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Abstract

Multi-camera people tracking (MCPT) is a challenging
task that is crucial for developing intelligent surveillance
applications. In this work, we propose an MCPT system for
Challenge Track 1 in the 2023 AI City Challenge. Specifi-
cally, we address the issue of occlusion, which causes sig-
nificant changes in a person’s appearance and makes it dif-
ficult to estimate their exact location on a global map of
a given area. In this paper, we present several solutions
that utilize human pose estimation for overcoming this chal-
lenge. Our experimental results demonstrate that using hu-
man pose estimation significantly improves the performance
of our system. Furthermore, we achieved promising results
on the official evaluation set, with an IDF1 score of 86.76%.
Our code is publicly available at https://github.
com/nota-github/AIC2023_Track1_Nota.

1. Introduction
Multi-camera people tracking (MCPT) is essential for

developing advanced surveillance systems and analyzing
human behavior. The aim of an MCPT system is to de-
tect and track people across multiple cameras. As shown
in Fig. 1, the system first detects people’s positions in each
camera using bounding boxes. Then, a single-camera peo-
ple tracking module produces local tracklets for the identi-
fied people within each camera. Finally, the MCPT system
matches these tracklets across multiple cameras and assigns
global identities to them. Most existing methods typically
follow this pipeline [2, 5, 17, 23, 24].

In this paper, we present our MCPT method for Chal-
lenge Track 1 of the 2023 AI City Challenge [11]. The goal
of this track is to build an MCPT system that works in in-
door settings, such as warehouses. The system is evaluated
using a combination of real and synthetic datasets. In this
track, we also use the conventional pipeline for the MCPT
task, but we have focused even more on addressing prob-
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Figure 1. An example of the multi-camera people tracking task.
The same person who appears across multiple cameras is repre-
sented by numbers of the same color, which are positioned close
to each other on the global 2D map. The numbers on the 2D map
correspond to the unique identifiers of the cameras. The numbers
shown in the other images represent the global ID of the corre-
sponding person.

lems with occluded people to improve the performance of
our system.

The occlusion problem poses serious challenges for
MCPT systems. Firstly, the similarity score between ap-
pearance features from two human objects cannot be ac-
curate for the matching process when a part of the human
body is occluded. For instance, comparing appearance fea-
tures from a full body and only a head would not yield ac-
curate results. In such cases, we must rely more on other
information (e.g., such as if two human objects from differ-
ent cameras are closely located on the 2D map as shown in
Fig. 1, they are likely to be the same person). In these situ-
ations, appearance information alone may not be sufficient
for the matching process.

Secondly, even with positional information on the 2D
map, if a part of the body is occluded, the projected coor-
dinates for the person on the 2D map may not be accurate.
For example, when projecting the positions of two people
captured on CCTV onto a 2D map, if one person’s position
is projected based on the location of their feet and the other
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person’s position is projected based on the position of their
chest due to their lower body being occluded, the positions
of the two people on the 2D map will appear farther apart
than they actually are (as shown in Fig. 7). This makes it
difficult to use location information.

To tackle these challenges, in this work, we propose the
use of human pose estimation for MCPT. The output of a
pose estimation model enables us to determine which body
parts are visible and which are occluded. This can be used
to make better decisions about which information to rely
on for matching, instead of relying solely on appearance
features. Additionally, pose estimation can help estimate
the positions of occluded body parts, which improves the
accuracy of projection onto a 2D map (see Fig. 7). Our
experimental results demonstrate that utilizing human pose
estimation significantly improves the performance of our
system, with promising results on the official evaluation set
achieving an IDF1 score of 86.76%.

The remainder of this paper is organized as follows: in
Sec. 2, we review exiting work and highlight the differences
from these methods. The proposed methods are described
in Sec. 3. We demonstrate the effectiveness of our method
in Sec. 4 and conclude the paper in Sec. 5.

2. Related Work
Multi-camera multi-target (MCMT) tracking has been

extensively studied in various domains, including intelligent
traffic systems [8,16,19,25,26] and human surveillance sys-
tems [5, 12, 17, 23, 24]. Regardless of the domain, MCMT
tracking systems use the conventional pipeline, which in-
cludes object detection, single-camera tracking (SCT), and
inter-camera association (ICA).

Deep learning-based detectors, such as Faster R-CNN
[14] and You Only Look Once (YOLO) [3, 7, 13, 20], are
commonly used for object detection, while DeepSORT
[22], ByteTrack [28], and BoT-SORT [1] are popularly used
for single-camera tracking. These trackers commonly use
appearance features from Re-Identification (ReID) models
[10, 21, 27] to compare the currently detected objects and
previously detected ones. For ICA, appearance features are
also considered to match objects across multiple cameras.

In the context of people tracking, various MCMT track-
ing methods have been proposed [5, 12, 17, 23, 24]. They
commonly highlight the occlusion problem as a significant
challenge for MCMT tracking systems. Specifically, they
address the issue of detection models failing to detect oc-
cluded people in frames, resulting in a failure of single-
camera tracking. To overcome this issue, they interpo-
late detected results from pre and post frames of an image
where people detection failed [5, 16, 23]. Other methods
use information from other cameras to infer undetected peo-
ple [12, 24].

In this work, we address the occlusion problem from a

different perspective, focusing on the issues that arise dur-
ing the ICA process. Specifically, we address the problems
of inaccurate similarity scores between appearance features
and the failure of location estimation of each person in each
camera on the global 2D map.

3. Proposed Method
In this Section, we describe our proposed methods. As

shown in Fig. 2, our MCPT system contains three modules,
namely people detection (Sec. 3.1), single-camera people
tracking (SCPT) (Sec. 3.2), and inter-camera association
(ICA) (Sec. 3.3).

3.1. People Detection

As the first step of our MCPT system, the people de-
tection module is responsible for predicting the locations
of individuals in a given image frame. Accurate detec-
tions are crucial to avoid errors in subsequent tracking pro-
cesses. To reduce detection errors, such as failing to detect a
large number of people or capturing non-human objects, we
considered state-of-the-art YOLO-based detectors ranging
from YOLOv5 to v8 [3,7,20], all of which were pre-trained
with the COCO dataset. To select the most accurate model
for people detection, we evaluated the performance of the
largest model from each YOLO detector on the evaluation
set of the COCO dataset, with a focus on people detection
only. Our evaluation showed that YOLOv8x6 achieved the
highest mean Average Precision (mAP) score for people de-
tection, and thus we selected this model for use in our work.

To ensure that this model can also work on synthetic
datasets, we fine-tuned the detector using 52,148 images
from the training set and 25,338 images from the valida-
tion set of the Challenge Track 1 dataset1. These images
were randomly selected from the original training and vali-
dation sets. This fine-tuned model is only used to evaluate
our system on samples containing synthetic videos.

We also observed that detection is not effective when
people are located in darker areas in the image as described
in the first row of Fig. 3. To address the issue of detection
failure, we perform gamma correction as a pre-processing
step during the inference phase to make the image brighter.
With the gamma correction, input pixels are modified ac-
cording to the following equation:

O = (
I

255
)

1
γ · 255 (1)

where I is an input pixel value and O is the output pixel
value. More specifically, when the gamma value is greater
than 1.0, darker areas become brighter while originally
brighter areas become relatively less bright compared to
the dark areas. In this work, the gamma γ is set to 2.0.

1https://www.aicitychallenge.org/2023-data-and-evaluation/
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Figure 2. Overview of our proposed method. SCPT and ICA stand for single-camera people tracking and inter-camera association,
respectively.

Figure 3. Examples of successfully detecting people with gamma
correction

As shown in Fig. 3, in our experiments, we found that this
helped our system significantly reduce the number of peo-
ple that could not be detected.

3.2. Single-Camera People Tracking

The single-camera people tracking module associates
people detected at time t with tracklets. In other words,
a unique identifier, also known as local tracking ID or local

ID, is assigned to each person detected in each camera, as
shown in Fig. 2. Any detections that are not associated with
existing tracklets are used to initialize new tracklets.

In this work, we use BoT-SORT [1] as a baseline method.
BoT-SORT initially associates bounding boxes detected
with high confidences (i.e., ≥ 0.6) with tracklets based on
the distance scores between them. Two distance metrics are
used: Intersection over Union (IoU) ratio between a bound-
ing box that is predicted by the Kalman filter [4] for a track-
let and a detected box at time t, and cosine distance between
appearance features of the tracklet and the detected box.

The appearance feature for each bounding box detected
by our object detector is extracted using ReID models. In
this study, we use three ReID models to extract three ap-
pearance feature vectors for each bounding box, and then
average them as shown in Fig. 4. This averaging of features
was found to be empirically effective in our experiments.
For our evaluations on real videos, we used ResNet50-
IBN [21], ResNet101-IBN [10], and ResNeSt-50 [27],
which were pre-trained with Market1501, DukeMTMC,
and MSMT17 datasets, respectively, as ReID models. For
the synthetic videos, we fine-tuned the ResNet50-IBN [21]
using the training and validation datasets of Challenge
Track 1 dataset and used only this model.

The appearance feature of a tracklet is updated in an ex-
ponential moving average (EMA) fashion as follows:

eti = αet−1
i + (1− α)f t

i (2)

where eti is the appearance state of the i-th tracklet at time
t and f t

i is the ReID feature of the matched detection at
time t. The α is a momentum term and is set to 0.9. BoT-
SORT uses the Hungarian algorithm [6] to associate de-
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Figure 4. The method of computing an appearance feature vector using ReID models in our work

Figure 5. In the first row, an incorrect local ID was assigned as a
result of calculating the IoU ratio with the bounding box predicted
by the Kalman filter. The red box indicates the bounding box that
is predicted by Kalman filter. In the second row, the correct ID was
assigned by using the Euclidean distance between the bounding
boxes detected at the previous time step and the current time step.

tected bounding boxes at time t with tracklets based on their
distance scores.

Afterwards, the BoT-SORT tracker associates bounding
boxes with low confidences (i.e., 0.1 ≤ and ≤ 0.6) with
the unmatched tracklets. In this step, BoT-SORT only uses
the IoU ratio because low-confidence detections often con-
tain occlusions, which make appearance features inaccu-
rate [28]. After this step, detections with high-confidence
(i.e., ≥ 0.7) that still do not match are initialized as new
tracklets.

We observed that unlike objects like vehicles, there are
many situations where it is difficult to rely on the predic-
tion results of the Kalman filter for humans because their
movements are not linear as shown in Fig. 5. Therefore, we
use Euclidian distance between the detected bounding box
at time t and the last bounding box that is detected before
the time t in a tracklet, instead of using IoU ratio.

3.3. Inter-Camera Association

The ultimate goal of our task is to assign a global ID,
which corresponds to the local ID assigned to each person
detected in a single camera at time t, allowing for tracking

of the same object with the same ID across different cam-
eras. This tracking process is performed through two main
steps, namely clustering and cluster tracking, as shown in
Fig. 6.

In the first step (i.e., clustering), we group together the
bounding boxes detected in different cameras at time t for
the same individuals. To identify the same person that ap-
pears across multiple cameras, we use two pieces of infor-
mation: location and appearance. Firstly, we use the pre-
calculated homography matrix to project the locations of
people captured by each camera onto a 2-dimensional map,
which we will refer to as the ”global map” from now on
(see Fig. 1). This map represents the entire space where the
cameras are installed, and the process of projecting loca-
tions onto it is known as a projective transformation. If the
coordinates of a keypoint in the image frame captured by
the camera are (x, y), and the corresponding coordinates in
the global map are (x′, y′), then the homography matrix is
a matrix that transforms (x, y) into (x′, y′). We computed
the homography matrix for each camera by specifying 4
to 8 key points, where the key points are the bottom cen-
ter points of specific objects. With the location informa-
tion on the global 2D map, we can identify the same person
across multiple cameras. However, if some parts of a per-
son’s body are occluded, their position on the 2D map can
be inaccurate, which can cause errors in the clustering step.

As shown in the top image of Fig. 7, if one person’s po-
sition is projected based on the location of their feet and the
other person’s position is projected based on the position
of their chest due to their lower body being occluded, the
positions of the two people on the 2D map will appear far-
ther apart than they actually are. To address this problem,
we introduce human pose estimation in this step to infer
the correct key points for detected people. To make these
estimations, we applied a human pose estimation model to
our training and validation sets and discovered the follow-
ing rules: if only the area from the head to the hip is visible,
we found that the location of the accurate key point is ap-
proximately two times the height of the observed area; if
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Figure 6. Overview of inter-camera association

Figure 7. The above image shows a situation where an inaccurate
position was estimated on a 2D global map due to the use of in-
correct key points caused by occlusion. The below image shows
a situation where more accurate position estimation was achieved
on the 2D global map by using accurate key points through human
pose estimation.

only the area from the head to the elbow is visible, we es-
timate the correct location to be three times the observed
height; if the area up to the shoulder is visible, five times
the observed height; and if the area up to the knee is vis-
ible, 1.6 times the observed height. In this work, we used
HRNet [18] as a human pose estimation model, which was
pre-trained with the CrowdPose dataset [9].

Once projective transformation is completed, appearance
features of people captured across multiple cameras are ex-
tracted using ReID models, as described in the previous
Section. To match people detected from two different cam-
eras, we use both location information from the global map
and appearance features. We compute a similarity score be-
tween person pi captured in camera i and person pj cap-
tured in camera j as an element of a matrix that is used in
the Hungarian algorithm. The similarity score is calculated
using the following equation:

sim(pi, pj) = λcos(pi, pj) + (1− λ)dist(pi, pj) (3)

where cos(pi, pj) is the cosine similarity between appear-
ance features of pi and pj , and dist(pi, pj) is the Euclidean
distance between pi and pj on the global map. The value
of λ is set to (0.5 × proportional to the number of observed
key points compared to all key points used in human pose
estimation). In other words, if some parts of the body are
occluded, we assign greater importance to the location in-
formation rather than appearance similarity.

In the subsequent stage of our ICA module (i.e., clus-
ter tracking), tracklets of clusters are matched to the clus-
ters formed at time t. This means that global IDs defined
up to time t − 1 are assigned to the newly generated clus-
ters. To achieve this, we store N bounding boxes in each
tracklet, which are observed at the start of tracking. For
real videos, we set N to 50, while for synthetic videos, we
set it to 25. In order to match the tracklets and the clus-
ters, appearance features are utilized. We also use human
pose estimation to filter out detections whose body parts
are occluded from tracklets, as occlusion can result in inac-
curate similarity scores between appearance features. The
similarity between a cluster and a cluster trackets is calcu-
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# Places # Cameras Frames/video

Train 10 58 18,010
Val 5 28 18,010
Test 7 43 51,769∼58,650 (real)

18,010 (synthetic)

Table 1. The statistics of the datasets for Challenge Track 1

lated using the average appearance similarity between all
n bounding boxes of the individuals in the cluster and all
m bounding boxes in the cluster tracklet. Similarly, match-
ing between clusters and cluster tracklets is executed via the
Hungarian algorithm. New global IDs are also assigned to
the unmatched clusters.

4. Experiments
4.1. Datasets and Evaluation Metrics

In our experiments, we use the dataset for Challenge
Track 1. The training and validation sets consist solely of
synthetic videos, whereas the evaluation set contains both
synthetic and real videos. The dataset statistics are de-
scribed in Tab. 1.

The primary metric used in this study is IDF1 [15]. IDF1
measures the ratio of correctly identified detections over
the average number of ground-truth and computed detec-
tions. As complementary metrics, we also use IDP and
IDR, which are reported specifically for our ablation study
to demonstrate the effectiveness of using human pose esti-
mation.

4.2. Experimental Results

The effectiveness of using human pose estimation. As
described in Tab. 2, incorporating human pose estimation
improves the performance of our MCPT system. In partic-
ular, using pose estimation for clustering significantly im-
proves the performance by discouraging the system from
using inaccurate similarity scores between appearance fea-
tures.

Comparison with other teams: We submitted the re-
sults of our proposed system to the Challenge Track 1 of
the 2023 AI City Challenge for official evaluation. Our sys-
tem achieved an IDF1 score of 86.76% and ranked 10th out
of 27 participating teams, as shown in Tab. 3.

5. Conclusion
In this paper, we have presented our multi-camera peo-

ple tracking system and addressed the issue of occlusion by
utilizing human pose estimation. The experimental results
indicate that incorporating human pose estimation signifi-
cantly improves the inter-camera association module. Addi-

Method IDF1 IDP IDR

Baseline 91.89 91.58 92.20
+ For PT 92.27 91.97 92.57
+ For C 95.42 95.04 92.80
+ For CT 95.48 95.10 92.86

Table 2. The results of ablation study on using a human pose es-
timation. PT, C, and CT stand for projective transformation, clus-
tering, and cluter tracking, respectively.

Rank Team ID IDF1

1 6 95.36
2 9 94.17
3 41 93.31
... ... ...
10 38 (Ours) 86.76
11 47 74.47
12 24 71.22
... ... ...
24 161 13.95
25 172 10.37
26 57 8.69

Table 3. Public leaderboard for the Challenge Track 1

tionally, our method produces promising results on the offi-
cial evaluation set. However, introducing a new deep learn-
ing model may affect the real-time performance of the sys-
tem. To tackle this issue in future work, we plan to employ
deep compression techniques to reduce the latency caused
by heavy deep learning models.

References
[1] Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. Bot-

sort: Robust associations multi-pedestrian tracking. arXiv
preprint arXiv:2206.14651, 2022. 2, 3

[2] Rabah Iguernaissi, Djamal Merad, Kheireddine Aziz, and
Pierre Drap. People tracking in multi-camera systems: a re-
view. Multimedia Tools and Applications, 78:10773–10793,
2019. 1

[3] Glenn Jocher. Yolov8, 2023.
https://github.com/ultralytics/ultralytics. 2

[4] R. E. Kalman. A new approach to linear filtering and predic-
tion problems. Journal of Basic Engineering, 82(1):35–45,
1960. 3
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