
 

 

 

Abstract 

 

Vehicle detection and recognition in drone images is a 

complex problem that has been used for different safety 

purposes. The main challenge of these images is captured 

at oblique angles and poses several challenges like non-

uniform illumination effect, degradations, blur, occlusion, 

loss of visibility, etc. Additionally, weather conditions play 

a crucial role in causing safety concerns and add another 

high level of challenge to the collected data.  Over the past 

few decades, various techniques have been employed to 

detect and track vehicles in different weather conditions. 

However, detecting vehicles in heavy snow is still in the 

early stages because of a lack of available data. 

Furthermore, there has been no research on detecting 

vehicles in snowy weather using real images captured by 

unmanned aerial vehicles (UAVs). This study aims to 

address this gap by providing the scientific community with 

data on vehicles captured by UAVs in different settings and 

under various snow cover conditions in the Nordic region. 

The data covers different adverse weather conditions like 

overcast with snowfall, low light and low contrast 

conditions with patchy snow cover, high brightness, 

sunlight, fresh snow, and the temperature reaching far 

below – 0 degrees Celsius. The study also evaluates the 

performance of commonly used object detection methods 

such as YOLOv8s, YOLOv5s,  and Faster RCNN. 

Additionally, data augmentation techniques are explored, 

and those that enhance the detectors' performance in such 

scenarios are proposed. The code and the dataset will be 

available at https://nvd.ltu-ai.dev 

1. Introduction 

In the Arctic region of Scandinavia, drones are used for 

monitoring purposes in search and rescue missions. Drones 

can be first on-site when accidents occur like car accidents 

or traffic congestion to provide an overview of the event 

scene which can be lifesaving. In rural areas, long distances 

between cities and villages and harsh weather conditions 

such as snow, snow fog, snowstorms, and temperatures 

reaching far below – 0 degrees Celsius make search and 

rescue missions by drones difficult. During wintertime the 

light conditions in the northern hemisphere are low, and for 

upper northern Scandinavia during the occurrence of Polar 

night, the sun never rises above the horizon. During 

wintertime traffic monitoring for road maintenance 

purposes with drones is a timesaving and more 

environmentally friendly option than using cars or trucks 

to inspect the roads. Monitoring bottlenecks in traffic in 

more urban areas is also of interest to early drivers 

commuting to work. In a snowy landscape with snowy cars 

and low light conditions, it is difficult to detect cars from 

the air, even by the human eye. Detecting objects 

concealed by snow presents unique challenges compared 

to other scenarios, primarily because most existing 

detectors are trained on datasets that either contain images 

captured under normal weather conditions [1-2] or on 

artificially generated snow images [3-5]. However, these 

models are not effective in detecting objects in snowy 

conditions since snow hides many of the visual features 

highly crucial and required for object detection. 

This paper assesses how well object detectors perform 

using a dataset captured by unmanned aerial vehicles 

(UAVs) in various winter weather conditions, ranging 

from light to complete snow cover. The goal is to 

investigate whether detectors perform poorly in such 

conditions and to highlight the importance of using 

adequate training datasets when developing detectors. The 

primary focus of this study is using UAV images to detect 

vehicles captured in a wide range of winter weather 

conditions with various degrees of snow cover and not 

limited to roads. To understand the novelty and uniqueness 

of our approach, we conducted an extensive search for 

research papers or projects with a scope like ours. We 

found datasets that use UAV images for vehicle detection 

but have significant differences from our collected dataset, 

leading to different scopes and challenges. In the following 

section, we will attempt to provide a technical summary of 
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other datasets captured by drones that have been used in 

other research. 

2. UAVs dataset 

In this section, we will analyze each of the research 

papers and projects that use images captured by UAV and 

compare their datasets to ours with the aim of highlighting 

the key differences that make our research stand out. We 

aim to demonstrate the novelty and contribution of our 

research in the field of vehicle detection using UAV 

images in different weather conditions such as heavy snow. 

VisDrone dataset [6-8]: The need for computer vision in 

analyzing visual data collected from drones has led to the 

creation of a comprehensive benchmark dataset called 

VisDrone. Developed in China, this dataset was intended 

to facilitate various computer vision tasks related to drone 

imagery. The VisDrone2019 dataset represents an effort to 

merge the fields of computer vision and drone technology, 

however, emphasis is given to object detection regardless 

of the weather conditions and is not limited to vehicle 

detection. It does contain cars, but it also includes other 

kinds of objects such as pedestrians, bicycles, etc. Thus, it 

is expected that the models built on top of this dataset are 

not specialized in vehicle detection under extreme weather 

conditions. It is also based on a different continent, which 

can have a very different view from a drone compared to a 

European city. The benchmark dataset contains 288 video 

clips and 10,209 static images captured by drone-mounted 

cameras in various locations, environments, objects, and 

densities in China. The dataset was collected using 

different drone models, scenarios, and weather and lighting 

conditions. The frames are manually annotated with more 

than 2.6 million bounding boxes of objects of interest. 

UAV project [9-11]: This dataset was slightly more like 

our perspective than the others. It was designed to be a 

challenging dataset for existing object detection solutions 

trained on limited datasets. While it was intended to 

include various weather conditions, its distribution of 

weather conditions suggests that it only includes fog as an 

adverse weather condition. The vehicles annotated in this 

dataset are also present only on the road, which is again a 

main difference from our dataset. It is also mentioned that 

in some places, the vehicles were too small to classify them 

or assess their motion, which is a key difference from our 

dataset, which aims to identify all vehicles, regardless of 

their size, if it is identifiable by us to annotate. The dataset 

consists of 10 hours of raw video that make up the 

proposed UAVDT benchmark and was cut down to 100 

sequences with roughly 80,000 representative frames each. 

The sequences range in frame count from 83 to 2970. A 

UAV platform was used to make films in a variety of 

metropolitan settings, including squares, highways, 

crossings, toll booths, arterial routes, and T-junctions. The 

video sequences are captured at 30 frames per second (fps) 

and in a 1080 x 540-pixel resolution. In the dataset, which 

included 2,700 automobiles, around 80,000 frames from 

the 10 hours of raw footage were annotated with 0,84 

million bounding boxes. 

UAV-Vehicle-Detection-Dataset [12-13]: This dataset 

was created to address the orientation and scale-invariant 

problem, with a focus on detecting and re-identifying 

vehicles. However, it differs from our research in that it is 

primarily concerned with identifying vehicles on roads, 

while our dataset and research aim to identify vehicles in 

any location. Additionally, the dataset only includes 

images captured under normal weather conditions without 

any adverse weather conditions such as rain or snow. There 

is a similarity between this dataset and ours in terms of 

capturing vehicles from various angles, resulting in 

significant perspective distortions, but this is common in 

most UAV datasets. The training dataset for the vehicle 

detector is generated from 3 different sources. It consists of 

154 images from the aerial-cars-dataset in GitHub, which 

comes from a video with no extreme weather conditions, 

1374 images from the UAV-benchmark-M, and a dataset 

of 157 custom labeled images. The proposed solution for 

live tracking of vehicles by detection approach is using 11 

frames per second on color videos of 2720p resolution to 

perform in an efficient way. 

Mimos drone dataset [14-15]: This paper starts with the 

same motivation of our paper, which is protecting and 

securing specific areas by text detection. However, it 

follows a different path, by aiming at identifying the text 

on the plates of the cars, or any other text on the car. Thus, 

although the initial motivation is similar, the dataset used 

and the research itself is completely different from our 

scope. Added to that, weather conditions are not considered 

at all during this research, which plays a key role in our 

research. The dataset consists of 1142 images and most of 

the photos contain parking signs or traffic signals. This 

work focuses on low altitude captured images, the ranges 

are from 1-3, 3-5, and more than 7 meters at different 

angles. As a result, the dataset contains photos with tiny 

text and license plate numbers that are in low resolution. 

Data synthesizing [16]: This paper had been a great 

addition to our research, as it is highlighting the lack of 

datasets containing adverse weather conditions. Its aim is 

to build a model that generates rendered weather conditions 

on images which is different from our scope, but the 

approach that is followed has some interesting key points 

for us. Two datasets are used for training the model, the 

Flickr Weather Image Dataset, and the CARISSMA 

Weather Image Dataset. Both contain images that are not 

recorded from UAV, but they both contain different 

weather conditions such as fog, rain, or snow, and they also 

both contain car objects. The datasets are only focusing on 

street videos, and since they are not recorded from UAV 

the angle is completely different. Thus, even though this 

research tends to have some similarities to our challenges, 
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it is still completely different. 

UAV videos for traffic [17]: This research’s technical 

implementation is closer to our general goal, which is 

detecting vehicles through UAV data. However, the scope 

of this research is to build a model to get traffic 

information, which means that vehicle detection is 

restricted to cars on the streets. Also, no context is given 

about the weather conditions, which is the challenge we 

aim to explore and solve. The data was captured by UAV 

on the main city roads of Chongqing, at a height of 200-

250 meters above the ground. The video has a high 

resolution of 3840 pixels by 2160 pixels. The data was 

created using the VOC2007 standard. 

Other available UAV Dataset: As there are many other 

datasets used for vehicle detection, we will try to list some 

of them in the following table and crossmatch them with 

ours based on the following criteria as explained in both 

table 1 and figure 1. 

 

• Criteria 1 (C1): Data captured from UAV. 

• Criteria 2 (C2): Data has vehicles. 

• Criteria 3 (C3): Location is generic. 

• Criteria 4 (C4): Varying weather conditions. 
 

Table 1. Applied search criteria over available vehicle dataset. 
Dataset C1 C2 C3 C4 Additional info 
DLR 3K 

[17] 

     

VEDAI-

512 [18] 

     

VEDAI-

1024 [19] 
     

DOTA 

[20]  

    Aerial Images from different 

platforms, not specific from UAV, 

contains vehicles, but no 

information about places of images 

(exclusive on streets, or not) or 

weather conditions 

Stanford 

Drone [21] 

    Focused on campus area, which is a 

special case, with very specific type 

of vehicles, and very constrained 

space.  

CARPK 

[22] 

    Only restricted to parking lots 

PUCPR+ 

[22] 

     

CyCAR 

[23] 

     

UA123 

[24] 

     

UAVDT 

[25] 

    No extreme weather conditions 

included  

MOR-

UAV [26] 

    It contains different scenarios such 

as nighttime, occlusion and camera 

motion 

BIRDSAI 

[27] 

     

MOHR 

[28] 

     

NVD     Different weather conditions with 

different snow levels  
 

 
 

Figure 1. sequential checking search criteria 

3. Nordic vehicle dataset (NVD) 

3.1. Data Capturing 

The video datasets were acquired using a Freya 

unmanned aircraft system (figure 2). The flights were 

conducted autonomously according to preprogrammed 

flight plans at altitudes varying from 120 m up to 250 m 

above ground level.  The Freya unmanned aircraft 

specifications are explained in table2. 

 
Table 2. Specification of Freya unmanned aircraft. 

Airframe type Flying wing 

Propulsion Electric, pusher propeller 

Wing span 120 cm 

Take-off weight 1.2 kg 

Cruise speed 13 m/s (47 km/hr) 

 

While the specifications of the camera used to capture the 

image are shown in table 3. 

 
Table 3. Specification of Freya unmanned aircraft. 

Sensor           1.0-type (13.2 x 8.8 mm) Eximor RS CMOS   

Lens f=7.9 mm (35 mm format equivalent 24mm), F 4.0 

Video 
recording  

1080 p or 4K at 25 frames per second 

Still image 16 Mpix 

Sensor            1.0-type (13.2 x 8.8 mm) Eximor RS CMOS  

 

 
Figure 2. Freya unmanned aircraft. 

3.2. Data preparation 

Data annotation: The CVAT tool [29] was used in both 

C1 

Stop Checking 

No No No 
No 

C2 C3 C4 
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online and self-hosted server setups to annotate the 

captured images and videos. CVAT provides rectangular 

bounding boxes for each object in a format that can be used 

by different detectors.  

Data augmentation: Data augmentation is a crucial 

technique for improving the performance of object 

detection models. By increasing the effective size of the 

dataset, data augmentation helps prevent overfitting and 

improve generalization.  

At the same time, it helps to create a more diverse training 

dataset, exposing the model to a wider range of examples. 

Here lies the reason, on why we used albumentations. In 

our case, we aim on a wide range of weather conditions. 

We employed the technique of albumentation for weather 

simulation as some of our data that had normal weather 

conditions. The impact of using albumentation library over 

the NVD is evaluated in Sec 4. we initially used the 

albumentations library to augment our data for training and 

testing. We applied pixel-level transformations, such as 

simulating weather conditions like snow, rain, and fog. To 

keep track of the augmented frames, we saved each 

modified image with a unique identifier. We also made 

sure that any bounding boxes we had in the original images 

remained accurate in the augmented image. To do this, we 

created new annotations that replicated the original 

bounding boxes and added the unique identifier to the 

filename.  This method was offline which required 

enormous disk space and processing time. This restriction 

led us to using the YOLO built-in augmentation which is 

implemented online. YOLO needs hyperparameters to 

define different configurations that impact the model 

training process. Therefore, we assigned values to the 

hyperparameters that influence data augmentation, which 

helps to improve our dataset during training. Some 

hyperparameters that we have set, which affect data 

augmentation, are listed below, but the entire set can be 

accessed through the code available on Github. 

• fl_gamma: 0.0  # focal loss gamma. 

• hsv_h: 0.015  # image HSV-Hue augmentation 

(fraction) 

• hsv_s: 0.7  # image HSV-Saturation augmentation 

(fraction) 

• degrees: 45.0  # image rotation (+/- deg) 

 

Flight height estimation: As part of the data classification 

process, we used flight height as one of the factors. To 

estimate the flight height, we developed a method that 

utilizes the diagonal length of the bounding box in a frame, 

which we obtained from annotation data, perspective 

geometry, and maximum flight height information from 

UAV. The accuracy of the applied method to estimate the 

height of the UAV is explained in figure 3.  

 

 

 

 
Figure 3. Estimation of flight altitude for different videos. 

 

The size of the bounding box in an aerial image can be used 

as an indicator of the flight height. In this work, we use the 

diagonal length of the bounding box denoted by �, as the 

vehicle’s size in the image plane in pixels. We assume that 

the diagonal length of the vehicle is denoted by �  (in 

meters) in the real world. 

 

 
Figure 4. Bounding box’s size defined by its diagonal length �. 
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Figure 4 illustrates the diagonal length of the bounding box 

( � ) in an aerial image. �  is calculated as the Euclidean 

distance between the top-left and bottom-right corners of 

the bounding box. To estimate the flight height, we need to 

establish a relationship between � and the flight height � 

(in meters). Figure 5 depicts the perspective geometry of a 

camera placed at height of �, observing an object with a 

real diagonal length of �  meters. In the figure the focal 

length of the camera is denoted by �. 

� � ��� 

� �
�

�
  

 

This relationship will be utilized to estimate the flight 

height in each frame of the video. We assume that f is 

constant, and L is the same for each vehicle. In each frame, 

we set l as the mean bounding box size among all vehicles, 

and H will be proportional to �. To obtain a polynomial fit 

for each frame, we fit a fourth-degree polynomial to the 

values of �. However, the above simplifications result in 

numerous outliers, to handle them. After fitting the 

polynomial, we determine its maximum value �	
� . Since 

we know the maximum flight height �	
� for each video, 

we can calculate the flight height for each frame of the 

video using the formula: 

� �
�	
�

�	
�
� 

 

 
Figure 5. Perspective geometry of a camera placed at height H 

observing an object with real diagonal length of L. 

 

3.3. Data Description  

Nordic vehicle dataset (NVD) comprises 22 videos of 

aerial footage captured in the north of Sweden, with mostly 

snowy weather conditions. The flight altitudes range from 

120 to 250 meters, with varying snow cover and cloud 

cover. The annotated videos have a total of 8450 annotated 

frames, containing 26313 annotated cars. The resolution of 

the videos varies from 1920 x 1080 to 3840 x 2160, with a 

frame rate of 5 or 25 frames per second. The GSD (Ground 

Sample Distance) or pixel size ranges from 11.1 cm to 22.2 

cm, with some videos being stabilized to ensure smoother 

footage. Overall, our dataset provides a diverse collection 

of aerial images of cars in snowy conditions in northern 

Sweden, with annotated data that can be utilized for various 

applications concerning safety in the region. The following 

image samples were taken from various videos under 

different conditions, and the vehicles have been enlarged 

for better illustration. 

 

 
Sample1: altitude (150), Snow cover (0-1cm), cloud cover (overcast).  

Sample2: altitude (150), Snow cover (0-1cm), cloud cover (overcast). 

 
Sample3: altitude (250), Snow cover (1-2cm), cloud cover (light). 

 
Sample4: altitude (250), Snow cover (5-10), cloud cover (clear). 

 
Sample5: altitude (250), Snow cover (Fresh 5-10), cloud cover 

(clear). 

Figure 6. NVD samples. 
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Table 4. Weather conditions and attributes of videos collected 

for NVD. 
 Flight 

Altitude 

Snow 

Cover 

Cloud 

Cover 

Resolutio

n 

FP

S 

GSD / Pixel 

Size 

Stabilized 

1 130-200 

m 

Minimal 

(0-1 cm) 

Overcas

t 

1920 x 

1080 

5 11.5-17.8 cm TRUE 

2 130-200 

m 

Minimal 

(0-1 cm) 

Overcas

t 

1920 x 

1080 

25 11.5-17.8 cm FALSE 

3 130-200 

m 

Minimal 

(0-1 cm) 

Overcas

t 

1920 x 

1080 

25 11.5-17.8 cm FALSE 

4 130 m Minimal 

(0-1 cm) 

Dense 1920 x 

1080 

25 11.5-17.8 cm FALSE 

5 130 m Minimal 

(0-1 cm) 

Dense 1920 x 

1080 

25 11.5-17.8 cm FALSE 

6 250 m Fresh (1-

2 cm) 

Light 1920 x 

1080 

25 22.2 cm FALSE 

7 250 m Fresh (1-

2 cm) 

Light 1920 x 

1080 

25 22.2 cm FALSE 

8 250 m Fresh (5-

10 cm) 

Clear 3840 x 

2160 

25 11.1 cm FALSE 

9 250 m Fresh (5-

10 cm) 

Clear 1920 x 

1080 

5 20.2 cm TRUE 

10 250 m Fresh (5-

10 cm) 

Clear 3840 x 

2160 

25 11.1 cm FALSE 

11 250 m Fresh (5-

10 cm) 

Clear 3840 x 

2160 

25 11.1 cm FALSE 

12 250 m Fresh (5-

10 cm) 

Clear 3840 x 

2160 

25 11.1 cm FALSE 

13 120 m No snow Clear 1920 x 

1080 

25 11.2 cm FALSE 

14 250m Fresh 

(10-15 

cm) 

Dense 1920 x 

1080 

25 11.5-17.8 cm FALSE 

15 250m Fresh 

(10-15 

cm) 

Dense 1920 x 

1080 

5 11.5-17.8 cm TRUE 

16 250 m Fresh (5-

10 cm) 

Clear 1920 x 

1080 

5 11.1 cm TRUE 

17 130-200 

m 

Minimal 

(0-1 cm) 

Overcas

t 

1920 x 

1080 

5 11.5-17.8 cm TRUE 

18 150 m Minimal 

(0-1 cm) 

Dense 1920 x 

1080 

5 11.5-17.8 cm TRUE 

19 250 m Fresh (1-

2 cm) 

Light 1920 x 

1080 

5 22.2 cm TRUE 

20 250 m Fresh (1-

2 cm) 

Light 1920 x 

1080 

5 22.2 cm TRUE 

21 250 m Fresh (5-

10 cm) 

Clear 1920 x 

1080 

5 11.1 cm TRUE 

22 250 m Fresh (5-

10 cm) 

Clear 1920 x 

1080 

5 22.2 cm TRUE 

4. Experimental Results  

We incorporated three advanced detectors that are widely 

used in both academic research and industrial applications.  

a- YOLOv5s 

b- YOLOv8s 

c- Faster R-CNN 

 

We assessed the performance of these detectors using 

NVD and examined how augmentation methods during the 

data preparation stage affected their performance. For more 

information on the augmentation methods used, please 

refer to section 3.2. 

 

The data has been prepared as follows to train and infer 

the chosen detectors. 

 

 

 

 

 

• Total frames = 8450  

• Train size = 57%  

o 4844 frames  

o 14985 vehicles 

• Val. size = 14%  

o 1212 frames  

o 3991 vehicles  

• Test size = 28%  

o 2394 frames  

o 7337 vehicles 

 

The performance of state-of-the-art detectors was 

measured under different augmentation techniques 

applied to the NVD dataset in order to assess their 

impact. The results for the various augmentation 

techniques used are presented in Tables 5 and 6. 

 
Table 5. Performance of STOA detectors on NVD. 

Model Precision Recall mAP50 mAP50-95 

YOLOv5s 54.2% 33.7% 47.3% 30.5% 

YOLOv5s_Au* 70.6% 48.2% 56.0% 24.1% 

YOLOv8s 65.8% 22.4% 45.1% 29.8% 

YOLOv8s_Au* 77.1% 34.6% 50.7% 24.1% 

* Au means with augmentation  

 

 

 

 
 

 
Figure 7. Vehicles detected by YOLOv8s but YOLOv5s. 
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Figure 8. Vehicles detected by YOLOv5s_Au but YOLOv5s. 

 

 
 

 
Figure 9. Vehicles detected by YOLOv8s_Au but YOLOv8s. 

 
Table 6. Performance of Faster RCNN on NVD. 

Model AP AP50 AP75 APs 

Faster RCNN 24.428 % 46.219 % 23.050% 35.262 % 

 

 
 

 
Figure 10. Detection results by Faster RCNN. 

 

 
 

 
Figure 11. Challenging images - none of the SOTA detectors 

work. 

 

The aim of the following experiment is to assess the 

performance of the current state-of-the-art detectors in 

comparison to other available benchmark aerial data. The 

primary goal is to determine how the performance is 

affected when using our dataset in contrast to the others.  
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Table 7. Performance of SOTA detectors on different UAV 

dataset. 
Dataset Model Recall Precision AP 

DLR 3k  Faster RCNN 78.3 89.2 79.54 

 

Stanford 

drone 

Faster RCNN - - 75.3 

YOLOv3 - - 80 

YOLOv5s - - 82.5 

 

UAVDT 

Faster RCNN - - 27.32 

YOLOv3 88.6 96.5 - 

YOLOv5s 90.2 97.9 - 

 

CARPK 

YOLOv3  95 97 - 

YOLOv5s 97.2 98.5 - 

 

NVD 

Faster RCNN - - 24.4 

YOLOv5s 54.2% 33.7% - 

YOLOv8s 65.8% 22.4% - 

5. Conclusion  

Drones can be used for different purposes related to 

safety as finding events related to car accidents or traffic 

congestion, which can be lifesaving. However, the harsh 

weather conditions and low light during wintertime in the 

northern hemisphere make search and rescue missions by 

drones difficult. This work highlights the importance of 

using adequate training datasets when developing object 

detectors for drones. The Nordic vehicle dataset (NVD) has 

been prepared to be used by the research community for 

better evaluation of the detector performance in varying 

weather conditions. The results of the experiment show 

that simply fine-tuning the current state-of-the-art models 

or augmenting the data will not enable the models to 

achieve the best possible results. This indicates that there 

is a need for current research conducted for vehicle 

detection to utilize and benchmark such challenging data 

collected in difficult situations. Recently a lot of research 

has been initiated on removing snow, rain, fog, etc. [30-

31], however, the effectiveness of deploying them in real-

life snowy conditions with limited computations will be 

explored in future work. 
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