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In the supplementary material, we first provide more de-
tails for model training and inference. Then, we present
more qualitative results to demonstrate the effectiveness of
our method.

1. Training and Inference
1.1. More Training Details

In order to evaluate the performance of our tracker on
the 1st and 2nd Anti-UAV test-dev [5, 15] benchmarks, we
fine-tune our Multi-Region Local Tracking (MRLT) mod-
ule 50 epochs with 6 × 105 samples per epoch on the train
split. The learning rates decrease by a factor of 10 after 40
epochs. The other training settings are consistent with the
models trained on entire datasets [3, 4, 7, 9] without UAV
classes. Besides, in the Global Detection (GD) module, we
fine-tune our global detector 100 epochs on the train split
for global detection at each frame. We filter out the drone
objects smaller than 5 × 5 in the train dataset to avoid noise
during training.

1.2. Inference Details
Table 1. Effect of different region search strategies on perfor-
mance.

strategy Score(%)
single-region search 72.61
multi-region search 75.13

During the tracking process, we try the single-region
search and multi-region search strategies in our MRLT
module. Specifically, the single-region search means that
we only compute the target score in the local tracker search
region. Then the target score compares with the global de-
tect scores, and the optimal target location corresponding
to the highest score is selected as the final result. In con-
trast, the multi-region search means that we rescore the de-
tected proposals using the local tracker, which can iden-
tify the tracking drone. In particular, we crop search re-
gions based on the detected drone proposals and concate-
nate these regions in a batch. The local tracker detects tar-
gets in these search regions parallelly and outputs the cor-
responding target score for selecting the optimal result. As

Table 2. Performance of different types of matching algorithms.

matching algorithm Score(%)
SIFT [8] 73.33

SuperGlue [10] 74.21
LoFTR [11] 75.13

shown in Table 1, if we use the multi-region search strategy,
the performance raise by 2.97%. This demonstrates that the
multi-region search strategy can obtain a more accurate tar-
get score for selecting the final result. Thus, our tracker can
achieve a robust tracking post-process.

In the process of tracking, we compare different match-
ing algorithms in the Background Correction (BC) mod-
ule. Specifically, SIFT [8] and Superglue [10] are detector-
based local feature matching algorithms. SIFT [8] are ar-
guably the most successful hand-crafted local features and
are widely adopted in image feature matching. Recently,
SuperGlue [10] proposes a learning-based approach for lo-
cal feature matching. In contrast, LoFTR [11] proposes
to tackle the repeatability issue of feature detectors with a
detector-free design. These matching algorithms are pop-
ular in many computer vision tasks. As shown in Table 2,
the LoFTR model serves as the matching algorithm that can
make our UTTracker get the optimal tracking results.

2. Qualitative Results
2.1. Tracking Results

We make a qualitative analysis of our UTTracker under
different tracking challenges. As shown in Figure 1, the
first row displays an appearance variation challenge,thanks
to the MRLT module, our UTTracker can adapt target scale
change timely; the second row describes a target out-of-
view challenge, by assembling the GD module to our UT-
Tracker, it can be solved effectively; the third row shows a
camera motion challenge, with the use of the BC module,
our UTTracker can still track the target in the face of cam-
era movement; the final row exposes a small target tracking
challenge, and it can be well solved by the DSOD module
that contained in our UTTracker. In a word, our UTTracker
shows clear advantages in dealing with challenging UAV
tracking in TIR mode.
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Ground truth Baseline UTTracker

Figure 1. Qualitative comparison of UTTracker with OSTrack Baseline in face of different scenarios. Our tracker can achieve more
accurate tracking results in such challenging scenarios.
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