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Abstract

Detecting tiny/small objects (e.g., drone targets) in
videos is highly desired in many realistic scenarios. Never-
theless, current object detection algorithms can hardly rec-
ognize tiny targets against extremely complex backgrounds.
To address this problem, we propose a motion-guided video
tiny-object detection method (MG-VTOD), in which the
spatial-temporal motion strength maps play an important
role in object searching and locating. Inspired by the bi-
ological retinal structure, we compute the motion strength
using a sequential frame cube that has been aligned and
registered. Subsequently, the motion strength maps are em-
ployed to enhance the potential areas of the moving targets,
thereby facilitating the target detection procedure. Experi-
mental results obtained on the Anti-UAV-2021 dataset vali-
date that the proposed MG-VTOD method significantly out-
performs the competing object detection methods.

1. Introduction

Tiny/small object detection is an important task in many
realistic scenarios, e.g., locating unauthorized flying targets
around airports through cameras. Nevertheless, current ob-
ject detection algorithms can hardly recognize tiny targets
against extremely complex backgrounds. It is highly de-
sired to develop intelligent techniques that can locate and
recognize tiny object with low miss rate and low false alarm
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Figure 1. Example video frames containing tiny objects against
complex backgrounds.

rate. In the computer vision field, video tiny-object detec-
tion (VTOD) is a particular case of visual object detection.
Since tiny objects have limited appearance features, VTOD
is among the most challenging tasks of visual object detec-
tion, as illustrated in Fig. 1.

As a fundamental task, visual object detection has been
intensively studied in the past decades [47]. With the big
success of deep learning, many advanced and popular ob-
ject detection algorithms are developed based on deep neu-
ral networks [17]. These methods can be roughly divided
into two categories: two-stage and one-stage algorithms.
In two-stage algorithms, visual object detection is imple-
mented by a target positioning step and a subsequent tar-
get recognition step. Representative methods include the
R-CNN [11] and Faster R-CNN [32] methods. The other
type of object detection, namely one-stage algorithms, pre-
dicts the target categories and location information simulta-
neously. Among them, the YOLO [29] serial methods have
been widely acknowledged.

Compared to object detection in static images [39], video
object detection is more difficult in practical scenarios [18].
The accuracy of video object detection suffers from de-
formable object appearances and degraded imaging quality,
e.g., motion blur, object occlusion, video defocus, rare pos-
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tures [7]. Therefore, increasing attention has been paid to
object detection in videos. Existing such algorithms can be
mainly categorized into feature-flow-based, tracking-based,
and post-processing-based algorithms.

Although the aforementioned video object detection
methods are able to achieve considerable detection per-
formance on some large-scale datasets, they underperform
when detecting tiny objects in complex backgrounds. The
reason is that the size of targets is tiny and sometimes the
appearance information is missing [24]. There are also
many fictitious artifacts within the images that have similar
appearances to the desired small targets, leading to serious
false detection [38]. As a result, it is very challenging to
identify the tiny targets for deep convolutional neural net-
works that only utilize static image features [44].

Comparatively, biological visual systems can recognize
tiny objects in complex backgrounds easily. The retina
converts light signals into electrical signals and integrates
the signals into the cortex through a series of preprocess-
ing operations [1]. The retina is not only a photoelec-
tric converter but also contains two information process-
ing channels, namely a motion-processing pathway and
a appearance-processing pathway. The motion-processing
pathway is responsible for extracting movement informa-
tion, while the appearance-processing pathway takes charge
of processing detailed visual information [28]. Retinal sig-
nals are then transmitted into the lateral geniculate nucleus
or the visual cortex, e.g., the primary visual cortex (V1).
Correspondingly, there are also two visual pathways in the
cortex: the dorsal pathway, and the ventral pathway [6]. The
ventral pathway, a.k.a. object recognition pathway, gener-
ally starts from the V1 area and extends to the superior pari-
etal lobule through the V2, V4, inferior temporal cortex, etc.
The dorsal pathway starts from the V1 area and reaches the
superior parietal lobule area through the V2, V3, middle
temporal(MT), etc. The dorsal pathway is associated with
the location and movement of the object. The two channels
mutually modulate each other and jointly process visual sig-
nals [9].

Aiming at the challenge of VODT, we propose to both
use the static image features and the visual motion fea-
tures inspired by the mechanism of biological visual sys-
tems. The visual motion features are extracted based on the
registered sequential frames, which is employed as an en-
hancement module for the object detector. We implement
the backbone of the object detection architecture based on
the widely validated deep convolutional neural networks.
Consequently, the motion strength computation model can
guide the conventional object detector to better locate the
tiny objects in video frames. The proposed method as well
as the competing methods are extensively evaluated on the
publicly available Anti-UAV-2021 Challenge dataset [46].

2. Related work
2.1. Visual object detection

Visual object detection methods can be roughly divided
into two categories: two-stage and one-stage algorithms.

In two-stage algorithms, visual object detection is im-
plemented by a target positioning step and a subsequent tar-
get recognition step. Representative methods include the R-
CNN [11], Fast R-CNN [10], Faster R-CNN [32] and Mask
R-CNN [14] methods. The R-CNN method [11] selects
thousands of region proposals from the input image by a se-
lective search module and then scales each region proposal
into a feature extraction network. The feature extraction
network model [20] obtains a high-dimensional feature vec-
tor and then trains a support vector machine [43] classifier
to determine if the region contains a target or not. As an im-
proved version, the Fast R-CNN method [10] trains object
classification and detection box regression in the same net-
work framework, considerably reducing the training com-
putational workload and prediction time. Furthermore, the
Faster R-CNN method [32] uses a region proposal network
to replace the selective search module, in which the region
proposal network shares features with the whole detection
network. And the anchor box was introduced to adapt to
the change of the target shape, which improved the de-
tection accuracy and speed. The advanced Mask R-CNN
method [14] was built on the Faster R-CNN method, adding
a mask prediction branch based on a fully convolutional net-
work to each region of interest. In this way, this method can
obtain the image segmentation result on pixel level as well
as the object detection result simultaneously.

The other type of object detection, namely one-stage al-
gorithms, predicts the target categories and location infor-
mation simultaneously. Among them, the YOLOv1 [29],
YOLOv2 [30], YOLOv3 [31], YOLOv4 [3] and YOLOv5 1

methods have been widely acknowledged. The YOLOv1
method [29] avoids generating a series of proposals and di-
rectly performs regression and classification on the entire
input image, thereby improving the object detection speed
considerably. The YOLOv2 method [30] further employs
batch normalization, passthrough layers, multi-scale reso-
lution training, and other strategies to increase the detection
accuracy. Then, the YOLOv3 method [31] uses a number of
residual blocks and feature pyramid networks in the detec-
tion architecture, significantly improving the detection per-
formance of small targets. In the YOLOv4 method [3], the
authors used multi-anchors to recognize a single object, eas-
ing the imbalance problem between positive and negative
samples. Besides, the YOLOv4 method employs the com-
plete intersection-over-union loss to compute the cost func-
tion, which can better describe the difference between the
detection result and the ground truth. The latest YOLOv5

1https://github.com/ultralytics/yolov5
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method uses adaptive learning bounding box anchors to pre-
dict the areas of the potential targets. Also, the YOLOv5
method further develops the cross-stage partial networks to
upgrade the whole model. In addition, the YOLOv5 series
includes several versions that have different characteristics
and advantages, depending on the application scenarios.

2.2. Video object detection

Video object detection has gained increasing attention
from researchers over the past several years. Compared to
object detection in static images [39], video object detection
is more challenging and more important in practical scenar-
ios [18]. As aforementioned, popular video object detection
algorithms can be roughly grouped into feature-flow-based,
tracking-based, and post-processing-based algorithms.

The feature-flow-based methods use either a feature
propagation or a feature aggregation scheme to enhance the
feature of blurred frames. The deep feature flow (DFF)
method [49] only extracts features on keyframes. Opti-
cal flow computing is utilized to establish a temporal cor-
respondence between objects. The keyframe features are
then propagated by optical flow information, which embod-
ies temporal correspondence between objects, through a bi-
linear interpolation process to obtain the features of non-
keyframes. The FGFA method proposed in [48] aligns the
feature maps appropriately through optical flow, and then
aggregates the feature maps from adjacent frames to ob-
tain features of the current frame. Consequently, the prob-
lem of motion blur can be eased. Another method named
MEGA [4] weights aggregated features through cosine sim-
ilarity of target features in video frames. In addition, it uses
global semantic information to enhance the feature repre-
sentation. The method proposed in [8] gradually enhances
the feature of the aggregated proposal through the reference
frames. However, such methods underperform when the op-
tical flow is inaccurately obtained.

The tracking-based methods use a tracker to accompany
the object detection progress, combining both the tracking
and detection results. For example, the Detect or Track
method [25] determines to choose the results of object de-
tection or object tracking by a scheduler network. The CaT-
Det method [26] consists of two deep convolutional mod-
els that form a cascaded detector, and an additional tracker
to predict regions of interests based on historic detections,
thereby leveraging the temporal correlation in videos to ac-
celerate the detection efficiency.

As for post-processing-based methods, they optimize the
detection result through the spatio-temporal consistency of
the video target. When the image quality is degraded, the
obtained target confidence score is usually low. The Seq-
NMS method [13] links the box of the adjacent frame and
uses the box with the high confidence score from the adja-
cent frame to correct the box of the current frame. In addi-

tion, the Seq-Bbox Matching method [2] matches the boxes
to a tubule. The bounding box of the same tubule is adjusted
by the average score. This scheme of bounding box linking
helps to reduce missed detection and to improve detection
recall rate.

3. MG-VODT: Model design and implementa-
tion

Inspired by biological visual systems, it is highly be-
lieved that motion information play an important role in tiny
object searching and recognition. In this section, we design
an tiny video-object detection method guided by the visual
motion features. The visual motion information can be ob-
tained by the sequential frame cuboid elaborated in the pre-
vious section. The motion features are subsequently used
to guide tiny/small object detection in infrared videos. The
whole detector is implemented as follows.

3.1. Visual motion strength computational module

For both artificial or biological vision systems, visual
motion features play an important role in vision-related
tasks, e.g., target detection [48], object tracking [50] and
video denoising [45]. Conventional popular motion feature
extraction methods include optical flow [16] and frame dif-
ference [21]. Nevertheless, optical flow extraction methods,
which are computationally heavy, are sensitive to illumina-
tion variation and random noise. Moreover, the frame dif-
ference can hardly represent motion features accurately, es-
pecially in scenarios of dynamic backgrounds and degraded
frames. In this paper, we propose to use the bio-inspired
model to extract visual motion strength.

In biological visual systems, the retina area morpholog-
ically includes photoreceptor cells, horizontal cells, bipolar
cells, amacrine cells and ganglion cells [40]. When process-
ing the visual information, photoreceptor cells receive light
stimuli and convert light signals into electrical signals. The
horizontal cells are laterally connected with photoreceptor
cells, receiving signals from photoreceptors while feeding
inhibitive control signals back [12]. Subsequently, the elec-
trical signals are transmitted to ganglion cells through bipo-
lar cells [15]. The ganglion cells work together with bipolar
cells and amacrine cells [27] to process the visual informa-
tion, and then project the coded signals to the lateral genic-
ulate nucleus or the primary visual cortex [34].

Investigators in the neuroscience field have found that
in biological visual systems, the visual information is
processed in two paralleled pathways, i.e., the motion-
processing pathway and appearance-processing pathway.
The two pathways process visual motion information and
static appearance visual information, respectively. Specifi-
cally, in the motion-processing pathway of the inner plex-
iform, the amacrine cell has one end connected with the
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bipolar cell, and the other end connected with the gan-
glion cell. Amacrine cells act as a temporal high-pass fil-
ter bank [41] that enhances the temporal and spatial vari-
ation. Its output depends on both the current input and
the previous output, like the solution a difference equation.
The ganglion cells participate in both the motion-processing
pathway and appearance-processing pathways [33]. On the
one hand, they act as a spatial low-pass filter, retaining
the temporal and spatial variation information yield by the
amacrine cells. On the other hand, they subsequently boost
the contrast information, amplifying the visual motion sig-
nals. We implement the motion-processing pathway com-
putation model based on the adjacent frames that have gone
by. These adjacent frames can be reshaped into a sequential
frame cuboid. Besides, to address the problem of camera
movement (including camera rotation, pitching and rolling),
the images in the frame cuboid are aligned and registered
according to the backgrounds. It is worth noting that since
the motion strength are obtained based on multiple frames,
the designed method above can effectively suppress random
noise.

3.2. Motion-guided networks

Tiny object sometimes occupy only a few pixels in each
frame, showing limited visual appearance features. Al-
though many solutions to tiny object recognition have been
developed, e.g., blob detection methods [37] and tiny ob-
jection detectors for static images [5], tiny object detection
yet remain a very difficult task, especially in complex back-
grounds. It is widely known that visual motion information
can facilitate attention guidance and object searching, for
both artificial intelligent systems and biological vision sys-
tems.

Since target searching and tracking are crucial for ani-
mal survival, visual motion information processing is very
important for biological visual systems. Once the target
moves, it arouses temporal and spatial variations, leading
to visual attention responses to the changing areas. Many
visual areas in the brain, formed by various types of neu-
rons, take part in this critical task. Besides, these visual ar-
eas integrate visual motion information together with spatial
appearance information hierarchically [19]. In a biological
retina, the motion-processing pathway and the appearance-
processing pathway focus on temporal and spatial visual
features, respectively. It is intuitive to utilize the motion-
processing response to enhance the potential target areas
and suppress the undesired backgrounds.

To this end, we propose to integrate the motion strength
into deep convolutional neural networks, thereby building a
motion-guided visual object detection model. In this way,
we can employ the visual motion information as an attention
guidance module, while retaining the spatial appearance in-
formation that represented by the deep neural networks.

3.3. MG-VTOD model

Aiming at object detection in infrared videos, we have
proposed a scheme that combines the Magno model with
deep convolutional neural networks. We next implement
such an algorithm based on the popular YOLOv5 method,
which is famous for its high executive efficiency and
high accuracy. The original YOLOv5 method includes
four versions that have different model capacities, namely
YOLOv5-s, YOLOv5-m, YOLOv5-l, and YOLOv5-x. We
employ the YOLOv5-s as the backbone, and utilize the mo-
tion strength to guide the object detection process, thereby
proposing a MG-VTOD object detector that is illustrated in
Fig. 2.

The motion computational module outputs the visual
motion strength, yielding a one-channel grayscale map, in
which the motion areas have large intensity (e.g., 1), while
the static backgrounds have small intensity values (e.g., 0).
Meanwhile, the original video frames are preprocessed to
improve the visual quality. Following the working mech-
anism of the YOLOv5 method, all the input channels are
sliced and sent to the convolutional layers. Subsequently,
the convolutional responses of the motion strength maps
and the preprocessed video frames are concatenated to-
gether. As a result, in the subsequent processing proce-
dures, the areas that have larger motion strength response
values are more likely to be activated.

Within the MG-VTOD model, we employ the cross-
stage partial (CSP) network [36] that can mitigate the prob-
lem of heavy inference computations. On the one hand, the
visual features are learned and represented through a series
of sequential convolution operations. On the other hand,
the CSP network integrates the feature maps from the be-
ginning and the end of a specified network module. In ad-
dition, two types of CSP networks are used. The difference
comes from the manner of intensive convolution operations.
One type contains residual blocks and the other one has con-
tinuous convolution operations. The CSP network scheme
improves the efficiency of the whole model because it pro-
cesses feature maps through two paths, and consequently
reduces gradient repetition. The concatenated feature maps
contain visual features at different levels.

On object detection tasks, the target size varies signif-
icantly, depending on the sensor parameters and observa-
tion distances. To cope with the problem of size hetero-
geneity, the MG-VTOD model employs both the feature
pyramid network (FPN) [22] and the path aggregation net-
work (PAN) [23] schemes. The FPN has a down-sampling
feature extraction process, like many classic deep convo-
lutional networks. It also has an upsampling process that
concatenates the upsampled maps with the corresponding
maps in the down-sampling branch. Since the concatenated
maps contain visual features at different levels, they are fed
to different detection heads separately to detect objects with

3057



Figure 2. Structural illustration of the proposed MG-VTOD model.

various scales. The PAN takes an additional bottom-up path
that uses the upsampling maps yielded by the FPN. The
PAN also performs Region-of-Interest align operations on
each feature map to extract the features for the object. In
this way, the whole designed model can pool features from
all the levels, and particularly, can shorten the distance be-
tween the lowermost and the top layers. Visual features are
therefore substantially enriched for each level with the help
of the augmented visual processing paths. Furthermore, a
multi-scale prediction scheme and pre-defined anchor boxes
are used to improve the detection ability for targets with
different sizes. In our method, the prediction module is per-
formed on the feature maps that are down-sampled 8, 16,
and 32 times, respectively.

In order to improve the generalization ability of the
designed method, we use the mosaic data augmentation
scheme by splicing four images onto one image. In the
yielded sample images, the target may appear in different
positions within the four image patches. Therefore, this
scheme helps the model improve the ability of target po-
sitioning and background adaption.

4. Experimental results and discussions

Towards an accurate and robust object detection in in-
frared videos, we have designed the MG-VTOD method
that combines deep convolutional neural networks with the
motion strength computation model. In this section, we
evaluate the performance of the MG-VTOD method on a
publicly available large-scale dataset. Firstly, we test differ-
ent YOLOv5 versions to determine the backbone network
of our method. Secondly, we apply the MG-VTOD and the
competing methods to the large-scale dataset. Thirdly, we
investigate the specific advantages of the proposed method
over the competing methods. The experimental results

along with discussions are reported as follows.

4.1. Experimental setup

4.1.1 UAV video target detection dataset

The dataset used in this paper comes from the Anti-UAV-
2021 Challenge dataset2 that contains 304451 frames in
total. The resolutions of the video frames are mostly
640 × 512. The training dataset and test dataset is com-
posed of 140 high-quality full HD thermal infrared video
sequences, respectively. All the targets appearing in the
frames are manually annotated. Note that these annotation
files are employed to evaluate the performance of the pro-
posed method as well as the competing methods, but should
not be used in the Anti-UAV-2023 Challenge. It is chal-
lenging to detect the object targets in these videos because
the backgrounds are various and complex. These back-
grounds include clouds, buildings, trees, mountains, and
other complex backgrounds, reflecting realistic scenarios in
UAV surveillance. Moreover, the object targets span multi-
scale occurrences in terms of size, i.e., large, medium, small
and tiny. To be more precise, the target sizes in the Anti-
UAV-2021 dataset are mostly less than 2500 pixels, accord-
ing to the statistical data. Compared to the field-of-view of
the frame (327680 pixels), most of the targets only occupy
a small region.

4.1.2 Experimental parameter settings

The experiment is based on a Ubuntu operating system.
The algorithm is performed on a PC configured with AMD
EPYC 7502 32-Core Processor, A100-PCI-E-40GB GPU.
The network input size is 640 × 640. As for the hyper-
parameter settings, the batch size is set as 64, the initial

2https://anti-uav.github.io/dataset/
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learning rate is set as 0.01. In addition, we select the Adam
as the optimizer.

4.1.3 Quantitative evaluation metric

When evaluating the performance of the object detec-
tors, we adopt the widely used Average Precision (AP)
value (when Intersection-over-Union is greater than 0.5) as
the quantitative metric, which is calculated based on the
Precision-Recall pairs. Precision stands for the correct pro-
portion of all detection results, while Recall represents the
proportion of all objects that are detected correctly:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
(1)

where TP represents the number of objects detected cor-
rectly, FP denotes the number of non-object targets detected
as object targets, and FN stands for the number of missed
object targets.

4.2. Experimental results

4.2.1 Comparison to the advanced competing methods

To verify the effectiveness of our method, we com-
pared it with the state-of-the-art YOLOv5-s, FCOS [35],
FGFA [48], and SELSA methods [42]. The FCOS method
is an representative one-stage and anchor-free object detec-
tor that completely avoids the complicated computation re-
lated to anchor boxes [35]. The FGFA method is a video
object detector guided by optical flow information [48].
The SELSA method aggregates visual features in the full-
sequence level for video object detection [42].

The quantitative evaluation results are reported in Ta-
ble 1. In terms of detection accuracy, the AP, precision,
and recall values, the proposed MG-VTOD method are all
the highest, with an AP value of 90.7%. Our method im-
proves the recall rate more significantly, which indicates
that our method can detect more true objects in complex
backgrounds. The YOLOv5 method performs on a sin-
gle frame, thereby failing to use motion information. The
FGFA and SELSA methods underperform since they are
mainly designed to detect significant moving objects in
videos. They are more likely to miss small and tiny tar-
gets in complex backgrounds. The FCOS method yields the
worst target detection results.

Example visual experimental results are shown in Fig. 3.
Within the target detection results, the green boxes indicate
the ground truth annotation, while the red boxes stand for
the bounding boxes of detection results.

As can be seen, video #111 reflects a mountain back-
ground in which the visual textures are very complex.
When the object appears in the complex background, the

Table 1. Comparison of experimental results.

Methods AP(%) Precision(%) Recall(%) FPS

YOLOv5-s 86.1 93.1 79.9 95

FCOS 80.1 90.6 74.6 21

FGFA 83.3 92.0 75.4 9

SELSA 84.1 93.0 75.6 4

MG-VTOD 90.7 94.7 86.3 28

YOLOv5-s and SELSA methods fail to yield detection re-
sults, neglecting the tiny object targets. Moreover, The
FGFA method outputs false detection results while miss-
ing the true object targets. Comparatively, our method can
accurately detect all the object targets. This is mainly be-
cause the proposed MG-VTOD method is able to utilize the
motion information through the motion strength computa-
tion model. One can hardly pinpoint the target in the orig-
inal frames. With the help of temporal-spatial contextual
information, the motion strength computation model yields
response maps in which the target areas have been signifi-
cantly enhanced. The motion features can subsequently fa-
cilitate the object detection process.

As for the runtime, the YOLOv5-s method is the most
time-efficient method. The FGFA, SELSA and FCOS meth-
ods are computationally heavy, thereby failing to detect tar-
get in a fast manner. Our method can process 28 frames per
second, achieving a real-time object target detection.

4.2.2 Superiority validation of the proposed method

To further analyze the advantages of the MG-VTOD
method over the competing method, we obtain the quan-
titative evaluation results of the tested methods when they
detect targets with different sizes and with different types of
backgrounds.

According to the target size in the dataset, we divided all
the targets to be detected into seven groups, as reported in
Table 2. One can see that the YOLOv5-s and MG-VTOD
methods obtain very close performance when the targets are
large, i.e., the target area is larger than 1600 pixels. This
demonstrates that the two methods are both good at de-
tecting large targets. It is worth noting that the proposed
MG-VTOD has significant superiority over the competing
method when detecting small and tiny targets. In particu-
lar, the MG-VTOD has advantages in detecting small-size
targets, which are challenging for traditional methods. For
example, when detecting object targets smaller than 100
pixels, the AP value obtained by the MG-VTOD is 15.4%
higher than that of the YOLOv5-s method. Since the Mago-
DCNN and the YOLOv5-s have similar backbone networks,
it can be inferred that the motion strength computation
model substantially contributes to the improvement of the
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Figure 3. Visual comparison among detection results obtained by tested methods on video #111. Green rectangles stand for the ground
truth of object targets; Red rectangles represent detection results obtained by the test methods; The marked numbers are the confidence
scores for the corresponding results.
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detection accuracy.

Table 2. Comparison of AP values (%) in terms of target sizes (i.e.
number of pixels).

Size (0,100] (100,400] (400,900] (900,1600]

YOLOv5-s 61.3 78.0 92.9 87.7

MG-VTOD 76.7 89.0 94.6 88.3

Difference ↑15.4 ↑11.0 ↑1.5 ↑0.6

To investigate the advantages of our method over the
state-of-the-art competing method in different types of
background, we further classify the data into five categories
that reflect backgrounds of clean, cloud, building, wood and
mountain, respectively. The experimental results are re-
ported in Tab. 3. It can be seen that when detecting object
in clean backgrounds, both the MG-VTOD and YOLOv5-
s yield reliable detection results, achieving an AP value of
98.5%. Nevertheless, in most scenarios, the MG-VTOD ob-
tained higher AP values than the YOLOv5-s method. In par-
ticular, when detecting objects in wood and mountain back-
grounds, which usually have high-degree visual complexity,
the MG-VTOD shows overwhelming superiority compared
to the YOLOv5-s method. The target detection results illus-
trated in Fig. 3 have also verified the efficacy of the MG-
VTOD method.

Table 3. Comparison of AP values (%) in terms of background
types.

Background Clean Cloud Building Wood Mountain

YOLOv5-s 98.5 89.3 85.7 62.3 72.0

MG-VTOD 98.5 96.0 86.9 79.4 85.7

Difference 0 ↑6.7 ↑1.2 ↑17.1 ↑13.7

In order to further evaluate the robustness to random
noise, we apply the MG-VTOD and YOLOv5-s methods
to videos that have been degraded by zero-mean, Gaussian
white noise with a variance of 0.001. The obtained AP val-
ues of the two tested methods are shown in Table 4. Since
we did not use noisy video as training samples during the
model optimization procedure, the performance of the two
methods decrease in artificially noisy data. Comparing Ta-
ble 4 with Table 1, we can find that the MG-VTOD are more
noise-robust than the YOLOv5-s method. This is because
the motion strength computation model embedded in the
MG-VTOD method can utilize multiple frames to compute
the motion information. During this procedure, the random
noise can be substantially suppressed.

Table 4. Comparison of AP values (%) obtained on videos de-
graded by random noise.

Methods AP(%) Precision(%) Recall(%)

YOLOv5-s 73.0 91.1 67.2

MG-VTOD 82.2 90.8 77.2

5. Conclusions
It is widely acknowledged that monitoring remote unau-

thorized objects is of great importance for public security.
Nevertheless, tiny-object detection in videos remain a chal-
lenging task in the computer vision filed. In order to detect
tiny objects with complex backgrounds in realistic videos,
we have proposed a novel real-time object detection method
that jointly utilizes static and visual motion information.
Inspired by the biological retina mechanism, we have de-
signed a motion strength computation model to extract the
motion responses of moving targets. The motion responses
are subsequently employed to enhance the potential areas
of the moving targets. The whole method has been im-
plemented by the widely adopted deep convolutional neural
networks that are guided by the motion strength maps. To
verify the efficacy of the proposed method, we have evalu-
ated the MG-VTOD method as well as the advanced com-
peting methods on a publicly available large-scale dataset.
Experimental results have validated that the MG-VTOD
method significantly outperforms the competing methods,
including the YOLOv5, FCOS, FGFA and SELSA meth-
ods, especially when detecting tiny-size targets against ex-
tremely complex backgrounds, e.g., woods and mountains.
Among future work, the proposed MG-VTOD method will
be further employed to contribute to multi-target tracking
systems.
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