
Improving Deep Learning-based Automatic Checkout System Using Image
Enhancement Techniques

Long Hoang Pham, Member, IEEE, Duong Nguyen-Ngoc Tran, Graduate Student Member, IEEE,
Huy-Hung Nguyen, Hyung-Joon Jeon, Tai Huu-Phuong Tran, Hyung-Min Jeon,

and Jae Wook Jeon, Senior Member, IEEE,

Department of Electrical and Computer Engineering
Sungkyunkwan University, South Korea

{phlong, duongtran, huyhung91, joonjeon, taithp, hmjeon, jwjeon}@skku.edu *

Abstract

The retail sector has experienced significant growth
in artificial intelligence and computer vision applications,
particularly with the emergence of automatic checkout
(ACO) systems in stores and supermarkets. ACO sys-
tems encounter challenges such as object occlusion, motion
blur, and similarity between scanned items while acquir-
ing accurate training images for realistic checkout scenar-
ios is difficult due to constant product updates. This pa-
per improves existing deep learning-based ACO solutions
by incorporating several image enhancement techniques
in the data pre-processing step. The proposed ACO sys-
tem employs a detect-and-track strategy, which involves:
(1) detecting objects in areas of interest; (2) tracking ob-
jects in consecutive frames; and (3) counting objects us-
ing a track management pipeline. Several data generation
techniques—including copy-and-paste, random placement,
and augmentation—are employed to create diverse training
data. Additionally, the proposed solution is designed as an
open-ended framework that can be easily expanded to ac-
commodate multiple tasks. The system has been evaluated
on the AI City Challenge 2023 Track 4 dataset, showcasing
outstanding performance by achieving a top-1 ranking on
test-set A with an F1 score of 0.9792.

1. Introduction
The retail industry has recently experienced a shift with

the incorporation of artificial intelligence and computer vi-
sion technologies, with automatic checkout (ACO) systems

*This work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation(IITP) grant funded by the Korea
government(MSIT) (No. 2021-0-01364, An intelligent system for 24/7
real-time traffic surveillance on edge devices)

emerging as a significant innovation. ACO systems en-
able customers to scan, bag, and pay for their purchases
with minimal or no assistance, resulting in cost savings and
greater flexibility for retailers. Developing a vision- and
deep learning-based ACO system requires addressing chal-
lenges such as object occlusion, motion blur, item similari-
ties, and the implications of miss-detection and misclassifi-
cation. Moreover, the extensive scope and complex nature
of product categories, along with difficulty in acquiring re-
alistic training images due to continuous product updates,
add to the complexity of the development process. For real-
world ACO systems, accuracy, stability, and efficiency are
crucial.

In order to promote further progress in ACO develop-
ment, AI City Challenge 2023 Track 4: Multi-Class Prod-
uct Counting & Recognition for Automated Retail Check-
out (AIC23) [17] has been proposed. This track focuses on
automatically detecting and identifying products within a
camera view to assist in retail store checkouts. When prod-
ucts are visible, the objective is to report information, in-
cluding the product name, id, timestamp, or frame index.
All products are expected to be presented within a defined
region of interest (ROI) in the camera view, a condition that
is typically achievable in real-world situations.

This paper presents DeepACOv2, a deep learning-based
ACO system built upon [20]. DeepACOv2 employs the
same detect-and-track approach, consisting of three primary
steps: (1) detecting candidate objects as bounding boxes;
(2) tracking objects across consecutive frames; and (3) man-
aging tracks for various post-processing tasks such as count-
ing. The data generation process incorporates several tech-
niques to diversify the training data, including copy-and-
paste, random placement, and augmentation. Two main
issues should have been addressed in [20]: motion blur
resulting from rapid scanning movements and operators’

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5333



Figure 1. Examples of scanning and counting products in consecutive frames.

hands obstructing the products. To address the motion blur
problem during the inference stage, NAFNet [6]—a deep
learning-based image enhancement network is utilized. Ad-
ditionally, the LaMa [29] model is employed to inpaint the
blob where operators’ hands block the products. Moreover,
a new IoU-based tracing function is implemented to ensure
that only objects fully within a white tray, i.e., the region
of interest (ROI), are counted. Experiments on AIC23 have
shown competitive results compared to other state-of-the-
art (SOTA) methods, achieving a top-1 ranking with an F1
score of 0.9792.

In short, the main contributions of this paper are:
• Improve the existing DeepACO framework with a

combination of image enhancement techniques in the
data pre-processing step.

• Devise a new product track management scheme that
guarantees to count only objects fully inside the ROI.

• Implement a versatile framework that can be easily in-
tegrated with different techniques to favor accuracy or
processing speed.

The remainder of this paper is structured as follows: Sec-
tion 2 presents related work. Section 3 details the proposed
solution. Section 4 reports on experimental results. Lastly,
Section 5 summarizes the paper’s findings.

2. Related Work
In this section, a brief review of DeepACOv2 systems,

object detection, and multiple objects tracking is presented.

2.1. Automatic Retail Checkout

Researchers have made significant progress in develop-
ing Automated Checkout (ACO) systems to address real-
world problems. In the past, checkouts relied on scan-
ning RFID or QR code tags on retail items as described
in [5]. Recently, vision- and deep learning-based ACO sys-
tems have emerged, with the help of checkout datasets such
as [18, 19, 32]. These datasets aim at generating large train-
ing sets using synthetic data and data augmentation tech-

niques. AIC22 [18] Track 4 is the latest dataset that in-
cludes both synthetic and real-world data aimed at auto-
matic checkout process in retail store. Based on AIC22,
various studies [2,20,27,28,30] have reported encouraging
results by combining different vision techniques. However,
further efforts are needed to enhance ACO systems perfor-
mance.

2.2. Object Detection

Object detection is a critical task in computer vision that
involves identifying and locating objects within images or
videos. Deep learning-based methods have become state-
of-the-art object detection in recent years, delivering excep-
tional performance and accuracy. There are two primary
approaches: two-stage detectors and single-stage detectors.
Two-stage detectors, such as R-CNN [9], Fast R-CNN [8],
and Faster R-CNN [24], first generate region proposals us-
ing a separate model or algorithm and then classify the ob-
jects within those regions. This approach tends to be more
accurate but slower than single-stage detectors.

Single-stage detectors, such as YOLO [21] and SSD
[14], forgo the region proposal phase, predicting object
classes and bounding box coordinates in a single pass.
While these models are generally faster, their accuracy
may be compromised, particularly for small or overlap-
ping objects. The YOLO model’s later iterations, specif-
ically YOLOv2-7 [4, 10, 22, 23, 31], have seen continu-
ous improvements in accuracy, making them a favored
choice for applications requiring low-latency, like robotics,
autonomous vehicles, and video surveillance. Notably,
YOLOv8 [11], the most recent and powerful variant, has ex-
hibited outstanding performance in the COCO benchmark
[13]. YOLOv8 has surpassed YOLOv5 in terms of accu-
racy, with the YOLOv8s model achieving an average pre-
cision of 51.4% on the COCO dataset and the YOLOv8m
model reaching an average precision of 54.2% on the same
dataset. YOLOv8 has also demonstrated superior perfor-
mance in detecting small objects and addressed some limi-

5334



tations of YOLOv5. Additionally, it features a shared back-
bone that can be utilized in various tasks, including object
detection, semantic segmentation, and keypoint detection.
Furthermore, YOLOv8 is even faster than YOLOv5. In this
paper, YOLOv8 [11] object detection is employed to detect
products and trays. In addition, YOLOv8 instance segmen-
tation model is used generate human masks for the human
inpainting task.

2.3. Multiple Objects Tracking

Recently, SORT [3], DeepSORT [33], and ByteTrack
[34] are some of the most popular and widely used multiple
object tracking methods. SORT [3] follows the tracking-
by-detection approach, connecting detections from previous
and current frames using data association and state estima-
tion methods based on the Kalman filter. It also accom-
modates object re-entry within a set time frame and han-
dles partial occlusion. DeepSORT [33] builds on SORT [3]
by incorporating a deep association metric rooted in image
features. In ByteTrack [34], all detections are associated
despite their low confidence scores, further improving the
performance of tracking multiple objects in complex envi-
ronments.

3. Methodology
The DeepACOv2 system consists of a central detect-

track-count pipeline and a collection of pre-processing
methods, referred to as a bag-of-tricks. The following sub-
sections provide a more in-depth discussion of each of these
techniques in sequential order.

3.1. Image Enhancement

Enhance noisy images. AIC23 [17] track 4 provides a
dataset for multi-class product counting and recognition in
automated retail checkout scenarios. This dataset contains
116,500 synthetic images of 116 distinct products captured
using a 3D scanner. Due to the scanning technique, the
images exhibit fine-grained noise on the objects’ surfaces.
Training object detection models with these images, as done
in [2, 20, 27, 28, 30], may result in reduced accuracy.

NAFNet [6] is a state-of-the-art general model designed
for image restoration. A key feature of NAFNet is its non-
linear activation-free nature, making it computationally ef-
ficient. NAFNet is capable of handling both denoising and
deblurring tasks. This study employs pre-trained NAFNet
models to enhance the visualization of training images and
testing videos. Fig. 2 displays the improved training im-
ages. Directly applying denoising during the experiments
results in blurred details, as illustrated in Fig. 2b. Con-
versely, applying deblurring produces a smoother image
while preserving texture sharpness, as shown in Fig. 2c.
Additionally, combining denoising and deblurring does not
yield better outcomes. Therefore, this paper uses a NAFNet

pre-trained on the REDS dataset [16] for the enhancement
process. The enhanced images are then incorporated into
synthetic data generation, as described in Section 3.3.

Remove motion blur. AIC23 [17] track 4 testing data
consists of several video recording operators scanning prod-
ucts where motion blur is a common issue. As shown in
Fig. 3, the camera’s frame rate cannot keep up with the op-
erator’s quick scanning motion, causing product details to
become blurred. As a result, object detection models gener-
ate numerous false positives. Therefore, deblurring images
can improve theirs visual quality, making it easier to see
fine details and reducing the blurriness caused by motion or
other factors. As a result, it can help to improve the accu-
racy of object detection. The NAFNet [6] deblurring model
pre-trained on the REDS dataset [16] is also utilized to the
testing videos during the inference phase. Fig. 3b depicts
how NAFNet can restore blurry texture details present on
the product.

3.2. Human Inpainting

During product scanning, the operator’s hands or body
may partially obstruct the item, hindering the detection and
tracking process. In [20], the authors attempted to detect
hand keypoints using MediaPipe [15] and employed these
keypoints to identify products being handled. However, this
method is susceptible to considerable error. Conversely, [2]
recommended eliminating human elements using the LaMa
[29] inpainting technique, which has proven to be more suit-
able. Thus, this paper adopts the same strategy.

The LaMa [29] method requires two inputs: an RGB im-
age and a binary mask highlighting the area to be removed.
Hence, the human mask must be generated beforehand. A
YOLOv8 [11] instance segmentation model, pre-trained on
the COCO [13] dataset, is utilized for this purpose. The hu-
man instance segmentation masks are visualized in Fig. 3c.
The inpainting process occurs frame-by-frame. An example
of the LaMa technique can be observed in Fig. 3d.

3.3. Data Generation

AIC23 Track 4 Dataset. The AIC23 [17] Track 4 offers
a dataset for multi-class product counting and recognition
in the context of automated retail checkout. This dataset
consists of 116,500 synthetic images P, along with masks
M intended for training. The images were generated us-
ing 116 unique product models obtained via a 3D scanner.
To increase the dataset’s diversity, random background im-
ages were selected from the COCO [13] dataset. Figure
4 presents some sample images and their respective masks
for several classes. Furthermore, a video test set is also
recorded. The test set is split between Test sets A and B
with a ratio 40% to 60% accordingly. Test set A has been re-
leased for testing and result evaluation via the AIC23 evalu-
ation server. Test set B is reserved for additional evaluation

5335



(a) Input. (b) Denoising. (c) Deblurring. (d) Denoising and deblurring.

Figure 2. Illustration of denoising and deblurring on training images using NAFNet. Images are best viewed in color.

(a) Input image. (b) Deblurred image. (c) Human mask. (d) Inpainting result.

Figure 3. Illustration of motion deblurring and human inpainting on testing videos. Images are best viewed in color.

and determining the final ranking.
Synthetic Data Generation. Due to the strict limita-

tions on external data usage imposed by AIC23, a custom
synthetic dataset is created to train the detector. A copy-
and-paste data generation pipeline is outlined in Algorithm
1 and depicted in Fig. 4. Initially, multiple clean back-
ground images BG are extracted from test videos. Next,
n product images Pn and masks Mn are chosen from P
and M. It is important to note that the product images Pn

were previously refined as discussed in Section 3.1. A bit-
wise and operation is performed between Pn and Mn to
obtain background-free product images Fn. Following this,
random rotation and scaling augmentations are applied to
Fn. Subsequently, Fn is randomly inserted into BG and
bounding boxes B are documented. Lastly, Fn is merged
with BG to generate the training image I. A total of 54,475
images are generated, with an 80-20 split for training and
validation purposes.

3.4. Tray Detection

During the AIC23 [17] test, the camera was placed di-
rectly above the checkout counter, facing downward. A
shopping tray, positioned below the camera, served as the
region of interest (ROI). However, the tray’s location varied

throughout the test videos, and the camera was moved at
some distance. As a result, it was necessary to re-localize
the white tray in every frame. In [26], the white tray are la-
beled in the synthetic training images to train the U-Net [25]
model. In contrast, [2] suggested using a flood fill algorithm
combined with the Scharr operator to identify the tray’s pix-
els. These methods, however, assume that the tray is situ-
ated near the image’s center, which can lead to errors when
the camera is moved, as show in Fig. 5b. In this paper, a
YOLOv8l [11] detection model is trained separately to de-
tect the white tray automatically. The most significant chal-
lenge lies in generating training data. In the synthetic train-
ing image I detailed in Section 3.3, the flood fill method
from [2] is employed to create pseudo-label bounding box
labels. To simulate a moving camera, augmentation tech-
niques such as random cropping, random shifting, and ran-
dom rotation are applied during the training of YOLOv8l
[11]. The model is run every frame, and the output bound-
ing box coordinates are used as the ROI. The tray detection
results can be found in Figs. 5c and 1.

3.5. Product Detection and Tracking

Product Detection. The detection module is a critical
component in any surveillance system. YOLOv8x6 [11] is

5336



Figure 4. Illustration of the data generation process.

Algorithm 1: Data generation algorithm.
Data:

• BG: background images
• P: product images
• M: binary masks

Result:
• I: training images
• B: bounding boxes

n← random(1, 7);
angle← random(0, 360);
scale← random(0.8, 1.2);
In,Mn ← randomly select n items from (I,M);
Fn ← In & Mn;
Fn ← rotate(Fn, angle) + resize(Fn, scale);
IFn ← invert threshold(Fn);
B← randomly insert IFn into BG;
I← B+ Fn;

employed for detection, as it achieves high accuracy on pub-
lic datasets. The model is trained on the provided dataset of
generated objects, as outlined in Section 3.3, with 116 out-
put classes. The same training configuration as in [11] is ap-
plied. Furthermore, both basic (rotation, translation, crop-
ping, etc.) and advanced augmentations (RandAugmenta-
tion [7] and mosaic [4]) are utilized. Adam [12] optimizer
is used to train the model. The model achieves a 98.09% ac-
curacy on the validation set during training. For each frame,

the detector outputs a list of object positions, confidence
scores, and class ids. Each detection result is decoded as
[idx, x1, y1, x2, y2, cls, conf ], where idx is the frame in-
dex which is subsequently used in tracks post-processing.

Product Tracking. Tracking is an the key process in
video processing. The tracking module assigns an id to a
detected object, associates it in consecutive frame to ensure
that the item is only identified once. Similar to [20], SORT
[3] algorithm is used with some adjustments in the track
management scheme. The tracking steps are described as
follows:

• New detection. New items are identified by the detec-
tor, and each item is subsequently fed into the SORT
tracker. Existing tracks are updated with correspond-
ing items, and a new track is created for any unmatched
items. If a track has not been updated for a duration of
max age, it is removed.

• Candidate. The detected item is marked as a candi-
date when it’s bounding box center is inside the ROI,

• Confirmed. A candidate item must be tracked suc-
cessfully for a minimum of min hit streak consec-
utive frames. To ensure that an item is counted only
when it is entirely within the ROI, the candidate item
must be at least min entering distance away from
the closest corner of the ROI. Once all conditions are
met, the candidate item is designated as confirmed.
The confirmed state represents the primary stage in the
lifetime of an item.

5337



(a) Inpainted image. (b) Flood fill method [2].

(c) YOLOv8l [11].

Figure 5. Illustration of tray detection.

• Counting. For a confirmed item to be eligible for
counting, it must meet several criteria. First, there may
be instances where the operator moves an item in and
out of the ROI without actually scanning it, which can
be referred to as a ”ghost”-scanning action. To avoid
counting these items incorrectly, the item must remain
confirmed for at least min confirms frames. Sec-
ond, some products might be too large to fit entirely
within the ROI, as illustrated in Fig. 6. In such cases,
the IoU value between the item’s bounding box and
the ROI’s bounding box must be calculated and ex-
ceed the min counting iou threshold. Third, since
the scanning action occurs around the center of the
white tray in all testing videos, an item must be at least
min counting distance pixels away from the ROI’s
center to be marked as a counting item.

• Counted. At the end of each processing loop, the
counter searches for all counting items and logs them
into the result file. Subsequently, these items are
labeled as counted. All counted items remain in
the tracking list until they haven’t been updated for
max age, at which point SORT deletes them.

3.6. Product Counting

The last stage in the processing loop involves counting
products. Within each track, all detected instances of an
item are stored. A majority voting scheme is employed to
establish the item’s final class, which is then reported as the
definitive class for the entire track. The item is subsequently
recorded in the result file. Additionally, as part of the solu-
tion, the frame index is also provided.

4. Experiments
4.1. Experimental Settings

Implementation Details. The DeepACOv2 system is
implemented using PyTorch on an Intel Core i7-7700, an
NVIDIA RTX 3090 24GB, and 32GB RAM. The training
of deep learning model are described follows:

• Product detection: YOLOv8 detectors are trained us-
ing the synthetic dataset (Section ??). Several versions
(l, x, x6) of YOLOv8 are trained, and YOLOv8x6
proves to be the most effective when trained for 50
epochs with an input image size of 1920 × 1920. All
other training parameters follow the original network
settings [11]. The validation results of each model
variants are summarized in Table 2.

• Tray detection: a YOLOv8x detector is trained using
an input image size of 640 × 640 for 20 epochs. The
tray’s bounding boxes are derived from the test video
as depicted in Section 3.5.

• Inpainting: a YOLOv8x instance segmentation model
pretrained on the COCO [13] dataset is employed to
extract binary masks, which are then used in the LaMa
[29] inpainting process. The LaMa model is pretrained
on the Places2 dataset [35].

• Image enhancement: A NAFNet [6] model pre-trained
on REDS dataset [16] is used for the deblurring task.

Pre-processing Procedure. The procedure starts with
the extraction of separate frames from videos utilizing the
FFmpeg library [1] to guarantee consistent frame IDs. Fol-
lowing this, all images are deblurred to improve the objects’
visual appearance. Next, YOLOv8 [11] instance segmenta-
tion infers the enhanced images to extract human instance
masks. Upon obtaining the instance masks, LaMa [29] is
applied to remove human parts. Finally, the resulting out-
puts are used in the main processing step.

Main Processing Procedure. The main processing pro-
cedure is the detect-track-count paradigm. YOLOv8 detec-
tors are employed to identify the tray, which also serves as
the ROI, as well as to detect candidate objects. The result-
ing outputs are then fed into the SORT [3] tracker. The
track management module governs over tracks creation, up-
date, deletion, and determines when products are ready for
counting. The hyperparameters are configured as specified
in Table 1.

4.2. Evaluation

The evaluation is performed on 4 videos of test set A
using F1 score:

F1 =
TP

TP + 0.5× (FP + FN)
, (1)

where a true-positive (TP) identification occurs when an ob-
ject is accurately counted within the ROI, specifically when

5338



Table 1. Hyperparameters for the track management process.

Hyperparameter Value

max detections 3
min entering distance 100
min hit streak 3
max age 3
min confirms 3
min counting distance 50
min counting iou 0.9

Table 2. Validation results of different YOLOv8 variants.

Variant Precision Recall mAP50

YOLOv8l 0.9954 0.9867 0.9867
YOLOv8x 0.9950 0.9863 0.9900

YOLOv8x6 0.9953 0.9950 0.9910

the object is fully inside the white tray. A false-positive
(FP) refers to an identified object that does not qualify as a
TP identification. Finally, a false-negative (FN) identifica-
tion takes place when a ground-truth object is not correctly
identified.

During the experiments, various hyperparame-
ter values were tested. For example, not using the
min entering distance resulted in items being counted
before they had fully entered the ROI, leading to an F1
score of only 0.7150. Adding min counting iou and
min counting distance provided fine-grained control
over the tracking process, increasing the F1 score to 0.9536.
Moreover, as no more than three items are scanned at once,
the maximum number of detections per frame is set to 3,
which helps reduce false positive detections. Additionally,
increasing the image resolution to 1024 × 1024 improves
the result to 0.9688. The final hyperparameter values are
presented in 1. In some instances, the scanning action is
too fast, creating duplicate tracks and leading to the same
items being counted multiple times. To address this issue,
only the first of any consecutive duplicate counts of the
same items is retained in the output file. The final ranking
results of the challenge are displayed in Table 3, with our
approach achieving first place for Test Set A and an F1
score of 0.9792.

5. Conclusion
This paper introduces DeepACOv2, a deep learning-

based automatic checkout system that incorporate several
improvements over predecessor studies. DeepACOv2 sys-
tem has a detect-track-count pipeline, which includes: (1)
identifying objects in regions of interest; (2) tracking ob-
jects across consecutive frames; and (3) counting objects

Table 3. Public leaderboard of AIC23 Track 4 on test set A.

Rank Team ID Team Name F1 Score

1 33 SKKU Automation Lab 0.9792
2 21 BUPT MCPRL 0.9787
3 13 Zebras 0.8254
4 1 SCU Anastasiu Lab 0.8177
5 23 Fujitsu R&D Center 0.7684
6 200 Centific 0.6571
7 65 dtb2023 0.4757
8 64 Fu 0.4215
9 9 HCMIU-CVIP 0.3837
10 68 UTE AI 0.3441

through a track management pipeline. Additionally, the
system employs image enhancement techniques to address
issues of motion blur and noisy images. Various data
generation techniques—including copy-and-paste, random
placement, and augmentation—are utilized to create diverse
training data. Moreover, the proposed solution is designed
as an open-ended framework, facilitating easy expansion to
support multiple tasks. The system has been evaluated on
the AI City Challenge 2023 Track 4 dataset, showcasing
exceptional performance by achieving a top-1 ranking on
test-set A with an F1 score of 0.9792.

References
[1] Ffmpeg (http://www.ffmpeg.org). 6
[2] Vojtěch Bartl, Jakub Špaňhel, and Adam Herout. Per-

songone: Image inpainting for automated checkout solution.
In CVPRW, pages 3114–3122, 2022. 2, 3, 4, 6

[3] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Sim-
ple online and realtime tracking. In ICIP, pages 3464–3468,
2016. 3, 5, 6

[4] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4:
Optimal speed and accuracy of object detection. arXiv, 2020.
2, 5

[5] M. F. M. Busu, I. Ismail, M. F. Saaid, and S. M. Norzeli.
Auto-checkout system for retails using radio frequency iden-
tification (rfid) technology. In ICSGRC, pages 193–196,
2011. 2

[6] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. In ECCV, page
17–33, 2022. 2, 3, 6

[7] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le. Randaugment:
Practical automated data augmentation with a reduced search
space. In NeurIPS, volume 33, pages 18613–18624, 2020. 5

[8] R. Girshick. Fast r-cnn. In ICCV, pages 1440–1448, 2015. 2
[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, pages 580–587, 2014.
2

[10] G. Jocher. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow
Edge TPU and OpenVINO Export and Inference, 2022. 2

5339



(a) Item is not fully inside the ROI. (b) Complex scanning action. (c) Operator moves item in and out of the ROI.

Figure 6. Examples of difficult scanning actions. Images are best viewed in color and zoom in.

[11] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Yolo by ultr-
alytics, 1 2023. 2, 3, 4, 5, 6

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, page 13, 2015. 5

[13] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In ECCV, volume 8693, pages 740–
755, 2014. 2, 3, 6

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. Ssd: Single shot multibox detector. In
ECCV, volume 9905, pages 21–37, 2016. 2

[15] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja,
M. Hays, F. Zhang, C.-L. Chang, M. G. Yong, J. Lee, W.-
T. Chang, W. Hua, M. Georg, and M. Grundmann. Me-
diapipe: A framework for building perception pipelines.
arXiv:1906.08172, 2019. 3

[16] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik
Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu
Lee. Ntire 2019 challenge on video deblurring and super-
resolution: Dataset and study. In CVPRW, 2019. 3, 6

[17] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M. Chang,
Y. Yao, L. Zheng, M. Shaiqur Rahman, A. Venkatachala-
pathy, A. Sharma, Q. Feng, V. Ablavsky, S. Sclaroff, P.
Chakraborty, A. Li, S. Li, and R. Chellappa. The 7th ai city
challenge. In CVPRW, 2023. 1, 3, 4

[18] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C.
Chang, Y. Yao, L. Zheng, M. S. Rahman, A. S., Q. Feng,
V. Ablavsky, S. Sclaroff, and R. Chellappa. The 6th ai city
challenge. In CVPRW, 2022. 2

[19] Jingtian Peng, Chang Xiao, Xun Wei, and Yifan Li. Rp2k:
A large-scale retail product dataset for fine-grained image
classification. arXiv, 2020. 2

[20] Long Hoang Pham, Duong Nguyen-Ngoc Tran, Huy-Hung
Nguyen, Tai Huu-Phuong Tran, Hyung-Joon Jeon, Hyung-
Min Jeon, and Jae Wook Jeon. Deepaco: A robust deep
learning-based automatic checkout system. In CVPRW,
pages 3106–3113, 2022. 1, 2, 3, 5

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, pages 779–788, 2016. 2

[22] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.
In CVPR, pages 6517–6525, 2017. 2

[23] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv, 2018. 2

[24] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NeurIPS, page 91–99, 2015. 2

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241, 2015. 4

[26] Md. Istiak Shihab, Nazia Tasnim, Hasib Zunair, Labiba
Rupty, and Nabeel Mohammed. Vista: Vision transformer
enhanced by u-net and image colorfulness frame filtration
for automatic retail checkout. In CVPRW, pages 3182–3190,
2022. 4

[27] Md. Istiak Hossain Shihab, Nazia Tasnim, Hasib Zunair,
Labiba Kanij Rupty, and Nabeel Mohammed. Vista: Vision
transformer enhanced by u-net and image colorfulness frame
filtration for automatic retail checkout, 2022. 2, 3

[28] Maged Shoman, Armstrong Aboah, Alex Morehead, Ye
Duan, Abdulateef Daud, and Yaw Adu-Gyamfi. A region-
based deep learning approach to automated retail checkout,
2022. 2, 3

[29] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In WACV, pages 3172–3182, 2022. 2,
3, 6

[30] Junfeng Wan, Shuhao Qian, Zihan Tian, and Yanyun Zhao.
An effective framework of multi-class product counting and
recognition for automated retail checkout. In CVPRW, pages
3282–3290, 2022. 2, 3

[31] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Scaled-
yolov4: Scaling cross stage partial network. In CVPR, pages
13029–13038, 2021. 2

[32] Xiu-Shen Wei, Quan Cui, Lei Yang, Peng Wang, Lingqiao
Liu, and Jian Yang. Rpc: A large-scale retail product check-
out dataset. SCIS, 65:1869–1919, 2022. 2

[33] N. Wojke, A. Bewley, and D. Paulus. Simple online and
realtime tracking with a deep association metric. In ICIP,
pages 3645–3649, 2017. 3

[34] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng
Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang
Wang. Bytetrack: Multi-object tracking by associating every
detection box. In ECCV, 2022. 3

[35] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. 40(6):1452–1464, 2018. 6

5340


