
each clip window channels is averaged, and the same num-
ber attention values are obtained by using a head-in-head
transformer. The attentions will be multiplied or summed
by the channels correspondingly. The module achieves fea-
ture enhancement through dimension-wise attention, which
only increases a few parameters.

2.4. Time Correction

The output of Temporal Action Localization model con-
tains a large number of predictions with low scores, and
these results have a large range of overlapping temporal re-
gions. The scoring criteria requires that each correct result
is matched to only one prediction as far as possible and that
the time range of that prediction is less different from the

5436



Figure 1. Overview of our model architecture. Our approach builds a Transformer-based model, using the action classification and to
estimate action boundaries for each moment. In feature extraction stage, we extract a sequence of video clip features by VideoMAE, then
embed each of these features. The embedded features will be encoded via window attention and global attention module. A candidate
action is generated at each time step through using the classification head to predict the action category and the regression head to predict
the boundaries of the action time boundaries.

correct one. This means that the large number of results
need to be filtered and only the results with high confidence
could be retained. Therefore, we design the time correction
module to fuse and correct the prediction results with high
confidence, and obtain the final results with more accurate
time.

The time correction operation consists of 3 main steps,
which are:

1. For all prediction results of each video-id, keep only
the one with the highest score among the results of the same
label, and discard the other items.

2. Perform step 1 separately for several different models
and stitch the obtained results;

3. For the results obtained in step 2, fuse the results of
same labels and same video-id according to the time Inter-
section over Union (tIoU); The specific fusion operations
are:

(1) Remove all results whose time length is less than 1
second; remove all results whose time length is greater than
30 seconds;

(2) For all results with the same video-id and the same
label, divide the results into different sets such that in each
set, the tIoU of all time regions is greater than the set thresh-
old;

(3) Remove the set whose length is equal to 1;
(4) For all the sets obtained in step (3), calculate the

mean value of all the time points in each set; since all the
results in each set have the same video-id and the same la-
bel, calculate the mean of all start times in the set as the start
time for that video-id and that label; calculate the mean of
all end times in the set as the end time for that video-id and
that label. The start time and end time of the action in the
i-th video-id and the j-th label can be calculated by the fol-
lowing formula:

tsi
j =

1

N

N∑
p=1

startp,

tei
j =

1

N

N∑
p=1

endp,

(startp, endp) ∈ Si
j .

(2)

Where tsi
j refers to the start time of the action in the i-th

video-id and the j-th label, teij refers to the end time of the
action in the i-th video-id and the j-th label. Si

j denotes
the set of predictions where video-id is i and label is j. N
is the length of Si

j . startp refers to the start time of the
p-th predictions in Si

j , and endp refers to the end time of
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the p-th predictions in Si
j .

Besides, when fusing the results of the same video-id
and the same label, in addition to the method of taking the
mean of all time points as described in the fourth step, we
also try another method: weighting the fusion of time nodes
according to their scores, which is formulated as:

tsi
j =

∑N
p=1 startp ∗ scorep∑N

p=1 scorep
,

tei
j =

∑N
p=1 endp ∗ scorep∑N

p=1 endp
,

(startp, endp, scorep) ∈ Si
j .

(3)

where scorep refers to the score of the p-th predictions in
Si

j .

3. Experiment
3.1. Training

3.1.1 Feature Extraction Models

Both VideoMAE-L and VideoMAE-H are fine-tuned on A1
dataset with training crop size 224. The initial earning rate
is 2e-3. The number of frames is 16, sampling rate is 4.
The experiment is executed with batch size 2 on 8 Nvidia
V100 GPU. For VideoMAE-L is trained for 35 epoch, while
VideoMAE-H is trained for 40 epoch.

3.1.2 Temporal Action Localization Models

We conduct experiments on A1 dataset, dividing the data
into training set and test set with the ratio of 7:3. After
the experiment, we use all A1 as the training set. In the
first place, we feed 32 consecutive frames as the input to
pre-trained model UniFormerV2 [11], use a sliding window
with stride 16 and extracted 3072-D features which cover
three parts (left, center and right) from the original video to
optimize the network structure. mAP@[0.1:0.5:5] is used
to evaluate our model. In the second place, we also employ
some ablation experiments of the features extracted 1024-
D features. Our TAL model is trained for 40 epochs with
a linear warmup of 5 epochs. The initial learning rate is
1e-3 and a cosine learning rate decay is used, and a weight
decay of 5e-2 is used. In the end, we use the pre-trained
VideoMAE to extract 1028-D features and 1024-D features.
The method can be adapted to different features, and the
performance of the model on multiple views, single view
and multiple features can be tested.

3.2. Results

3.2.1 Results on Data Preprocess

Regarding whether the crop operation enhances the effect
of the model, ablation experiments are applied to verify it.

Data Preprocess mAP@tIOU
no crop 83.67

crop 87.79

Table 3. The results on the crop operation.

Task Method mAP@tIOU
0.1 0.2 0.3 0.4 0.5 Avg

Action Actionformer 63.00 61.15 58.33 52.83 47.18 56.50
Ours 73.03 71.13 64.77 68.53 59.02 67.33

Ours(fpn+8h+w13+r2.5) 76.07 73.71 71.95 68.22 63.48 70.69

Table 4. The results on the A1 validation.

Task Method mAP@tIOU
0.1 0.2 0.3 0.4 0.5 Avg

Action Center 63.88 61.99 58.77 51.08 41.93 55.53
Right 62.89 61.20 57.45 53.69 44.26 55.90

L+R+C 67.52 65.29 62.03 58.62 53.69 61.43
Resize 74.34 71.54 67.66 62.98 58.51 67.01

Table 5. The results on the different screen.

The experimental results show that the crop operation does
play a role. As shown in Tab. 3, using the Multi-Attention
model with FH(k400)(1280) feature, the crop operation can
raise the map from 83.67 to 87.79 on Rear and Dashboard
view.

3.2.2 Results on Multi-views Model

We start with our experiments and get results on A1, ex-
tracting 3072-D features of all the views videos with pre-
trained model UniFormerV2 [11], we use the validation set
for training. The hyper-parameters of window size is 9, the
mini-batch size is 4, the max segments number is set 2304.
Tab. 4 summarizes the results, our method achieves mAP
of 67.33% on average, and mAP of 59.02% at tIoU=0.5.
The model performance is improved with the combination
of a simple design and a strong multi-attention transformer
model. In addition, we experiment with various hyper-
parameters, including utilizing an FPN architecture with 8
heads, increasing the window size to 13, and setting the cen-
ter sample radius to 2.5. As a result, the mAP improves
from 67.33% to 70.69%.

Considering the different areas contain different infor-
mation on the target of the screen, we conduct as much ex-
periments as possible for a fair comparison to the features
with different crop parts and different resize mode of the
videos. The results are shown in Tab. 5. Compared with
the results(mAP 67.33%) in Tab. 4, there is not much dif-
ference, so we remove the crop pattern in the follow-up ex-
periments.

3.2.3 Results on Rear View Model

It is found through experiments that accuracy of classi-
fication model is higher using Rear views, as shown in
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Method view pre-trained mAP@tIOU
0.1 0.2 0.3 0.4 0.5 mean

VideoMAE Rear Kinetics-400 97.16 96.95 96.67 96.26 95.26 96.46
Ego-4D 93.74 90.72 88.09 84.14 79.10 87.16
Hybraid 93.73 92.27 90.11 88.12 80.70 88.99

Rear + Dashboard Kinetics-400 91.81 90.03 87.62 84.31 79.98 86.75
Ego-4D 92.61 91.46 89.05 84.09 78.63 87.17
Hybraid 93.10 91.30 89.33 85.56 81.43 88.14

Table 6. The results on the different features of Rear or Dashboard view.

Model combinations Average overlap score
M1 0.6382

M1+M2+M3(No Removing) 0.6325
M1+M2+M3 0.6482

M4+M5+M6(Weighting) 0.6514
M4+M5+M6 0.6593
M7+M8+M9 0.6634

M7+M8+M9+M10 0.6723

Table 7. The results on Time Correction Module. The model com-
bination M7+M8+M9+M10 is the final prediction obtained
by our team.

Tab. 1. We test the performance of the model in Rear and
Dashboard view features extracted with different backbone
model from VideoMAE. As shown in Tab. 6, different fea-
tures have variable performance on TAL.

3.2.4 Results on Time Correction Module

The experimental results on Time Correction Module are
shown in Tab. 7. And the corresponding specific informa-
tion for The M1 to M10 models is shown in Tab. 8. Due to
the limited number of evaluations provided by the system,
we cannot traverse all the methods for each model combi-
nation to obtain the optimal evaluation results. Therefore,
we use the optimal processing method directly for the bet-
ter model after summarizing the pattern in each comparison
experiment.

We introduce the Time Correction Module in Sec. 2.4.
In the second step, the results of several different mod-
els are stitched together, which resulting in higher results
compared with using a single model. The average overlap
score of the single model M1 is 0.6382, but after stitch-
ing the results of the three models and adopting time cor-
rection, the performance of evaluation result improves into
0.6482. Besides, the stitching result of the four models
M7 + M8 + M9 + M10 improves the evaluation score
from 0.6634 to 0.6723 compared to the stitching results of
the three models M7 +M8 +M9.

In the third step, the set of length 1 is removed. This op-
eration also boosts the results. Compared to the results of
the time correction module without this operation, the eval-

uation score improves from 0.6325 to 0.6482 after adding
this operation. The statistics of action durations are con-
ducted for the A1 dataset, and it is found that the durations
are all in the range of 1-30 seconds, so we constrain the
duration range of the prediction results. Besides, when fus-
ing the results of the same video-id and the same label, we
try two methods: taking the mean of all time points and
weighting the fusion of time nodes according to their scores.
However, the experimental results show that using the mean
value is more satisfactory. Using the same combination of
models M4 +M5 +M6, the weighted and mean methods
yields 0.6514 and 0.6593, respectively.

The overall ranking and score of the track is shown
in Tab. 9. The results of model combination M7 +
M8 + M9 + M10 shown in Tab. 7 is the final pre-
diction obtained by our team, with an average over-
lap score of 0.6723 and a ranking of third on pub-
lic leaderboard. In this combination, M7, M8 and
M9 represent the temporal action localization models
trained with features FL(hybrid)(1024), FL(ego)(1024),
and FH(k400)(1280) in Tab. 2, respectively. And M10
represents the Tridet [16] model. It is no doubt that the re-
sults of our method on Track 3 of AI City Challenge can be
further improved by combining a more powerful backbone
of video features with object detection results.

4. Conclusion

In this paper, we present a Multi-Attention transformer
based method for temporal action localization. The power
of method lies in our design choices, especially combin-
ing features with the method of Multi-Attention module to
model longer-range temporal context in videos. In addition,
we conduct extensive experiments to compare with different
video views, different feature extraction networks, different
pre-trained datasets, so as to find the views and networks
with better feature representation capability. Besides, we
also propose a Time Correction module to improve tempo-
ral accuracy.
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Name Feature View Model
M1 FL(hybrid)(1024)+FL(ego)(1024)+FH(k400)(1280) Rear+Dashboard actionformer
M2 FL(hybrid)(1024)+FL(ego)(1024)+FH(k400)(1280) Rear+Dashboard actionformer
M3 FH(k400)(1280) Rear actionformer
M4 FH(k400)(1280) Rear actionformer
M5 FL(ego)(1024) Rear actionformer
M6 FL(ego)(1024) Rear actionformer
M7 FH(k400)(1280) Rear+Dashboard Multi-Attention
M8 FL(ego)(1024) Rear+Dashboard actionformer
M9 FL(hybrid)(1024) Rear+Dashboard actionformer

M10 FH(k400)(1280) Rear Tridet

Table 8. The specific information of different models mentioned in Tab. 7.

Rank Team name Average overlap score
1 Meituan-IoTCV 0.7416
2 JNU boat 0.7041
3 ctc-AI 0.6723
4 RW 0.6245
5 Purdue Digital Twin Lab 0.5921
6 BUPT-MCPRL 0.5907
7 DiveDeeper 0.5881
8 INTELLI LAB 0.5426
9 AILAB 0.5424
10 AIMIZ 0.5409

Table 9. Public ranking and score on Track3.
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