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Abstract

Unmanned aerial vehicles (UAVs) have been widely used
in various application domains, but unauthorized UAVs may
pose a threat to public safety due to violation of aviation
regulations. Therefore, how to design an effective UAV
tracking method for anti-UAV is a crucial part of the UAV-
defense system. In this paper, we propose a Global-Local
Tracking Framework driven by both Motion and Appear-
ance (GLTF-MA) including four modules to deal with the
practical difficulties in infrared anti-UAV. Firstly, a Peri-
odic Global Detection (PGD) module is periodically per-
formed to re-locate UAVs in the whole image to account
for frequent appearance/disappearance and unstable flight
paths of UAVs. Meanwhile, a Multi-stage Local Tracking
(MLT) module containing a priori stage switching mecha-
nism, motion-appearance matching mechanism, and a mo-
tion estimation punisher is routinely implemented to deal
with the tiny size of UAVs and background interference.
Next, a Target Disappearance Judgement (TDJ) module is
performed to give a robust target disappearance flag, fol-
lowed by a Bounding Box Refinement (BBR) module to re-
fine the target box when the TDJ module thinks the target
exists. Extensive experiments demonstrate the superiority
of GLTF-MA over other competing counterparts, especially
when the UAV is low resolution and moves quickly.

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have
been widely used in wildlife monitoring, crowd monitor-
ing/management, and videography of extreme sports [1],
etc. Nevertheless, unauthorized UAVs may violate avia-

tion safety regulations, thereby posing a potential threat to
public safety such as airport disruptions and flight delays.
Nowadays, it is highly desired to develop anti-UAV tech-
niques to defend against these UAV accidents.

Common sensors in the traditional anti-UAV systems
consist of radar [2], radio [3], and sonar [4], yet their perfor-
mance is suboptimal because relatively small UAVs are dif-
ficult to perceive by these sensors. Recently, infrared imag-
ing technology has been prevalent for UAV tracking with its
all-day imaging capability and stability in harsh conditions
[5]. However, there are several difficulties in infrared anti-
UAV: (i) UAV frequently disappearing/appearing in view
due to low flight altitudes and being occluded, (ii) erratic
flight paths, (iii) tiny size and lack of appearance informa-
tion, (iv) background interference in complex environments
such as forests and buildings. Hence, it is still a challenging
task to detect and track UAVs in infrared videos with high
accuracy. [6, 7]

With the rapid development of computer hardware, deep
learning-based trackers [8–12] play a dominant role in the
field of target tracking. The framework of these trackers
typically contains three main components: A backbone to
extract deep features of the templates and the search region,
an integration module to fuse the features of the templates
and the search region, and a prediction head to locate the
target. While considering tracking UAVs, which contains
a wide range of target occlusion and erratic flight paths
situations, it will degrade the performance of such a gen-
eral tracking framework that only locates the target within
a local search region. To alleviate this problem, we design
a global-local tracking frame to switch between the local
search region and the entire image for robust tracking. In
addition, infrared UAVs are characterized by low resolution
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Figure 1. Visualization results of GLTF-MA (ours) and Mix-
Former on the 3rd Anti-UAV challenge. Compared with Mix-
Former, in the first row, the prediction box of GLTF-MA is more
accurate; In the second row, GLTF-MA can find the target faster
when the target reappears in the view; In the third row, GLTF-MA
can better resist background interference.

and lack of appearance information, which is prone to make
the background objects mislead these trackers without tar-
get temporal cues. Hence, we introduce both the motion
and appearance cues to assist in judging the true location of
UAVs.

Concretely, a Global-Local Tracking Framework driven
by both Motion and Appearance (GLTF-MA) for infrared
anti-UAV is proposed in this paper, which consists of the
following four modules. Firstly, a Periodic Global De-
tection (PGD) module is periodically performed to use
a global detector to re-locate UAVs in the whole im-
age, which alleviates the problems of UAV frequent ap-
pearance/disappearance and unstable flight paths. Mean-
while, a Multi-stage Local Tracking (MLT) module is rou-
tinely implemented to deal with the tiny size of UAVs
and background interference, which contains a Priori Stage
Switching (PSS) mechanism, Motion-Appearance Match-
ing mechanism (MAM), and a Motion Estimation Punisher
(MEP). Especially, the PSS mechanism uses an efficient lo-
cal tracker [12] to give the initial target box, followed by
calculating its final score with prior knowledge to accurately
determine whether the local tracker is misleading. When
the PSS mechanism thinks that the local tracker is mislead-
ing, the MAM mechanism and the MEP are performed to
utilize the optical flow and appearance information to lo-
cate target. Next, a Target Disappearance Judgement (TDJ)
module and a Bounding Box Refinement (BBR) module are
performed to give robust target disappearance flags and re-
fine the target box, respectively. The visualization results of
GLTF-MA are shown in Fig. 1.

The main contributions of GLTF-MA are summarized as

follows.

• A unified tracking framework GLTF-MA is proposed
that adaptively switches between local tracking and
global detection to deal with UAV frequent appear-
ance/disappearance and unstable flight paths.

• A PGD module containing a PSS mechanism, a MAM
mechanism, and a MEP is proposed to solve the tiny
size of UAVs and background interference.

• A TDJ module and a BBR module are proposed to give
robust target disappearance flags and refine the target
box.

• Extensive experimental results show that GLTF-MA
performs significantly better than other competing
trackers in the 3rd Anti-UAV Challenge.

2. Related Works
2.1. Tracking Paradigm

At present, the architecture of the advanced trackers
mainly consists of three parts: a backbone to extract fea-
tures, a fusion module for aggregating features of the tem-
plate and the search region, and a prediction head to lo-
cate the target. Most trackers regard the modified ResNet
[13] as the first choice for backbone, while LightTrack [14]
automatically searches the backbone by the one-shot neu-
ral architecture search technique. Siamese-based trackers
[8–10,15,16] use a correlation operation in the fusion mod-
ule to establish relationships between templates and search
regions, while recent transformer-based trackers [12,17–21]
use the attention mechanism in the fusion module to fully
utilize the global context information and adaptively focus
on useful tracking information. Common candidate predic-
tion heads include the regression and classification-based
head [17,20,22], the query-based head [23], and the corner-
based box estimation head [12, 18].

Although the above tracking pipeline continues to have
ingenious modules being proposed, it still faces several
major problems in the practical application of anti-UAV.
Firstly, as the UAVs continue to move and change the an-
gle, the template feature extracted by the backbone is not
in the appearance state that meets the current target. Sec-
ondly, because UAVs are usually small targets with fast
speed, the search region features contain less target infor-
mation, which can easily lead to tracking failures. Finally,
UAVs are often obscured due to fluttering clouds, and this
tracking paradigm cannot determine when UAVs disappear
and how to recover them in time when UAVs reappear in
view. As a result, we design a global-local tracking frame
to switch between the local search region and the entire im-
age for robust tracking.
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Figure 2. Visualization results of GLTF-MA (ours) and MixFormer on the 3rd Anti-UAV Challenge.

2.2. Tracking by Detection

Many trackers adopt the tracking by detection approach
to cope with frequent disappearance/appearance of the tar-
get in the view, especially in long-term tracking. TLD [24]
is a classical algorithm for solving long-term tracking prob-
lems, which uses the optical flow technique and weak clas-
sifiers to combine local tracking and global redetection.
Based on this, many models [25, 26] that combine different
local trackers and different global detectors to solve long-
term tracking problems have been proposed. Meanwhile,
other models [27, 28] use the mechanism of expanding the
search region to locate targets when tracking fails.

Inspired by the tracking by detection approach, on the
one hand, we introduce global detection in the PGD module
to ensure that the local tracker tracks in the correct search
region. On the other hand, we add a MAM mechanism with
the global detection capability to the MLT module to deal
with the failure of the local tracker.

2.3. Tracking against Background Interference

During the tracking process, the target deformation
caused by rotation and scale change will result in the tracker
to be interfered with similar-looking objects in the back-
ground. To solve this problem, some models [29, 30] have
introduced an online template update mechanism to timely
capture the target slight appearance changes and avoid in-
terference. STMTrack [31] proposes a space-time memory
network to store the historical information of the target and
guide the tracker to focus on the area with the most target
information. SwinTrack [32] embeds historical target tra-

jectories into motion tokens to improve tracking. Further-
more, some researchers have proposed the fast transforma-
tion learning model [33], the distractor-aware module [28],
and backward gradients integration [34] to customize the
template update method [33–36].

In the context of infrared anti-UAV, the available appear-
ance information is scarce due to the tiny size and blurred
appearance, making trackers more susceptible to be inter-
fered. In this paper, we propose the MLT module to al-
leviate this problem, where the MLT module first uses the
PSS mechanism with UAV flight prior knowledge to prevent
the local tracker from mis-tracking, then adopts the MAM
mechanism to suppress interference by matching the optical
flow results and global detection results. Finally, a MEP is
used to further ensure that the search region remains within
acceptable limits.

3. GLTF-MA

In this section, GLTF-MA is introduced in detail, which
consists of four modules: a PGD module, an MLT module, a
TDJ module, and a BBR module, whose overall framework
is presented in Fig. 2. Firstly, the PGD module is performed
periodically to ensure that the target is included in the search
region of the MLT module, which deals with the frequent
appearance/disappearance of targets and erratic flight paths.
The MLT module is executed almost every frame, which
performs corresponding search techniques stage by stage
based on the current tracking reliability. Then, the TDJ
module judges whether the target is out of view according
to the tracking status. Finally, when the target is considered
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to be in view, the BBR module adjusts the outputs of the
PGD and MLT modules to give more accurate target boxes.

3.1. Periodic Global Detection Module

Existing trackers often crop the current search region ac-
cording to the target location in the previous frame, whose
performance strongly depends on the accuracy of the pre-
diction location in the previous frame. However, UAVs have
the characteristics of frequent appearance/disappearance in
the view and erratic flight paths, which greatly reduces the
correlation between the current target position and the last
target position, making existing trackers fail. To solve this
problem, we adopt the PGD module to re-locate the tar-
get within the full image to ensure the search region of
the MLT module contains the target. Here, YOLOv7 [37]
is adopted as the global detector due to its fast inference
speed and high detection accuracy. Compared with other
YOLO variants [38–40], YOLOv7 designs trainable bag-
of-freebies methods, so that real-time object detection can
greatly improve the detection accuracy without increasing
the inference cost. In addition, YOLOv7 proposes “extend”
and “compound scaling” methods for the real-time object
detector that can effectively utilize parameters and compu-
tation. As a result, we adopt YOLOv7 as the base detector
in the PGD module.

Specifically, we firstly use the UAVs in the training set of
the 3rd Anti-UAV Challenge as a new class to fine-tuning
the trainable parameters of YOLOv7. Then, the trained
YOLOv7 performs global UAV detection on the entire im-
age every I frame. If the confidence score of the best box in
the detection result is greater than the threshold δ, the box is
selected as the tracking result of the current frame. Other-
wise, the MLT module is performed to search for the target
position.

3.2. Multi-stage Local Tracking Module

The UAV flight background is complex and the appear-
ance information is scarce, making a single local tracker
easy to lose the target. In this paper, we propose the MLT
module including a PSS mechanism, a MAM mechanism,
and a MEP to solve this problem, which are specifically in-
troduced as follows.
Priori Stage Switching mechanism. Firstly, the template
and the search region of frame t are input into the local
tracker, i.e., MixFormer [12], to obtain an initial target box
Sloc
t with its SPM score [12]. Sloc

t consists of a four-
tuple [xloc

t , yloct , wloc
t , hloc

t ], where xloc
t and yloct represent

the center of the box, wloc
t and hloc

t mean the weight and
the height of the box. The SPM score is derived from the
SPM branch of MixFormer, which represents the similarity
between the appearance of the initial template and the re-
gion contained in Sloc

t . However, as shown in Fig. 5, when
the tracker fails to track, the SPM score is still high, which

may be because the low resolution of the image with limited
UAV appearance information misleads the judgment of the
SPM branch.

To deal with this problem, we observe the statistical
properties of UAVs in the training set of the 3rd Anti-UAV
Challenge. As shown in Fig. 3, compared with the target
box in the previous frame, the absolute area, aspect ratio,
and center position of the box in the current frame have lit-
tle change. Hence, we introduce these prior knowledge to
calculate the final score Fs of Sloc

t to judge whether Sloc
t

actually tracks the target and whether to switch to the next
tracking stage.

Fs = SPM − 100 ∗ (4 ∗ Parea − Pmove −
Pratio

1000
) (1)

where Parea = |wloc
t ∗ hloc

t − wloc
t−1 ∗ hloc

t−1| is the absolute
area penalty, Pmove = |dis([xloc

t , yloct ])/dis([0, 0], [w, h])|
is the movement distance penalty (w and h refer to the
weight and height of the entire image, dis(·, ·) means the

Euclidean distance of two points), and Pratio = |w
loc
t

hloc
t

−
wloc

t−1

hloc
t−1

| is the ratio change penalty. If the value of Fs is

greater than the threshold α, it is considered that Sloc
t is

reliable, and Sloc
t is directly input the BBR module, marked

as case 1. Otherwise, the MAM is activated to continue
tracking.
Motion-appearance Matching mechanism. Once the
MAM mechanism is activated, local tracking only with ap-
pearance information is unreliable. To make full use of the
temporal and spatial information inherent in the videos, on
the one hand, we use the global detector (i.e., YOLOv7) to
detect UAVs on the whole image, which may detect mul-
tiple target boxes marked as {Sglo1

t , Sglo2
t , ..., Sglon

t }. On
the other hand, we use frame t− 1 and frame t to calculate
the dense optical flow [41] to find the most prominent mo-
tion location loft . As shown in Fig. 4, loft = {xof , yof} is
a two-tuple representing the pixel position, where xof and
yof are the position indexes where the sum of pixel values
along the y-axis and the x-axis are the smallest on the op-
tical flow map, respectively. Next, {Sglo1

t , Sglo2
t , ..., Sglon

t }
and loft are matched to find the region most likely to be
the target. Specially, if n > 0, we find the closest box
in {Sglo1

t , Sglo2
t , ..., Sglon

t } to loft and mark it as Sglobest
t ,

where the shortest distance is marked as dglot . Otherwise,
we calculate the distance between loft and St−1 (the target
box in frame ft−1) and mark it as doft . However, exten-
sive experiments show than locating the target based on the
matching result of Sglobest

t and loft are not absolutely reli-
able, such as none of the boxes containing the UAV in the
results of YOLOv7 as shown in Fig. 6. Hence, it is nec-
essary to introduce a motion estimation punisher to further
avoid tracking failures.
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(a) Absolute area (b) Aspect ratio (c) Movement distance

Figure 3. The change statistical results of absolute area, moving distance, and aspect ratio between adjacent frames of UAVs, where the
horizontal axis represents the change interval of the corresponding item, and the vertical axis represents the proportion (%) of the frames
in this interval to the total number of frames.

(a) Optical flow map (b) Add pixel values along the x-axis (c) Add pixel values along the y-axis

Figure 4. Schematic diagram of the optical flow saliency region calculation. The pixel values of the optical flow map (a) are added along
the x-axis and the y-axis to obtain (b) and (c), where the indices of the smallest values determine the most prominent motion location.

Motion Estimation Punisher. To avoid the motion-
appearance matching mechanism from misleading sub-
sequent tracking, a MEP that utilizes the moderate tar-
get movement between adjacent frames is added. Spe-
cially, when the number of YOLOv7 detection results is
greater than 0 in the MAM mechanism, if dglot < 0.2 ∗

Figure 5. Comparison of the SPM score and the final score in the
same video sequence, where the blue box and the green box rep-
resent the current frame tracking result and the groundtruth box,
respectively. Regardless of whether the tracker tracks the target,
the SPM score is always high, while the final score decreases sig-
nificantly when the tracker fails.

Figure 6. Schematic diagram of the matching between the optical
flow map and the detection results of YOLOv7, where Sglo2

t is the
closest to loft , yet Sglo2

t does not contain the target.

dis([0, 0], [w, h]), Sglobest
t is input into the BBR mod-

ule, marked as case 2. Otherwise, St−1 is input into
the BBR module, marked as case 3. When the num-
ber of YOLOv7 detection results is equal to 0, if doft <

0.2 ∗ dis([0, 0], [w, h]), doft is input into the BBR module,
marked as case 4. Otherwise, St−1 is input into the BBR
module, marked as case 5.

3.3. Target Disappearance Judgement Module

Current trackers are usually able to output a target box
with a corresponding confidence score, but do not have the
ability to distinguish whether the target is out of view. Ex-
tensive experiments show that cases 1-4 in the PGD and the
MLT modules are reasonable, while case 5 are often biased
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Table 1. The whole performance of different trackers on 3rd Anti-UAV valid set. The first-, second- and third-place trackers are labeled
with red, blue, and green colors respectively. Best viewed in color.

Trackers SiamBAN SiamCAR SiamFC SiamMASK SiamRPN SiamRPN++ STARK TransT OsTrack MixFormer Ours
ACC 0.1112 0.2042 0.1545 0.1393 0.1549 0.1709 0.2217 0.2405 0.3045 0.2943 0.4961

from the target. As a result, when more than θ consecutive
frames are case 5, the target is considered out of view in the
current frame.

3.4. Bounding Box Refinement Module

Due to the fuzzy boundary and lack of texture informa-
tion of infrared UAVs, the results obtained by the tracker
suffer from limited accuracy. To furthermore improve the
tracking performance, we add the BBR module after the
TDJ module to fine tune the target box, where the Alpha-
Refine [42] is used as the main component in the BBR mod-
ule due to its convenience.

The core components of Alpha-Refine include a pixel-
wise correlation, a corner prediction head, and an auxiliary
mask head. Alpha-Refine is a flexible and accurate refine-
ment plugin, which extracts and maintains detailed spatial
information and can significantly improve the quality of the
prediction boxes.

3.5. Training and Inference

Training. The training process of GLTF-MA consists of
two parts. Firstly, the local tracker, i.e., MixFormer, is fine-
tuned by the training set of the 3rd Anti-UAV Challenge,
whose training process is the same as [12] except that the
epochs of the first stage and the second stage are 50 and 10,
respectively. Secondly, the global detector, i.e., YOLOv7,
is trained by creating a new class of UAVs, where the train-
ing data is derived from UAV images in the training set of
the 3rd Anti-UAV Challenge and the training process is the
same as [37].
Template Selection and Update. During the inference pro-
cess of MixFormer, multiple templates and the search re-
gion are used together for feature extraction and interaction,
but the SPM score used to select the online template is bi-
ased. As a result, we use the final score to replace the SPM
score in GLTF-MA, i.e., selecting the online template with
the highest final score to substitute the previous template
within the interval of 200 frames.
Inference. During inference, the PGD module is activated
every I frames to perform global detection. If the confi-
dence score of the best box from the PGD module is greater
than the threshold δ, the MLT module is skipped and the
box is fed into the TDJ module. Otherwise, one initial tem-
plate, two online templates and a search region are fed into
the MLT module to produce the target box with different
cases. When the TDJ module thinks that there is a target in
the filed of view, the BBR module refines the target box to

get a more accurate bounding box. Otherwise, GLTF-MA
directly gives that the target is invisible.

4. Experiments
4.1. Experimental Setup

Trackers. In the field of visual object tracking, Siamese-
based and Transformer-based trackers have gained increas-
ing attention due to their high tracking accuracy and
robustness. In this section, six classic Siamese-based
trackers (SiamBAN [16], SiamCAR [15], SiamFC [8],
SiamMask [43], SiamRPN [9], SiamRPN++ [10]) and four
Transformer-based trackers (STARK [18], TransT [17], Os-
Track [11], MixFormer [12]) are introduced. By comparing
our proposed method with these ten state-of-the-art track-
ers, we aim to demonstrate the effectiveness and superior-
ity of our approach in the anti-UAV task. Comprehensive
experimental results on anti-UAV benchmarks will be pre-
sented to validate our claims.
Evaluation Metrics. To exhaustively analyze the per-
formance of trackers, we evaluate the performance of all
frames as follows:

acc =

T∑
t=1

IoUt × σ(vt > 0) + pt × (1− σ(vt > 0))

T

− 0.2× (

T∗∑
t=1

pt × σ(vt > 0)

T ∗ )0.3

(2)

where for frame t, IoUt is intersection over union between
the predicted box and the ground-truth box. pt is the pre-
dicted visibility flag, which equals 1 when the predicted box
is empty and 0 otherwise. vt is the ground-truth visibility
flag of the target, the indicator function σ(vt > 0) equals
1 when vt > 0 and 0 otherwise. The accuracy is averaged
over all frames in a sequence, T means total frames, and T ∗

denotes the number of frames corresponding to the presence
of the target in the ground-truth.
Parameters. We choose the MixVit-L version of Mix-
former with ConvMAE pre-training as our local tracker.
The sizes of the search region and templates are set to 384 ×
384 pixels and 192 × 192 pixels, respectively. For the global
detection in the PGD module, the re-detection interval I and
the box confidence threshold δ are set to 15 and 0.55, which
determines whether the detection is reliable. The threshold
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α for the final score is set to -3.0, and the result of the lo-
cal tracking is considered reliable when the final score is
greater than α. In the TDJ module, when more than θ = 15
consecutive frames are case 5, the target is considered out
of view.

Table 2. Illustration of attribute annotation in ANTI-UAV.

Attribute Description
OV Out-of-View: the target leaves the view.
OC Occlusion: the target is partially occluded or heavily

occluded.
FM Fast Motion: the ground-truth’s motion between two

adjacent frames is larger than 60 pixels.
SV Scale Variation: the ratio of the bounding boxes of the

first frame and the current frame is out of the range
[0.66, 1.5].

LI Low Illumination: the illumination in the target region
is low.

TC Thermal Crossover: the target has a similar tempera-
ture with other objects or background surroundings.

LR Low Resolution: the number of pixels inside the
ground-truth bounding box is less than 400 pixels.

4.2. Comparison Studies

We compare GLTF-MA with existing state-of-the-art
trackers on the 3rd Anti-UAV Challenge and the ANTI-
UAV benchmark [44], and these benchmarks and compari-
son results are introduced as follows.
The 3rd Anti-UAV Challenge. The validation set of the
3rd Anti-UAV Challenge consists of 50 sequences with var-
ious backgrounds such as sky, buildings, and mountains. At
the same time, the UAVs may be stationary, moving quickly,
low resolution, obscured, and out of sight. As shown in Ta-
ble 1, GLTF-MA performs best with the ACC of 0.4961.
Compared with OsTrack and MixFormer, GLTF-MA leads
to 0.1961 and 0.2018 improvement on average tracking ac-
curacy.
The valid set of ANTI-UAV. To further compare differ-
ent trackers on various attributes, we observe the perfor-
mance of each tracker on the valid set and the test set of
ANTI-UAV with attribute annotations, where the attributes
are described in Table 2. In the validation set consisting of
67 video sequences of ANTI-UAV, GLTF-MA outperforms
other trackers in multiple attributes, including OV, OC, FM,
SV, LI, TC, and LR, whose specific results are shown in
Table 3. Particularly, GLTF-MA exhibits a significant per-
formance improvement in LR and FM. Considering the av-
erage score of multiple attributes, GLTF-MA achieves the
best performance with the ACC of 0.6556.
The test set of ANTI-UAV. As shown in Table 4, in the
test set consisting of 91 video sequences of ANTI-UAV,
GLTF-MA exhibits the best performance on OV, FM, SV,
LI, TC, and LR attributes, which improves the ACC value

Figure 7. Performance comparison of GLTF-MA with different I .

by 0.2241, 0.1896, 0.1819, 0.2882, 0.1040, and 0.3026
compared to the second-place trackers. Only in the OC at-
tribute, the performance of GLTF-MA is slightly worse than
that of MixFormer. It can be concluded that GLTF-MA can
achieve effective tracking in various complex scenarios.

4.3. Exploration Studies

To verify the effectiveness and give a thorough analysis
on GLTF-MA, we perform a series of exploration studies
on the valid set of the 3rd Anti-UAV Challenge.
Study on the building modules. To illustrate the effec-
tiveness of our designed tracking framework, we sequen-
tially add the key modules on the base tracker, i.e., Mix-
Former, to observe their performance. As shown in the first
four rows of Table 5, the ACC of the original MixFormer is
0.2943, while after adding PGD, MLT, and BBR modules in
sequence, the performance increases to 0.4348, 0.4319, and
0.3673, which shows that these three modules all act an im-
port role on tracking performance. In addition, as shown in
the last two rows of Table 5, we compare GLTF-MA with-
out the TDJ module with GLTF-MA, and the performance
is improved from 0.4494 to 0.4961, which demonstrates the
rationality of the TDJ module to judge whether the target is
out-of-view based on the tracking reliability.
Study on the number of intervals for PGD. In GLTF-MA,
the execution cycle I of the PGM module determines the
frequency of switching between local tracking and global
detection. We observe the effect of different I on the
tracker, as shown in Fig. 7. The results show that GLTF-
MA performs best when I = 15, because when the global
detection is too frequent, the tracker is easily disturbed by
extremely distant backgrounds, while the global detection is
too sparse, the local tracker may remain in the wrong track-
ing state for a long time.
Study on the judgement basis for target disappearance
in TDJ. In the TDJ module, it is judged whether the tar-
get is out-of-view according to the number of consecutive
frames θ of case 5. As shown in Fig. 8, when θ = 1, the
performance of GLTF-MA is the worst. This may be be-
cause the TDJ module misjudges many frames, where these
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Table 3. The whole attributed-based performance of different trackers on Anti-UAV valid set. The first-, second- and third-place trackers
are labeled with red, blue and green colors respectively.

Trackers OV OC FM SV LI TC LR ALL
SiamBAN 0.0059 0.0856 -0.0051 0.0532 0.3617 0.3632 -0.0426 0.1174
SiamCAR 0.0807 0.1533 0.1792 0.0472 0.4851 0.4513 0.0339 0.2043
SiamFC 0.0694 0.0428 0.1346 -0.0043 0.4233 0.4234 -0.0113 0.1539

SiamMASK 0.0117 0.0259 0.0560 -0.0134 0.3467 0.3345 -0.0372 0.1026
SiamRPN 0.0460 0.1245 0.0678 0.0984 0.3976 0.4046 0.0488 0.1696

SiamRPN++ 0.0117 0.0259 0.0560 -0.0134 0.3467 0.3345 -0.0372 0.1716
STARK 0.3510 0.3119 0.4055 0.3448 0.5014 0.4999 0.3593 0.3962
TransT 0.1292 0.4938 0.4705 0.3205 0.5795 0.5226 0.3398 0.3989

OsTrack 0.2856 0.5309 0.5633 0.3886 0.6344 0.57460 0.4161 0.4847
MixFormer 0.3667 0.4437 0.5340 0.4146 0.5720 0.5964 0.4841 0.4873

Ours 0.4644 0.6606 0.7178 0.6263 0.7319 0.7053 0.6833 0.6556

Table 4. The whole attributed-based performance of different trackers on Anti-UAV test set. The first-, second- and third-place trackers are
labeled with red, blue and green colors respectively.

Trackers OV OC FM SV LI TC LR ALL
SiamBAN -0.0153 0.1820 -0.0035 -0.0068 -0.1446 0.2907 -0.1300 0.0246
SiamCAR 0.1418 0.6065 0.1300 0.1203 -0.0232 0.3082 -0.0595 0.1748
SiamFC -0.0051 0.5637 0.0392 0.0453 -0.0664 0.1688 -0.1152 0.0900

SiamMASK 0.0466 0.3082 -0.0112 0.0024 -0.1457 0.1982 -0.1278 0.0386
SiamRPN 0.0602 0.3005 0.0602 0.0144 -0.0653 0.2679 -0.1047 0.0761

SiamRPN++ 0.0408 0.3206 0.0177 0.0294 -0.1210 0.2988 -0.1066 0.0685
STARK 0.2378 0.5307 0.2797 0.2314 0.1655 0.4179 0.1534 0.2800
TransT 0.1744 0.5921 0.2338 0.1589 0.1155 0.3884 0.0314 0.2420

OsTrack 0.3917 0.6352 0.4320 0.3556 0.4061 0.4843 0.3167 0.4316
MixFormer 0.4012 0.6596 0.4533 0.3966 0.4095 0.5192 0.3111 0.4500

Ours 0.6253 0.6485 0.6429 0.5785 0.6977 0.6232 0.6137 0.6328

Table 5. Ablation for the building modules.

Base Tracker PGD MLT BBR TDJ ACC

MixFormer

0.2943
✓ 0.4348 (+0.1405)

✓ 0.4319 (+0.1376)
✓ 0.3673 (+0.0730)

✓ ✓ ✓ 0.4494 (+0.1551)
Ours ✓ ✓ ✓ ✓ 0.4961 (+0.2018)

Figure 8. Performance comparison of GLTF-MA with different θ.

frames are only temporarily difficult to track, but the tracker

will quickly find the target in subsequent frames. When
3 ≤ θ ≤ 16, the effect of different θ on GLTF-MA is small,
so we set θ = 15 in this paper.

5. Conclusion
In this work, we propose a global-local tracking frame-

work driven by motion and appearance for infrared Anti-
UAV, i.e., GLTF-MA, including the PGD, the MLT, the
TDJ, and the BBR modules. The PGD module periodically
re-locates UAVs to ensure that the search region of the local
tracker contains the target. Meanwhile, the MLT module
performs multi-stage tracking to prevent wrong tracking by
the local tracker. Next, the TDJ module is performed to de-
termine whether the target is out of view. At last, the BBR
module fine-tunes the target box if the target is present in
the field of view. Extensive experimental results on the 3rd
Anti-UAV Challenge and the ANTI-UAV benchmark show
that GLTF-MA outperforms current state-of-the-art track-
ers, especially in the case of fast movement and low reso-
lution. In the future, we will delve into improving the per-
formance of GLTF-MA by fusing the complementary infor-
mation of infrared and visible images.
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