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Abstract

With wide applications of unmanned aerial vehicles
(UAVs), the detection of airborne objects has become cru-
cial to ensure the flight safety of UAVs and prevent their
illegal use. Although object detection has achieved great
success in past years, it is still a challenging problem to de-
tect tiny airborne objects. To solve this problem, we propose
a simple and effective Tiny Airborne object Detection (TAD)
method. It locates potential objects using inconsistent mo-
tion cues between airborne objects and backgrounds in-
stead of the low-quality representation of tiny objects. This
enables TAD to sensitively detect tiny objects with limited
appearance information. Specifically, we first establish cor-
respondences of pixels between adjacent frames based on
the local similarity of spatial feature vectors to achieve mo-
tion modeling. Next, the local similarity of motion patterns
is computed to explicitly describe the motion consistency
of each position with its surrounding pixels. Then, a sim-
ple network is used to output the heatmap that reflects the
probability of object presence. A higher probability of con-
taining an object will be assigned to positions with a greater
difference in motion from their surrounding pixels. Finally,
an independent network branch is employed to regress cen-
ter offsets and scale information of objects, which are used
to correct the error in the estimated object position from the
heatmap and obtain the final bounding box, respectively.
Experiments on three challenging datasets demonstrate that
the proposed method can achieve advanced performance.
Notably, TAD is highly lightweight, and the detection speed
is significantly better than existing methods.

1. Introduction
Recently, UAV technology has rapidly developed and

been extensively applied to various fields. The trend in UAV
development is towards greater intelligence and autonomy,
imposing more requirements on UAVs’ environmental per-
ception capability. Meanwhile, UAVs have low cost and low
detectability, making them ideal for attacks, smuggling, and

Figure 1. Illustration of the tiny size of airborne object and moti-
vation for the proposed method. The first row shows two adjacent
frames, in which the object is enclosed by a red rectangular box.
The second row shows local zoom-in views near the object. The
red block represents the area corresponding to the object, while
the green block represents the pixel area in the background. Each
block searches for the most similar pixel area around its location.
It can be observed that the object’s position has shifted.

illegal surveillance. Accurate positioning of aerial UAVs is
a prerequisite for preventing UAV accidents. Therefore, the
detection of airborne objects holds significant research im-
portance.

Compared to common object detection, detecting air-
borne objects faces unique challenges, such as the tiny size
and high speed of airborne objects and the large motion
of cameras [28]. Tiny objects lack distinct visual features,
making them difficult to detect and easily obscured by clut-
ter [42]. Especially for objects moving against complex
backgrounds, distinguishing them from the environment is
more challenging. In addition, the high speed of airborne
objects brings additional computational efficiency require-
ments. A practical method must be able to detect objects
within a limited time window. Significant delays are unac-
ceptable in certain situations, such as autonomous obstacle
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avoidance [27] and safe multi-drone flights [43].
Recent advances in deep learning have achieved impres-

sive results in object detection [24, 36, 37], but this pros-
perity cannot conceal the unsatisfactory situation of small
object detection [5,44]. Typically, object detectors leverage
sub-sampling operations to reduce redundant information
in the picture, which is beneficial for normal-sized objects.
Unfortunately, the limited appearance information of small
objects is regarded as a noisy signal in this process and is
almost wiped out, which is fatal for tiny object detection.
Some work has been proposed to prevent feature degrada-
tion of small objects by fusing low-level features [7,38,40],
generating high-resolution images [2], or generating richer
features [6, 19, 26]. However, the performance improve-
ments of these methods come at the cost of additional net-
work branches or redundant calculations, which is unfavor-
able for fast object detection. [13, 18, 21, 30] detect small
objects by utilizing the relationship between objects and the
environment. While these methods are beneficial for cer-
tain tasks, such as tiny face detection, they are ineffective
for detecting airborne objects that are isolated from the en-
vironment.

Despite the limited visual appearance of small objects,
a noticeable difference in motion can be detected between
the object and the background as illustrated in Fig. 1. This
observation has motivated some research to emphasize the
significance of motion information in detecting small ob-
jects [1, 12]. Current methods mainly utilize optical flow
estimation [1, 20, 25] or background subtraction [8, 41] to
leverage motion cues. However, these methods do not per-
form well in scenes with large background changes caused
by fast camera movements. Moreover, optical flow-based
methods can cause additional computational burden, mak-
ing them unsuitable for real-time applications.

To address the above challenges, we propose an efficient
method for tiny airborne objects in this paper. The improve-
ment or reconstruction of object representations typically
demands sophisticated feature extractors or fusion strate-
gies, which can potentially escalate detection latency. In
contrast, a motion-based detector can balance performance
and speed if a simple and effective method of describing
motion is adopted. Different from existing methods that ex-
ploit motion cues by optical flow estimation or background
subtraction, we model motion patterns by calculating the
local similarity of spatial feature vectors. This motion de-
scription method is applicable in dynamic backgrounds and
can be accelerated through parallel computation. Next, we
describe the consistency of the motion directly by calculat-
ing the local similarity of the motion patterns. Then, a sim-
ple network is employed to regress the center of the object.
Finally, TAD uses an independent branch to extract the fea-
tures near the potential object to predict the bounding box
coordinates. As the tiny size is uninformative, locating tiny

objects is sufficient in many practical application scenarios.
For ultimate efficiency, we remove the bounding boxes re-
gression branch of TAD and release its lightweight version,
TAD-Lightning, which has fewer parameters and a faster
running speed.

We evaluate our method on AOT1 dataset, NPS-Drones
[20] dataset and Anti-UAV benchmark [16] that contain a
large amount of tiny airborne objects. Compared with the
current popular methods, TAD achieved impressive results
in terms of both speed and accuracy.

Our major contributions can be summarized as follows:

• A heuristic motion description method is proposed to
achieve fast pixel-level motion modeling. It explicitly
characterizes the motion inconsistency to guide the de-
tection process.

• A motion consistency-based detection network is pro-
posed to effectively detect tiny airborne objects with
limited appearance information. It enables ultra-fast
detection and achieves competitive performance com-
pared to state-of-the-art methods.

• The proposed method only requires a small number
of parameters and computational resources, making it
suitable for practical applications.

2. Related Work
In recent years, various methods have been proposed

to solve the challenge of detecting small objects in static
images. The primary obstacle to small object detection is
the loss of limited representations during feature extraction.
Therefore, multi-scale learning methods have been devel-
oped to preserve discriminant features of small objects [9,
11, 22, 35, 38]. This paradigm, exemplified by FPN [22],
enhances object representation by integrating low-level de-
tails with high-level semantic features. The current state-
of-the-art method for infrared small object detection, UIU-
Net [35], is based on this paradigm. It incorporates a small
U-Net network into a larger U-Net backbone, thereby facil-
itating multi-level and multi-scale representation learning
of small objects. Another line of efforts intends to bridge
the gap between the representation of large and small ob-
jects rather than reusing low-level features [2, 6, 19, 26].
Following this idea, Bai et al. [2] proposed a multi-task
generative adversarial network to super-resolve the patches
of RoIs. The representation of the small object is recov-
ered by up-sampling small objects to large scales. Simi-
larly, some methods work at the feature level to reconstruct
the representation of tiny objects [6, 19, 26]. Compared to
image-level super-resolution methods, feature-level super-
resolution methods are more efficient and take contextual

1https://registry.opendata.aws/airborne-object-tracking.
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Figure 2. The framework of TAD and the calculation process of similarity volume. TAD divides the detection task into the localization
and bounding boxes regression. Aiming at practical applications, TAD-Lightning removes the bounding boxes regression branch to reduce
parameters and achieve faster speed.

information into account. There is also a class of methods to
facilitate the detection of small objects by utilizing the cor-
relation between the objects and environmental information
or other easily detected objects [13,18,21,30]. For example,
Tang et al. proposed PyramidBox [30] to accurately detects
small faces from features that incorporate contextual infor-
mation based on the prior knowledge that the head and body
always appear together with the face. The interaction be-
tween different objects can also be considered as contextual
information, such as FS-SSD [21]. It exploits spatial dis-
tances between intra-class and inter-class objects to recall
low-score detections. Apart from the above methods, data
augmentation is simple and effective for small object detec-
tion. Kisantal et al. [17] copied small objects and pastes
them randomly into the images, significantly improving de-
tection accuracy of small objects.

However, applying existing methods directly to aerial
scenes presents three potential challenges. First, feature fu-
sion, super-resolution, or learning contextual relationships
may increase the computational burden. It is important to
carefully consider whether detection speed can be traded for
performance when detecting fast-moving airborne objects.
Second, the tiny size of airborne objects often falls outside
the general dataset definition of small objects, which means
that methods designed for small objects may face perfor-
mance bottlenecks when detecting tiny objects. Third,
data augmentation-based and super-resolution-based meth-
ods may only be effective for specific datasets and scenar-
ios, making it difficult to generalize these approaches to
aerial scenes.

In addition to the tiny size, another characteristic of air-
borne objects is that they are always in motion. There-
fore, some methods rely on motion cues to detect tiny air-
borne objects. These methods can be divided into two

categories based on the different ways of extracting mo-
tion cues. One category is based on background subtrac-
tion [14, 33], and the other is based on optical flow estima-
tion [1, 20, 25]. Background subtraction methods compare
the current frame to a background image to detect moving
regions, where regions with significant differences are con-
sidered objects and regions with slight differences are con-
sidered background. However, these methods are limited
to static or slowly changing backgrounds. In contrast, op-
tical flow-based detectors are available in dynamic scenes.
Li et al. [20] characterized the spatio-temporal features of
moving objects through optical flow estimation, and sub-
sequently detected objects based on motion pattern differ-
entiation between objects and their backgrounds. Never-
theless, the traditional optical flow estimation methods are
sensitive to changes in lighting conditions and may yield
inaccurate or unreliable results for objects with large mo-
tions. Moreover, they typically require multiple iterations
per pixel point, which is computationally expensive. While
several deep learning-based methods have been proposed to
overcome these constraints [15, 29, 31], the integration of
an optical flow estimation network into a detection network
is cumbersome and does not facilitate end-to-end optimiza-
tion. Furthermore, optical flow estimation methods trained
on specific datasets may exhibit limited generalizability to
other scenarios.

3. Proposed Method

In this section, we introduce the technical detail of
our tiny airborne object detection method, TAD, and its
lightweight version TAD-Lightning. Generally, our method
is divided into four steps: (1) feature extraction, (2) cal-
culation of similarity volume and consistency volume, (3)
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prediction of the heatmap, and (4) regression of bounding
boxes. The overall framework is demonstrated in Fig. 2.

3.1. Feature Extraction

TAD divides the detection task into two subtasks: a
classification task for localization and a regression task
for bounding box regression. These two subtasks are
learned through two separate lightweight branches. The two
branches use feature extractors that have the same struc-
ture but do not share weights. This design brings two ben-
efits: First, joint training of multiple tasks may result in
sub-optimal solutions for both tasks. By decoupling the
two tasks, competition between the branches is mitigated,
thereby improving overall performance. Second, using two
independent branches in the network makes TAD modular,
allowing the combination of branches to be tailored to spe-
cific application requirements.

Because motion-based TAD does not rely on specific
feature descriptions, the selection of feature extractors for
TAD is flexible. We implement the feature encoder net-
work in the same way as RAFT [31]. To be specific, the
network consists of two convolutional layers and six resid-
ual blocks. We first change the channels of the input images
to 64 using a single convolutional layer and then add two
residual blocks at 1/2 resolution, two residual blocks at 1/4
resolution, and two residual blocks at 1/8 resolution to ex-
tract features. Finally, a 1 × 1 convolution layer is adopted
to produce the desired output. Given an images with shape
H ×W × C, the shape of the output is H/8 ×W/8 ×D,
where we set D=256.

The feature extractor in the localization branch takes the
current frame and the adjacent historical frame as input,
while the feature extractor in the bounding box regression
branch only extracts features from the current frame. As
TAD-Lightning solely predicts heatmaps for localization, it
utilizes only one feature extractor.

3.2. Local Similarity Calculation

TAD localizes potential objects by identifying pixel re-
gions that exhibit inconsistent motion with the background.
To achieve this, TAD requires effective modeling of the
motion cues in the input images. A simple yet effective
approach is to describe motion by establishing correspon-
dences between pixels in adjacent frames. Considering that
the motion of objects is continuous, we propose the local
similarity calculation to describe the motion. As shown in
Fig. 2, the method calculates the cosine similarity between
the feature vector at each position in the feature map and
its surrounding feature vectors. As the same pixel region
in two images should have the highest similarity, the corre-
spondence between pixels can be determined based on the
result of the local similarity calculation. When object mo-
tion is irregular or fast, a larger similarity calculation range

can be selected to expand the search window.
We refer to the tensor obtained by performing the local

similarity calculation once as the similarity volume, which
provides information about the motion trends of objects.
Specifically, we iterate through each position (i, j) in the
first image feature f1 ∈ RH/8×W/8×D and generate the
similarity volume C ∈ RH/8×W/8×k×k by calculating the
cosine similarity between (i, j) and its neighbors (m,n) in
the second image featuref2 ∈ RH/8×W/8×D. The hyperpa-
rameter k determines the range within which the most sim-
ilar pixels are searched and can be flexibly adjusted based
on actual conditions. In our experiments, we set k = 3.
Note that k can only be an odd number other than 1. If the
airborne objects move faster or the camera undergoes more
abrupt motion, a larger value of k may be set. However, we
recommend selecting a smaller k value whenever possible.
A smaller search range can reduce the risk of erroneous as-
sociations and save computational resources. The process
is formulated as:

Sk
ijmn = f1

ij · f2
(i−⌊k/2⌋+m)(j−⌊k/2⌋+n), 0 ≤ m,n < k.

(1)
The k×k values of Sij represent the similarity between the
pixel with coordinates (i, j) in f1 and its neighbors in f2.
The peak of Sij is the relative position of the pixel (i, j) in
f2 after motion. By this way, we describe the motion of
the object and the background without complicated calcula-
tions.

The motion-based detection paradigm actually utilizes
the inconsistency of motion cues between the object and
background to detect objects. The gap between motion
trend and motion consistency can affect the convergence
speed and results of the detector. Therefore, we perform
local similarity calculation on the similarity volume to gen-
erate a tensor called the consistency volume, which di-
rectly describes the consistency of motion. The similarity
volume is flattened in the last two dimensions and serves
as the input of local similarity calculation. Similar to the
computation of similarity volume, the consistency volume
C ∈ RH/8×W/8×k×k is computed as follows:

Ck
ijmn =

k∑
k1=0

k∑
k2=0

Sijk1k2 · S(i−⌊k/2⌋+m)(j−⌊k/2⌋+n)k1k2
.

(2)
We call a set of k × k elements within each consistency

volume as a consistency matrix. The values in the consis-
tency matrix Cij measure the consistency of the motion of
the pixel at coordinate (i, j) with its surrounding neighbor-
hood. Since background motion is rigid, pixels in the back-
ground possess consistent motion direction locally. As a re-
sult, each element in the consistency matrix corresponding
to the background has a high value. In contrast, the motion
of the object is non-rigid. Therefore, a consistency matrix
with a low value is highly likely to correspond to an object.
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The traversal operation to calculate the similarity is very
time-consuming. Since we do not compute all pixel pairs in
the input image, we cannot directly use the matrix dot prod-
uct to speed up the calculation. In order to improve compu-
tational efficiency, we implement the parallel processing of
local similarity calculation that trades space for time.

Taking the calculation of similarity volume as an
example, the feature map f1 ∈ RH/8×W/8×D is
firstly duplicated to f1∗ ∈ RH/8×W/8×k×k×D, and
the f2 ∈ RH/8×W/8×D is also extended to f2∗ ∈
RH/8×W/8×k×k×D using a sliding window. The corre-
sponding positions of f1∗ and f2∗ are then multiplied and
summed along the last channel. Experimental results show
that the optimized local similarity calculation method gains
great efficiency improvement. During inference, the par-
allel implementation accelerates 20 times on the CPU and
286 times on GPU compared with traversal operation.

3.3. Heatmap Prediction

Due to the explicit modeling of motion differences in
TAD, object localization can be achieved with a simple net-
work architecture. The network utilizes two convolutional
layers to classify each consistency matrix within the consis-
tency volume, thereby generating object presence probabil-
ities at each spatial location. Specifically, the consistency
volume C is flattened along its last two dimensions and is
used as input to the prediction head. The predicted results
take the form of a H/8×W/8× 2 tensor, with the last two
channels representing the probability of consistent and in-
consistent motion, respectively. It is worth noting that TAD
does not rely on object appearance information, thereby
making it independent of object representation. This feature
enables TAD to detect tiny objects with limited appearance.

3.4. Bounding Boxes Regression

TAD has an additional bounding box regression branch
compared to TAD-Lightning. In addition to the feature en-
coder introduced in Sec. 3.1, the two important components
of the bounding box regression branch are the offset predic-
tion head and the scale regression head. They are respon-
sible for predicting the offset of the object center and the
length and width information of the object, respectively.

The coordinates estimated from the heatmap indicate the
location of the object in the feature map. As the feature
map is obtained by downsampling the image, the coordi-
nates need to be upscaled to obtain the location of the object
in the image. However, this process introduces quantization
errors. The offset prediction head refines the location of the
object center by predicting the offset between the true object
center and the rough object center. The appearance feature
of the first frame f1

a ∈ RH/8×W/8×D is used as input, and
the output O ∈ RH/8×W/8×2 is the offset of the center in
the x and y directions. The scale regression head has the

same structure and input as the offset prediction head. It
outputs the width and height of bounding boxes.

3.5. Training and Inference

The training of TAD is conducted in stages to achieve
better detection performance. We first train the localization
branch and then train the bounding box regression branch
with the network parameters of the localization branch
frozen. The loss function for heatmap prediction is formu-
lated as:

Lh = − 1

N

∑
xy

{(
1− Ỹxy

)α
log

(
Ỹxy

)
if Yxy = 1,

(1− Yxy)
β
(
Ỹxy

)α
log

(
1− Ỹxy

)
Otherwise,

(3)
on which N is the number of objects, Yxy ,Ỹxy are the pre-
diction and ground truth at the position with coordinates
(x, y). α and β are hyperparameters of focal loss.

We supervised offset prediction and scale regression
with the following loss:

L = λoLoffset + λsLscale, (4)

in which Loffset and Lscale are the smooth L1 distance be-
tween the predicted and ground truth, and λo, λs are hyper-
parameters to balance these two tasks. We use λo = 0.5
and λs = 1 in our experiments.

During inference, given a pair of consecutive RGB im-
ages, the feature encoders will generate the feature maps,
respectively. Then, the local similarity calculation is em-
ployed on the feature map to generate similarity volume.
The similarity volume serves as the input of another local
similarity calculation for the consistency volume. Finally,
we predict the heatmap based on the consistency volume to
locate the object center. Meanwhile, the bounding boxes re-
gression branch extracts the feature map of current frames
to predict center offsets and scale information of objects.

We use the max pooling operation instead of IoU-based
non-maxima suppression (NMS) to remove duplicated de-
tections. The kernel size and stride of the max pooling oper-
ation are set to 3, meaning only peaks in each 3*3 region are
reserved. We consider the value corresponding to peaks as
detection confidence and remove peaks with confidence un-
der the threshold. We take the preserved peak as the object
center (x, y) and then shift the center according to the pre-
dicted offset (x̂, ŷ). Combined with the scale information
(w, h) given by the scale regression head, we can decode fi-
nal bounding boxes that are represented by (t, l, b, r), where
(t, l), (b, r) are respectively the coordinates of the top left
corner and bottom right corner. The formula is as follows:

t = x− x̂− w/2×W,
l = y − ŷ − h/2×H,
b = x− x̂+ w/2×W,
r = y − ŷ + h/2×H,

(5)

where W,H are the width and height of the image.
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Table 1. Quantitative comparison of TAD with several state-of-the-art approaches on the AOT dataset

Framwork Model Recall Acc F1 AP@50 FPS Parameters

Two-stage Faster R-CNN w/fpn [22] 0.214 0.675 0.325 0.161 14.8 41.13M
Cascade-RCNN [3] 0.257 0.224 0.239 0.171 7.3 87.92M

One-stage Retinanet [23] 0.679 0.882 0.767 0.615 16.6 36.10 M

Anchor free QueryDet [38] 0.687 0.867 0.767 0.647 - -
FCOS [32] 0.493 0.857 0.626 0.432 15.8 31.00M

Transformer Swin-Transformer [24] 0.260 0.888 0.402 0.231 4.4 93.87 M

Ours TAD 0.704 0.832 0.763 0.663 180.7 2.326M
TAD-Lightning 0.723 0.855 0.784 0.696 342.1 1.024M

4. Experiments

4.1. Experiment Setup

Datasets and Metrics. Airborne Object Tracking (AOT)
is a collection of flight sequences collected by aircraft
equipped with high-resolution cameras. In AOT, images are
2448 pixels wide by 2048 pixels high, and objects usually
appear quite small at distances that are relevant for early de-
tection. There are three subsets of AOT, and we use the first
for training and the second for validation. In order to limit
the computational burden, we reduce the length and width
of the image by half and then select images with object sizes
less than 16×16 to evaluate TAD. These objects are 0.01%
of the image size on average.

The NPS dataset is a collection of high-definition video
sequences used for detecting airborne vehicles. The dataset
is captured using GoPro cameras mounted on a delta-wing
aircraft. Unlike the grayscale images in AOT, the images
in the NPS dataset are in color. The video has a frame rate
of 30 frames per second, and a resolution of 1920×1080 or
1280 × 960. The average size of objects in the images is
16.2×11.6. In our experiments, the dataset is divided in the
same way as Dogfight. The first forty videos are used for
training, and the last ten are used for testing.

Anti-UAV contains high-quality video sequences of both
RGB and infrared images. It covers a variety of scenarios
with multi-scale UAVs. Detecting tiny objects in infrared
images is challenging because tiny objects blend into the
environment when other objects or the background have
temperatures similar to them. We performed a qualitative
analysis of images containing tiny objects in this dataset to
validate the effectiveness of the proposed method on differ-
ent modal data.

We use commonly used metrics in object detection tasks
to evaluate methods. We measure detection quality using
Recall, Accuracy, F1-score, and AP while using FPS and
Parameters to measure computational efficiency.

Implementation Details. All modules are initialized

from scratch with random weights during training. The
BatchNorm layers are frozen during inference. We use
Adam without the decay parameter as the optimizer and set
the initial learning rate to 1 × 10−4. The batch sizes of the
first and second stages are 10 and 5, respectively. We divide
the training process into two stages. Both stages are trained
for 48 iterations. The hyperparameters α and β are set to 2
and 4, following [23].

4.2. Comparison with State-of-the-art Methods

We compare TAD with detectors in various frameworks
on the AOT dataset. All compared methods are imple-
mented based on official codes or with the recommended
configuration and training strategy provided by MMdetec-
tion. The RTX3060 is used to test detection speed. Tab. 1
reports the detailed comparison results. Our method ex-
hibits significant superiority over existing methods on sev-
eral representative metrics. Especially in terms of the FPS,
Parameters, and FLOPs, which represent the lightweight
and detection speed, TAD surpasses other detectors by a
large margin.

Note that TAD-Lightning calculates the metrics differ-
ently than other detectors because it only predicts the center
of objects and does not generate the final bounding boxes.
When the center predicted by TAD-Lightning hits inside
the ground truth, we take it as True Positive (TP). The rea-
son for presenting the TAD-Lightning in Tab. 1 is two-fold:
firstly, to demonstrate its reduced parameterization and in-
creased speed, and secondly, to illustrate the upper limits of
TAD’s performance capabilities.

The quantitative comparison of TAD with other detectors
on the NPS dataset is shown in Tab. 2. The experimental
results of the comparison method are from [1]. The pro-
posed method achieves the highest detection accuracy and
average precision on the NPS dataset while being simpler
and more efficient than existing methods. We observed that
methods achieve better performance across various metrics
on the NPS dataset compared to the AOT dataset. We at-
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Table 2. Quantitative comparison of TAD with several state-of-
the-art approaches on the NPS dataset

Method Precision Recall F1 score AP
SCRDet-H [39] 0.81 0.74 0.77 0.65
SCRDet-R [39] 0.79 0.71 0.75 0.61

FCOS [32] 0.88 0.84 0.86 0.83
Mask-RCNN [10] 0.66 0.91 0.76 0.89

MEGA [4] 0.88 0.82 0.85 0.83
SLSA [34] 0.47 0.67 0.55 0.46

Dogfight [1] 0.92 0.91 0.92 0.89
TAD 0.93 0.87 0.90 0.91

tribute this to several factors: first, the images we selected
from the AOT dataset contained many tiny objects, such as
birds and hot air balloons, which are smaller than most of
the drones in the NPS dataset. Second, the majority of ob-
jects in the NPS dataset were white drones, which are easily
distinguishable from the surrounding environment.

4.3. Ablation Analysis

Effect of Components. In this section, we carry out ab-
lation analysis to verify the effectiveness of different mod-
ules. We focus on the impact of similarity volume, consis-
tency volume, and offset prediction head on model perfor-
mance. To simplify the experiments without compromis-
ing rationality, we add or remove modules based on TAD-
Lightning and evaluate the performance of different combi-
nations on the AOT dataset. The evaluation metrics for all
models follow the same calculation rules as TAD-Lightning
in Tab. 1.

High-quality motion description is crucial for TAD. Both
similarity volume and consistency volume can characterize
motion cues. To understand their contributions to perfor-
mance, we train three networks using the similarity volume,
consistency volume, and a combination of both to describe
motion.

The experimental results in Tab. 3 demonstrate that all
versions can effectively detect tiny objects in the air, but
differences in performance exist. The version that only uses
similarity volume lags behind the other two versions in all
metrics. This is because the network needs to first learn
how to model the differences between motions and then lo-
cate objects based on the inconsistency of the motions. This
presents a challenge to the capacity of the network. In ad-
dition, the motion trends of the background in the image
have local consistency rather than global consistency. For
example, when the camera shoots forward, the upper left
region tends to move to the left, while the lower right re-
gion tends to move to the right. This conflicting motion in-
formation can confuse the network. Therefore, this version
is suboptimal and has room for improvement. The consis-

Table 3. Ablation for important modules. S, C, and O, respectively
refer to similarity volume, consistency volume, and offset predic-
tion head. We use ✓to indicate that the module is selected

# S C O Recall Acc F1 AP

1 ✓ 0.676 0.854 0.753 0.644
2 ✓ 0.723 0.855 0.784 0.696
3 ✓ ✓ 0.677 0.871 0.762 0.651

4 ✓ ✓ 0.677 0.853 0.755 0.646
5 ✓ ✓ 0.727 0.859 0.787 0.700
6 ✓ ✓ ✓ 0.678 0.873 0.763 0.652

Table 4. Results of TAD inference with different search radii

K Recall Acc F1 AP

3 0.723 0.855 0.784 0.696
5 0.683 0.901 0.777 0.661
7 0.687 0.895 0.777 0.659

tency volume directly describes the motion differences be-
tween the object and surrounding pixels, and this method
of description has a consistent physical meaning at various
positions in the image. Therefore, the performance of the
version that uses consistency volume has been greatly im-
proved. However, when combining similarity volume and
consistency volume, the performance does not improve fur-
ther, and some metrics even decline. Based on the previous
analysis, we believe that the conflict between the local in-
formation contained in the similarity volume and the global
information contained in the consistency volume led to the
degradation of performance.

We employ the offset prediction head to correct the quan-
tization error caused by downsampling. When comparing
versions with and without the offset prediction head, we can
see that the former performs better. This indicates that the
offset prediction head learns how to refine the center of ob-
jects, resulting in the estimated object center being closer to
the actual object center.

Effect of Search Radii. We investigated the effect of
different search radii when generating similarity volume in
Table Tab. 4. TAD can tolerate larger perspective abrupt
changes when searching for objects over a larger area. How-
ever, the large search window will decrease the consistency
of motion, which will cause more false detections. Experi-
mental results show that a trade-off between recall and ac-
curacy can be achieved when we set K=3.

4.4. Visualization and Failure Cases

We visualize heatmaps outputted by TAD that reflect the
probability of object presence. All images shown in Fig. 3
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Figure 3. Visualization of the heatmap for tiny objects of TAD on Anti-UAV dataset. The images in the first and third rows are from the test
set, with objects enclosed in red boxes for ease of review. The second and fourth rows show the heatmap output of TAD. The brightness
in the heatmap reflects the degree of difference in motion between the position and its surrounding pixels, with brighter areas indicating a
higher probability of the object being present.

are from the Anti-UAV dataset. Due to the unique imaging
mechanism of infrared images, a portion of the object’s ap-
pearance information, such as color and texture, has been
lost in images. In addition, positions in the image with the
same temperature as the object exhibit similar visual fea-
tures. When the object is tiny, it becomes even more diffi-
cult to distinguish from the background. We can see that the
heatmaps output by TAD can effectively locate the approx-
imate position of objects, even in complex backgrounds.
This is due to TAD does not rely on appearance informa-
tion to locate objects and its powerful motion modeling abil-
ity based on the local similarity calculation. However, our
method also has the following limitations: 1) inability to
detect stationary objects, such as hovering drones. 2) de-
tection of other moving objects in the image, such as fast-
moving vehicles, which are not airborne objects. In addi-
tion, it should be noted that TAD is not the optimal solution
for detecting large airborne objects. On the one hand, large
airborne objects contain sufficient visual information, and
generic object detectors can achieve good detection results.
On the other hand, TAD cannot locate the center of the ob-
ject when detecting large-size objects, but only the corner
of the object.

5. Conclusion

In this paper, we propose a real-time and lightweight
method to detect tiny airborne objects. We first introduce
local similarity calculation, a parallelizable motion model-
ing method, to explicitly describe the consistency of mo-
tion. Then, we use the inconsistent motion between objects
and the background to locate the approximate position of
potential objects. Finally, an additional network branch is
used to predict the precise position of objects. Qualitative
and quantitative experiments on three challenging datasets
have demonstrated that the proposed method achieves ex-
tremely fast detection speed without compromising perfor-
mance. Due to the simple network structure and low com-
putational complexity of the proposed method, it is highly
applicable to practical applications. In the future, we will
try to extend TAD to a tracking method to improve detec-
tion continuity and enable us to predict object motion.

Acknowledgements: This work was supported in part by
the National Natural Science Foundation of China under
Grant U20B2067.

3023



References
[1] Muhammad Waseem Ashraf, Waqas Sultani, and Mubarak

Shah. Dogfight: Detecting drones from drones videos. In
CVPR, 2021. 2, 3, 6, 7

[2] Yancheng Bai, Yongqiang Zhang, Mingli Ding, and Bernard
Ghanem. Sod-mtgan: Small object detection via multi-task
generative adversarial network. In ECCV, 2018. 2

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In CVPR, 2018. 6

[4] Yihong Chen, Yue Cao, Han Hu, and Liwei Wang. Mem-
ory enhanced global-local aggregation for video object de-
tection. In CVPR, 2020. 7

[5] Gong Cheng, Xiang Yuan, Xiwen Yao, Kebing Yan, Qinghua
Zeng, and Junwei Han. Towards large-scale small ob-
ject detection: Survey and benchmarks. arXiv preprint
arXiv:2207.14096, 2022. 2

[6] Chunfang Deng, Mengmeng Wang, Liang Liu, Yong Liu,
and Yunliang Jiang. Extended feature pyramid network for
small object detection. IEEE Transactions on Multimedia,
24:1968–1979, 2021. 2

[7] Kaiwen Duan, Dawei Du, Honggang Qi, and Qingming
Huang. Detecting small objects using a channel-aware de-
convolutional network. IEEE Transactions on Circuits and
Systems for Video Technology, 30(6):1639–1652, 2019. 2

[8] Zhihang Fu, Yaowu Chen, Hongwei Yong, Rongxin Jiang,
Lei Zhang, and Xian-Sheng Hua. Foreground gating and
background refining network for surveillance object detec-
tion. IEEE Transactions on Image Processing, 28(12):6077–
6090, 2019. 2

[9] Yuqi Gong, Xuehui Yu, Yao Ding, Xiaoke Peng, Jian Zhao,
and Zhenjun Han. Effective fusion factor in fpn for tiny ob-
ject detection. In WACV, 2021. 2

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 7

[11] Mingbo Hong, Shuiwang Li, Yuchao Yang, Feiyu Zhu, Qijun
Zhao, and Li Lu. Sspnet: Scale selection pyramid network
for tiny person detection from uav images. IEEE Geoscience
and Remote Sensing Letters, 19:1–5, 2021. 2

[12] Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-
Wen Lin, Mi Wang, and Shin’ichi Satoh. Capturing small,
fast-moving objects: Frame interpolation via recurrent mo-
tion enhancement. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 32(6):3390–3406, 2021. 2

[13] Peiyun Hu and Deva Ramanan. Finding tiny faces. In CVPR,
2017. 2, 3

[14] Bo Huang, Junjie Chen, Tingfa Xu, Ying Wang, Shenwang
Jiang, Yuncheng Wang, Lei Wang, and Jianan Li. Siamsta:
Spatio-temporal attention based siamese tracker for tracking
uavs. In ICCVW, 2021. 3

[15] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In CVPR,
2017. 3

[16] Nan Jiang, Kuiran Wang, Xiaoke Peng, Xuehui Yu, Qiang
Wang, Junliang Xing, Guorong Li, Qixiang Ye, Jianbin Jiao,
Zhenjun Han, et al. Anti-uav: a large-scale benchmark for

vision-based uav tracking. IEEE Transactions on Multime-
dia, 2021. 2

[17] Mate Kisantal, Zbigniew Wojna, Jakub Murawski, Jacek
Naruniec, and Kyunghyun Cho. Augmentation for small ob-
ject detection. arXiv preprint arXiv:1902.07296, 2019. 3

[18] Chunggi Lee, Seonwook Park, Heon Song, Jeongun Ryu,
Sanghoon Kim, Haejoon Kim, Sérgio Pereira, and Donggeun
Yoo. Interactive multi-class tiny-object detection. In CVPR,
2022. 2, 3

[19] Jianan Li, Xiaodan Liang, Yunchao Wei, Tingfa Xu, Jiashi
Feng, and Shuicheng Yan. Perceptual generative adversarial
networks for small object detection. In CVPR, 2017. 2

[20] Jing Li, Dong Hye Ye, Timothy Chung, Mathias Kolsch,
Juan Wachs, and Charles Bouman. Multi-target detection
and tracking from a single camera in unmanned aerial vehi-
cles (uavs). In IROS. IEEE, 2016. 2, 3

[21] Xi Liang, Jing Zhang, Li Zhuo, Yuzhao Li, and Qi Tian.
Small object detection in unmanned aerial vehicle images
using feature fusion and scaling-based single shot detector
with spatial context analysis. IEEE Transactions on Circuits
and Systems for Video Technology, 30(6):1758–1770, 2019.
2, 3

[22] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 2, 6

[23] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017. 6

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 2, 6

[25] Murari Mandal, Lav Kush Kumar, and Santosh Kumar Vip-
parthi. Mor-uav: A benchmark dataset and baselines for
moving object recognition in uav videos. In ACMMM, 2020.
2, 3

[26] Junhyug Noh, Wonho Bae, Wonhee Lee, Jinhwan Seo, and
Gunhee Kim. Better to follow, follow to be better: Towards
precise supervision of feature super-resolution for small ob-
ject detection. In ICCV, 2019. 2

[27] Juntong Qi, Jinjin Guo, Mingming Wang, Chong Wu, and
Zhenwei Ma. Formation tracking and obstacle avoidance for
multiple quadrotors with static and dynamic obstacles. IEEE
Robotics and Automation Letters, 7(2):1713–1720, 2022. 2

[28] Artem Rozantsev, Vincent Lepetit, and Pascal Fua. De-
tecting flying objects using a single moving camera. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
39(5):879–892, 2016. 1

[29] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In CVPR, 2018. 3

[30] Xu Tang, Daniel K Du, Zeqiang He, and Jingtuo Liu. Pyra-
midbox: A context-assisted single shot face detector. In
ECCV, 2018. 2, 3

[31] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV. Springer, 2020. 3, 4

3024



[32] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In ICCV,
2019. 6, 7

[33] Muhammad Uzair, Russell SA Brinkworth, and Anthony
Finn. Bio-inspired video enhancement for small moving
target detection. IEEE Transactions on Image Processing,
30:1232–1244, 2020. 3

[34] Haiping Wu, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Sequence level semantics aggregation for video ob-
ject detection. In ICCV, 2019. 7

[35] Xin Wu, Danfeng Hong, and Jocelyn Chanussot. Uiu-net: U-
net in u-net for infrared small object detection. IEEE Trans-
actions on Image Processing, 32:364–376, 2022. 2

[36] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Be-
longie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liang-
pei Zhang. Dota: A large-scale dataset for object detection
in aerial images. In CVPR, 2018. 2

[37] Xingxing Xie, Gong Cheng, Jiabao Wang, Xiwen Yao, and
Junwei Han. Oriented r-cnn for object detection. In ICCV,
2021. 2

[38] Chenhongyi Yang, Zehao Huang, and Naiyan Wang. Query-
det: Cascaded sparse query for accelerating high-resolution
small object detection. In CVPR, 2022. 2, 6

[39] X Yang, J Yang, J Yan, Y Zhang, T Zhang, Z Guo, X Sun,
and K SCRDet Fu. Towards more robust detection for small,
cluttered and rotated objects. In ICCV, volume 27, 2019. 7

[40] Hui Zhang, Kunfeng Wang, Yonglin Tian, Chao Gou, and
Fei-Yue Wang. Mfr-cnn: Incorporating multi-scale features
and global information for traffic object detection. IEEE
Transactions on Vehicular Technology, 67(9):8019–8030,
2018. 2

[41] Anran Zhou, Weixin Xie, and Jihong Pei. Background mod-
eling in the fourier domain for maritime infrared target detec-
tion. IEEE Transactions on Circuits and Systems for Video
Technology, 30(8):2634–2649, 2019. 2

[42] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng
Fan, Qinghua Hu, and Haibin Ling. Detection and tracking
meet drones challenge. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(11):7380–7399, 2021. 1

[43] Pengfei Zhu, Jiayu Zheng, Dawei Du, Longyin Wen, Yim-
ing Sun, and Qinghua Hu. Multi-drone-based single object
tracking with agent sharing network. IEEE Transactions on
Circuits and Systems for Video Technology, 31(10):4058–
4070, 2020. 2

[44] Yabin Zhu, Chenglong Li, Yao Liu, Xiao Wang, Jin Tang,
Bin Luo, and Zhixiang Huang. Tiny object tracking: A large-
scale dataset and a baseline. IEEE Transactions on Neural
Networks and Learning Systems, pages 1–15, 2023. 2

3025


