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Abstract

In the context of biometrics, matching confidence refers
to the confidence that a given matching decision is correct.
Since many biometric systems operate in critical decision-
making processes, such as in forensics investigations, accu-
rately and reliably stating the matching confidence becomes
of high importance. Previous works on biometric confi-
dence estimation can well differentiate between high and
low confidence, but lack interpretability. Therefore, they do
not provide accurate probabilistic estimates of the correct-
ness of a decision. In this work, we propose a probabilis-
tic interpretable comparison (PIC) score that accurately re-
flects the probability that the score originates from samples
of the same identity. We prove that the proposed approach
provides optimal matching confidence. Contrary to other
approaches, it can also optimally combine multiple sam-
ples in a joint PIC score which further increases the recog-
nition and confidence estimation performance. In the exper-
iments, the proposed PIC approach is compared against all
biometric confidence estimation methods available on four
publicly available databases and five state-of-the-art face
recognition systems. The results demonstrate that PIC has
a significantly more accurate probabilistic interpretation
than similar approaches and is highly effective for multi-
biometric recognition. The code is publicly-available1.

1. Introduction
Biometric recognition systems, such as face recognition,

have a growing effect on our daily life [22]. Since these sys-
tems are increasingly involved in critical decision-making
processes, such as in forensics and law enforcement, it is
important for these applications to act on reliable decisions
[6, 13]. While human operators can intuitively state how
sure they are about a decision and if they can carry out justi-

1https : / / github . com / pterhoer /
OptimalMatchingConfidence

fiable actions based on this decision [23], current biometric
systems do not possess such reliable confidence estimates.

Figure 1. Probabilistic Confidence Interpretation Problem -
Given two biometric samples, the face recognition system comes
to the decision that the sample belonging to the same identity (gen-
uine). Evaluating the correctness of this decision based on inde-
pendent test data results in a probability of 72% that this decision
is correct. However, most confidence estimation approaches (yel-
low) either overestimate (red) or underestimate (blue) the confi-
dence. Contrarily, the proposed PIC approach provides a confi-
dence value (green) reflecting the probability the decision is cor-
rect.

For face recognition (FR), to decide if two faces belong
to the same person, a feature representation for each sample
is created by a face recognition model. These are known
as templates and comparing two templates with a similarity
function, such as cosine similarity, results in a comparison
score that describes the similarity between the two faces. If
the comparison score is above a given threshold, the match-
ing decision is genuine (same identity). Otherwise, the de-
cision is imposter (different identities) [9].

The score uncertainty describes the uncertainty in the
score depending on the uncertainty of the data and the
model. Contrarily, decision confidence refers to the con-
fidence that the made decision is correct [6, 14]. A low-
confidence decision is therefore more likely to be wrong
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than a high-confident one. Consequently, confidence esti-
mation might prevent high-cost mistakes e.g. in front of a
court. Previous works proposed several approaches to state
the confidence of a model’s decision. However, these con-
fidence measures lack interpretability (see Figure 1), mean-
ing that those are hardly interpretable and thus, do not re-
flect the probability that the matching decision is correct.

In this work, we propose a probabilistic interpretable
comparison (PIC) score that accurately reflects the proba-
bility that the score originates from samples of the same
identity. Additionally, the PIC score provides a natural
way of combing several comparisons from multiple samples
originated from the same network without losing its prob-
abilistic interpretability. The experiments were conducted
on five state-of-the-art face recognition systems (FRS) and
four publicly-available datasets. Comparing the proposed
approach against all available biometric confidence estima-
tion methods, the results demonstrate that PIC results in
much more accurate, stable, and interpretable confidence
estimates. Moreover, PIC scores from multiple instances
lead to a strong boost in recognition performance and prob-
abilistic interpretability.

In contrast to previous works, the proposed PIC score
unifies several beneficial properties:

• Interpretability: The PIC score accurately reflects
the probability that the comparison belongs to a gen-
uine (same person) comparison. This allows critical
decision-making processes to act upon reliable deci-
sions or, in case of low confidence, allow to ask a more
confident system or human operator for the decision.

• Optimality: Despite its simplicity, PIC is derived
from Bayes’ theorem and thus, provides optimal
matching confidences given suitable training data.
This might be useful, e.g. in law enforcement, when
approaches with a theoretical foundation are preferred.

• Universality: Since PIC operates on score level, it is
not limited to face and can be applied to any biometric
modality and recognition model without changing its
single-biometric performance.

• Combinability: Contrarily to standard comparison
scores, a joint PIC score can naturally be com-
puted when multiple samples are given. This leads
to stronger multi-biometric recognition performance
without losing its interpretability and is highly bene-
ficial when e.g. dealing with multiple video frames.

• Integratability: PIC is easily integrateable. It can be
easily added on top of an existing biometric system
without retraining that system. Moreover, it avoids the
need for data- and computationally-expensive experi-
ments to determine the wanted decision threshold due
to its interpretable nature.

2. Related Work
Confidence estimation in biometric recognition is a rela-

tively new but important field. It aims at estimating the con-
fidence that a decision is correct [6,14]. While for biometric
attribute estimation [19] model calibration methods for clas-
sification [4] can be easily adapted due to the output of prob-
ability values, this becomes more challenging for zero-shot
representation learning tasks, such as biometric recognition.
To the best of our knowledge, there are only five recent con-
fidence estimation methods for face recognition. In [24],
Zeinstra et al. proposed to use the likelihood ratio between
genuine and imposter as a confidence measure for foren-
sic use cases. Huber et al. [6] proposed a more intuitive,
but effective solution, by utilizing the distance between the
score and the decision threshold as a confidence measure.
To get probabilistic confidence estimates, in [7], the corre-
sponding error rate for the decision threshold, lying closest
to a given comparison score, was interpreted as the deci-
sion confidence. Other approaches [6,17] require a special-
ized network that produces probabilistic face embeddings
with corresponding feature uncertainties. In [6], Huber et
al. propagated these uncertainties through an approximated
decision function to obtain matching confidence. In [17],
Shi and Jain used these uncertainties to compute the proba-
bility that two samples share the same face embedding.

Table 1 compares the properties of existing biometric
confidence estimation methods. Only the proposed PIC ap-
proach is jointly (probabilistic) interpretable, optimal, uni-
versal, combinable, and integrable. While all of these con-
fidence estimation methods work well in differentiating be-
tween lower and higher confidence, our experiments will
demonstrate that the produced confidence estimates can not
be well interpreted as the probability that a decision is cor-
rect. To fill this gap, we propose the PIC score approach.

Table 1. Properties of biometric confidence estimation approaches.

Method Interpretable Optimal Universal Combinable Integrable

DTC [6] − − + − +
LRC [24] − − + + +
ERBC [7] + − + + +
PFES [17] + − − + −
UPMC [6] − − − − −
PIC (Ours) + + + + +

3. Methodology
3.1. Probabilistic Interpretable Comparison Score

To make the PIC score probabilistic interpretable, we de-
fine the score sPIC(s̄) = P (g(s)|s̄) as the probability that
the set of comparison scores s̄ originates from the genuine
distribution g(s). To be precise, given are n distributed stan-
dard comparison scores s̄ = {s1, s2, . . . sn} and we want to
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compute the probability P (g(s)|s̄) that these scores were
drawn from the genuine distribution g(s) rather from the
imposter distributions f(s). The probability can be mod-
eled by the Bayes rule

P (g(s)|s̄) = P (s̄|g(s)) · P (g(s))

P (s̄|g(s)) · P (g(s)) + P (s̄|f(s)) · P (f(s))
(1)

where P (g(s)) and P (f(s)) are the prior probabilities that
the scores belong to the genuine or imposter distribution.
Assuming that the scores are drawn independently, the like-
lihood functions P (s̄|g(s)) and P (s̄|f(s)) are given by

P (s̄|g(s)) = Lg(s̄) = g(s1) · g(s2) . . . g(sn) (2)
P (s̄|f(s)) = Lf (s̄) = f(s1) · f(s2) . . . f(sn). (3)

For simplicity, we further assume that genuine and imposter
comparisons happen equally often P (g(s)) = P (f(s)) and
obtain the multi-instance biometric solution P (g(s)|s̄) that
we define as the PIC score

sPIC(s̄) = P (g(s)|s̄) = Lg(s̄)

Lg(s̄) + Lf (s̄)
. (4)

For a single-instance scenario (s̄ = s1), this simplifies to

sPIC(s1) = P (g(s)|s1) =
g(s1)

g(s1) + f(s1)
. (5)

If a system decides for genuine, sPIC(s1) = P (g(s)|s1)
is the probability that the decision is correct. Contrarily, if
the decision is imposter, then the probability for a correct
decision is given by 1 − sPIC(s1). The simplification as-
sumption of equal prior probabilities aims at keeping the
confidence unbiased by having an equalized weighting be-
tween both kinds of decision errors. However, it can be
optimized for particular applications (e.g. border control)
by specifying these prior probabilities to operational condi-
tions.

3.2. Training PIC

So far, the derivation assumes that we know g(s) and
f(s) in advance. The training processes of PIC involve
learning these probability density distributions, e.g. with
kernel density estimation (KDE). Given the training data
D ∈ {si, yi}i=1,...,N consisting of pairs with comparison
scores {si} and if these belong to genuine or imposter com-
parisons, the training data scores are split in genuine and
imposter scores Dg and Df . Then, for each of the score sets
a probability density distribution is learned via KDE. For
genuine, this is given by

g(s) =
1

|Dg| · h
∑

si∈Dg

K

(
s− si
h

)
. (6)

As the kernel K(x), we used a Gaussian Kernel

K(x) =
1√
2π

e
−x2

2 (7)

and selected the bandwidth h with the Scott’s rule for one
dimension h = N− 1

5 . These resulted in training the proba-
bility density distributions f(s) and g(s) needed for the PIC
score calculation.

3.3. Discussion

A comparison score describes the similarity between two
samples. A higher score refers to a higher chance of be-
longing to the same identity and vice versa. From this per-
spective, it makes sense to interpret the probability of sam-
ples originating from the genuine distribution (or not) as
a comparison score. For a single comparison, as long as
f(s)
g(s) is monotonic, the order of PICS scores, and thus its
single-comparison recognition performance is identical to
the ones of the standard comparison score. However, since
the derivation of sPIC(s̄) = P (g(s)|s̄) was already done
for the case of multiple comparisons, its probabilistic inter-
pretation, and the fusion process is optimal. Since infer-
ence with Gaussian KDE can be slow with large training
data, and thus the PIC score calculation, we recommend
creating look-up tables for g(s) and f(s) to speed up the
score calculation. Lastly, the PIC scores avoid the need for
data- and computationally-expensive experiments to deter-
mine the wanted decision threshold. Since the scores al-
ready reflect the probabilities for errors, the threshold t for
a false match rate (FMR) can be chosen by t = 1− FMR.

4. Experimental Setup
4.1. Databases

The experiments were conducted on four publicly-
available face recognition datasets with various properties.
The Adience dataset [2] consists of 26k images from over
2k different subjects. The images of the Adience dataset
possess a wide range of challenges such as low image qual-
ity and very young faces. LFW is a dataset [5] containing
13k face images of over 5k identities that were captioned
from news images. The ColorFeret database [15] consists
of 14k face images from over 1k different individuals with
a variety of face poses (from frontal to profile) and facial
expressions under well-controlled conditions. Lastly, the
Morph [10] dataset consists of 55k frontal face images from
over 13k subjects in high resolution. For training, we ap-
plied a subject-exclusive test (50%) train split (50%). The
50/50% train split is respective to the number of genuine
and impostor samples. As such, the identities of both sets
are selected in a way that the sum of the combination of
samples per identity is similar in both. Since we don’t want
to add prior knowledge about the evaluation process in the
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training step, we use the simplified version of the PIC score
with P (g(s)) = P (f(s)) as described in Equation 4.

4.2. Evaluation Metrics

For evaluating the recognition performance, we follow
the international standard for biometric verification evalu-
ation [8] by reporting the face verification error in terms
of false non-match rate (FNMR) at fixed false match rate
(FMR). In the experiments, we focus on reporting the
FNMR at 10−3 FMR as recommended by the best prac-
tice guidelines for automated border control of the Euro-
pean Border Guard Agency Frontex [3].

To evaluate the probabilistic interpretability of the confi-
dence scores, we adapt the widely-used Expected Calibra-
tion Error (ECE) and Maximum Calibration Error (MCE)
[4, 12]. In contrast to error-vs-reject curves from quality
assessment [21] which evaluates the order of confidence
prediction and neglects their probabilistic interpretation,
this work focuses on the widely-used confidence estimation
metrics ECE and MCE. Dividing n samples into M equally-
spaced bins Bm based on their confidence, the ECE

ECE =

M∑
m=1

|Bm|
n

|ptrue(Bm)− ppred(Bm)| (8)

describes the average error between the model’s predicted
confidence ppred and its true confidence ptrue given the test
data. Since reliable confidence estimates are absolutely nec-
essary in high-security applications, the MCE

MCE = max
m∈{1,...,M}

|ptrue(Bm)− ppred(Bm)| (9)

measures the worst-case deviation between the predicted
and true confidence. For a perfect confidence estimator and
suitable test data, the MCE and ECE are both zero.

4.3. Face Recognition Models

To ensure high compatibility of confidence estimation
methods with a wide variety of recognition systems, the
experiments were conducted on five state-of-the-art face
recognition models pre-trained and released by the corre-
sponding authors2. This includes the models FaceNet [16],
PFE [17], ArcFace [1], MagFace [11], and QMagFace [20].

4.4. Confidence Estimation Approaches

In the experiments, we compare the proposed
probabilistic-interpretable comparison (PIC) score against
all the other decision confidence estimation methods for
face recognition that we are aware of. This includes
score-based decision confidence methods such as the

2For FaceNet, the authors never made the model publicly-available.
Instead, a third-party implementation was used: https://github.
com/davidsandberg/facenet

distance to (decision) threshold confidence (DTC) met-
ric [6] (BMVC22), the likelihood ratio-based confidence
(LRC) score [24] (BTAS18), and the error rate based
confidence (ERBC) [7] (ICPR22). Other approaches need
probabilistic face embeddings to make use of feature
uncertainties for predicting decision confidence. This
includes uncertainty-propagation for matching confi-
dence (UPMC) [6] (BMVC22) and the probabilistic face
embedding score (PFES) [17] (ICCV19).

5. Results
5.1. Score Distribution Analysis

To understand how the original comparison score is
transformed to gain a probabilistic interpretation, Figure 2
shows the original genuine and imposter score distributions
for FaceNet3, as well as the corresponding PIC score dis-
tributions. In the top row, the original score distributions
for the different datasets are shown. For the Adience and
ColorFeret datasets, the genuine and imposter score dis-
tributions strongly overlap due to the challenges of these
datasets, such as low image quality and strong pose dif-
ferences. LFW and Morph show mostly frontal and well-
illuminated faces and thus, the score distributions show
significantly less overlap. Consequently, on these ”easy”
datasets, LFW and Morph, fewer samples for the probabil-
ities in the overlap areas exist. This will lead to some un-
stable results in the confidence calibration analysis, as we
will see in Section 5.2. Additionally to the score distribu-
tions, the optimal probability that a sample with a score of
s belongs to genuine or imposter (see Sec. 3.1) is shown.
Intuitively, both probabilities equalize when the number of
genuine and imposter scores for s are the same.

In the bottom row, the score distributions for the pro-
posed PIC scores are shown. The score refers to the proba-
bility that a sample belongs to a genuine comparison. Since
the order of the scores remains the same for the original
and the PIC scores, this will lead to similar single-biometric
recognition performances. For a single sample, the PIC
score adds the optimal probabilistic interpretability for a
generic biometric system. However, contrary to the stan-
dard comparison score, a PIC score for multiple compar-
isons can be calculated as demonstrated in Section 5.3.

5.2. Single-Comparison Calibration Analysis

To analyze the probabilistic interpretability of different
confidence estimation approaches, we introduce confidence
calibration curves (CCC). A CCC compares the true confi-
dence of each sample (x-axis) in a given test set bin-wise
with the average predicted confidence (y-axis). For a per-
fectly calibrated confidence estimator, the CCC shows a lin-

3Since the distributions for the other FRS lead to similar observations,
we refer to the supplementary.
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(a) Adience - Comparison Scores (b) ColorFeret - Comparison Scores (c) LFW - Comparison Scores (d) Morph - Comparison Scores

(e) Adience - PIC Scores (f) ColorFeret - PIC Scores (g) LFW - PIC Scores (h) Morph - PIC Scores

Figure 2. Score Distribution Analysis -The original (top) and the PIC (bottom) score distributions are shown for FaceNet. Based on
the original score distributions, also the corresponding probabilities (see Sec. 3.1) for genuine and imposter are shown at the top. On the
bottom, the optimal probabilistic interpretable comparison (PIC) scores are shown. Since the PIC score distributions build on a monotonic
transformation, the order of the scores, and thus the performance, remains the same.

ear bisectrix line. To compute a CCC, the true confidence
of each test set sample is calculated and divided into b = 30
bins. For each bin, the mean and standard deviation of the
predicted confidences are computed. Please note that in the
LFW or Morph datasets, the number of samples for single
bins might be low. Since these datasets are less challenging
(see Section 5.1) and thus, provide fewer samples for spe-
cific probabilities, the performance becomes more unstable
in these cases.

Figure 3 shows the CCC plots for all datasets and face
recognition system combinations at an FMR of 10−3. The
ideal case with an optimal confidence estimation is shown
as a black line. The ERBC approach shows strongly over-
confident behavior in all cases since it is based on the error-
rates of the whole system rather on single comparisons.
The DTC approach simply uses the distance between the
score and the threshold as a confidence estimator. Conse-
quently, it overestimates less confident decisions and un-
derestimates highly confident ones. The LRC solution is
based on the likelihood ratio between genuine and imposter.
Since this approach does not have a probabilistic interpreta-
tion, it strongly underestimates confidence. The PFES and
UMPC both require uncertainties per feature to make a con-
fidence estimation. Consequently, they could be only ap-

plied to PFE since this is the only utilized FRS able to state
the uncertainty per feature. UPMC strongly underestimates
confidence for Adience and ColorFeret. For LFW, the con-
fidence estimates work well on average but are quite unsta-
ble. This might be explainable through the training data.
Since the confidences are based on the uncertainties of the
FRS. The training data of the FRS might contain many well-
illuminated and frontal faces, similar to LFW and unsimilar
to Adience and ColorFeret. For PFES, a similar behavior to
DTC is observed, a mixture of strong over- and underesti-
mating confidence. Contrarily, the proposed PIC approach
produces stable and accurate confidence estimations that are
often close to the optimal solution (black line).

To analyze the probabilistic interpretability quantita-
tively, Table 2 shows the ECE and MCE of the confidence
estimation methods for all database and FRS combinations
at a FMR of 10−3. The ECE shows how much a confidence
estimator is off on average and thus, states how reliable a
method can state confidence. To also cover the worst-case
scenarios, the MCE shows how much a confidence estima-
tor is off in the worst-case. For nearly all cases, the pro-
posed PIC approach leads to significantly smaller ECE and
MCE values demonstrating its effectiveness for estimating
probabilistic interpretable confidence values.
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(a) Adience - FaceNet (b) ColorFeret - FaceNet (c) LFW - FaceNet (d) Morph - FaceNet

(e) Adience - ArcFace (f) ColorFeret - ArcFace (g) LFW - ArcFace (h) Morph - ArcFace

(i) Adience - MagFace (j) ColorFeret - MagFace (k) LFW - MagFace (l) Morph - MagFace

(m) Adience - QMagFace (n) ColorFeret - QMagFace (o) LFW - QMagFace (p) Morph - QMagFace

(q) Adience - PFE (r) ColorFeret - PFE (s) LFW - PFE (t) Morph - PFE

Figure 3. Confidence Calibration Curves (CCC) - The CCC for all dataset and FRS combinations are shown. Inconsistencies are due to
the low number of samples for specific probability bins (e.g. for LFW and Morph). While most approaches have to deal with high under-
and over-confident predictions, the proposed PIC produces close-to-ideal (black line) probabilistic confidence estimates in most cases.
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Table 2. Confidence Calibration Analysis - The ECE and MCE are shown for several dataset and FRS combinations at an FMR of
10−3. ECE shows the average confidence calibration error, while the MCE presents the maximum calibration error. The best performance
is marked in bold. Except for one case, the proposed PIC approach strongly outperforms the other confidence estimators in terms of
interpretability. This holds for the average performance, as well as for the worst-case scenario.

ECE [%] at 10−3 FMR MCE [%] at 10−3 FMR

Database FRS PIC (ours) ERBC DTC LRC UPMC PFES PIC (ours) ERBC DTC LRC UPMC PFES
Adience FaceNet 2.90 26.19 23.45 24.68 - - 15.55 56.40 41.56 97.62 - -

PFE 1.14 36.65 40.00 15.04 4.36 50.19 6.36 85.07 48.87 93.06 90.83 57.73
ArcFace 1.48 38.53 20.89 19.31 - - 18.00 83.53 50.46 98.70 - -
MagFace 1.38 40.13 22.43 18.73 - - 13.00 83.90 50.56 98.69 - -
QMagFace 1.50 39.25 31.79 18.73 - - 13.29 86.79 46.96 98.15 - -

ColorFeret FaceNet 0.95 40.83 26.68 14.12 - - 8.33 84.97 44.88 99.56 - -
PFE 0.96 36.81 41.64 7.17 3.69 50.74 4.07 75.30 45.78 92.33 80.91 54.83
ArcFace 0.96 46.44 16.99 4.68 - - 10.91 83.48 54.82 99.40 - -
MagFace 1.06 46.44 18.91 4.79 - - 8.01 82.91 53.09 92.40 - -
QMagFace 1.05 45.39 34.00 4.02 - - 6.32 84.71 41.29 98.83 - -

LFW FaceNet 0.37 40.76 30.43 11.01 - - 15.76 91.91 39.79 92.52 - -
PFE 0.07 0.59 41.42 0.59 0.91 51.36 22.24 94.50 48.87 93.07 49.39 56.37
ArcFace 0.89 40.58 19.15 12.04 - - 54.99 91.22 47.24 92.26 - -
MagFace 0.09 52.61 20.63 0.15 - - 23.29 92.87 49.76 98.89 - -
QMagFace 0.07 53.25 33.60 0.16 - - 29.89 92.35 52.85 99.45 - -

Morph FaceNet 0.23 41.76 30.25 7.84 - - 11.83 90.90 40.44 92.56 - -
PFE 0.18 50.88 44.02 0.94 1.34 49.50 32.34 90.68 49.18 95.61 49.88 53.48
ArcFace 0.06 48.41 21.61 0.10 - - 18.06 91.19 48.24 99.14 - -
MagFace 0.23 47.76 20.99 1.00 - - 34.93 92.36 48.71 99.19 - -
QMagFace 0.83 47.92 38.91 1.10 - - 36.13 91.40 55.83 98.59 - -

5.3. Multi-Comparison Analysis
5.3.1 Recognition Performance
The proposed PIC approach is able to naturally combine
multiple samples into a single comparison score. This is
known as a multi-biometric fusion and aims to fuse in-
formation from multiple sources to improve recognition
performance whilst addressing some of the limitations of
single-biometric systems, such as poor data quality [21] or
overlap between identities [18]. In this section, we will
show that PIC significantly increases recognition perfor-
mance with multiple samples. In the next section, we will
then demonstrate that the joint PIC scores also increase the
probabilistic interpretability.

Table 3 shows the recognition performance of the pro-
posed PIC approach when combining multiple samples.
The recognition error FNMR is shown for a fixed FMR
of 10−3 for all database and FRS combinations. In this
multi-biometric context, a given probe sample is compared
to 1/2/5 reference samples to calculate a joint PIC score.
The results demonstrate that the PIC score can be efficiently
used for multi-biometric recognition scenarios. However,
since the main contribution of this paper lies on proba-
bilistic confidence estimation, it is not compared against
(non-interpretable) score fusion approaches. In general, the
recognition error for multiple reference samples is signifi-
cantly lower than in the single-biometric case with one sam-

ple. The only exceptions are mostly on the LFW dataset
which is not well-suited for multi-biometric recognition
analysis. For instance, 80% of the identities in LFW have
only one image. Consequently, doing multi-sample com-
parisons results in an insignificant low number of genuine
scores for the evaluation which makes the interpretation of
the results less meaningful. Besides this, the joint PIC score
significantly increases the multi-biometric recognition per-
formance in all other cases demonstrating its effectiveness
for multi-biometrics besides confidence estimation.

5.3.2 Calibration Performance
In the following, we will show that the probabilistic confi-
dence interpretation of the proposed PIC approach still re-
mains for multi-biometric scenarios. Table 4 analyses the
probabilistic interpretability of the proposed PIC approach
for the multi-biometric scenario.

For all database and FRS combinations, it shows the ex-
pected calibration errors (ECE) at a decision threshold for a
10−3 FMR. Similar to before, a given probe sample is com-
pared to 1/2/5 reference samples to calculate a joint PIC
score confidence. In general, confidence estimates of the
proposed PIC approach improve when combining multiple
samples. In nearly all cases, the ECE decreases for more
reference samples. This demonstrates that, similar to the
recognition performance, also the probabilistic confidence
estimation of the joint PIC approach increases significantly.
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Table 3. Multi-Biometric PIC score recognition performance -
The recognition performance of using a joint PIC score by com-
bining a probe sample with 1/2/5 reference samples (RS) is shown
for all database and FRS combinations. Generally, the joint PIC
score leads to lower recognition errors at 10−3 FMR than in the
single-biometric scenario.

FNMR [%] at 10−3 FMR

Database FRS 1 RS 2 RS 5 RS
Adience FaceNet 71.00 65.81 58.77

PFE 18.47 30.22 19.43
ArcFace 10.10 6.43 2.57
MagFace 9.75 5.00 2.59
QMagFace 9.78 5.09 2.28

ColorFeret FaceNet 12.22 6.09 4.47
PFE 6.60 8.66 9.08
ArcFace 4.22 2.18 2.39
MagFace 3.92 1.86 1.77
QMagFace 3.24 1.47 1.42

LFW4 FaceNet 0.79 1.02 2.05
PFE 0.08 0.25 0.24
ArcFace 4.38 2.31 1.88
MagFace 0.05 0.16 0.28
QMagFace 0.05 0.18 0.27

Morph FaceNet 0.54 0.15 0.07
PFE 0.89 0.70 0.52
ArcFace 0.05 0.05 0.03
MagFace 0.96 0.48 0.45
QMagFace 0.96 0.50 0.42

6. Conclusion
Since mistakes are coming at high costs in critical

decision-making processes, such as forensics or law en-
forcement, it is necessary to accurately state the matching
confidence of a biometric system. Previous works on con-
fidence estimation in biometrics can well differentiate be-
tween low and high-confident decisions but produce confi-
dence estimates that are not interpretable as the probabil-
ity that the decision made is correct. To fix this issue, we
proposed the PIC score, a probabilistic interpretable com-
parison score. The conducted experiments demonstrate that
the proposed approach outperforms all related approaches
in terms of probabilistic interpretability and can also be ap-
plied in multi-biometric recognition scenarios. The pro-
posed PIC score jointly achieves interpretability, optimality,
universality, combinability, and integratability. Moreover,
the score accurately states the probability that the compared
samples belong to the same identity (interpretability). Since
it was derived from the Bayes’ theorem, it provides optimal
matching confidences given suitable training data (optimal-

4The identity distribution of LFW does not allow creating many
multi-sample comparisons. Thus, is not well-suited for analyzing multi-
biometric recognition. However, we reported these results for the sake of
completeness.

Table 4. Multi-Biometric Confidence Calibration Analysis -
The expected calibration errors (ECE) are shown for a joint PIC
score confidence by combining a probe sample with 1/2/5 refer-
ence samples (RS). This was done for all database and FRS com-
binations at an FMR of 10−3. The ECE significantly decreases
when more reference samples are used. Consequently, also the
probabilistic confidence interpretation of PIC becomes more ac-
curate when multiple samples are combined.

ECE [%]

Database FRS 1 RS 2 RS 5 RS
Adience FaceNet 2.90 1.80 0.44

PFE 1.14 0.51 0.00
ArcFace 1.48 0.26 0.11
MagFace 1.38 0.27 0.15
QMagFace 1.50 0.31 0.10

ColorFeret FaceNet 0.95 0.40 0.36
PFE 0.96 0.63 3.03
ArcFace 0.96 0.24 0.06
MagFace 1.06 0.19 0.13
QMagFace 1.05 0.17 0.17

LFW FaceNet 0.37 0.09 0.11
PFE 0.07 0.27 0.00
ArcFace 0.89 0.07 0.01
MagFace 0.09 0.03 0.04
QMagFace 0.07 0.03 0.14

Morph FaceNet 0.23 0.07 0.02
PFE 0.18 0.16 0.00
ArcFace 0.06 0.01 0.00
MagFace 0.23 0.01 0.00
QMagFace 0.83 0.03 0.00

ity). It can be applied to any biometric modality and system
without changing its single-biometric performance (univer-
sality). In contrast to the standard comparison score, mul-
tiple samples can be efficiently combined into a joint PIC
score (combinability) leading to a significant gain in recog-
nition performance and interpretability. Lastly, the PIC so-
lution can be easily integrated into existing biometric sys-
tems and avoids the need for data- and computationally-
expensive experiments to determine the desired decision
threshold.
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[13] Pedro C Neto, Tiago Gonçalves, João Ribeiro Pinto, Wilson
Silva, Ana F Sequeira, Arun Ross, and Jaime S Cardoso.
Explainable biometrics in the age of deep learning. arXiv
preprint arXiv:2208.09500, 2022. 1

[14] Dane K Peterson and Gordon F Pitz. Confidence, uncer-
tainty, and the use of information. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14(1):85,
1988. 1, 2

[15] P. Jonathon Phillips, Hyeonjoon Moon, Syed A. Rizvi, and
Patrick J. Rauss. The FERET evaluation methodology for
face-recognition algorithms. IEEE Trans. Pattern Anal.
Mach. Intell., 22(10):1090–1104, 2000. 3

[16] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015, pages 815–823. IEEE Computer Society, 2015. 4

[17] Yichun Shi and Anil K. Jain. Probabilistic face embed-
dings. In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27
- November 2, 2019, pages 6901–6910. IEEE, 2019. 2, 4

[18] Maneet Singh, Richa Singh, and Arun Ross. A comprehen-
sive overview of biometric fusion. Inf. Fusion, 52:187–205,
2019. 7

[19] Philipp Terhörst, Marco Huber, Jan Niklas Kolf, Ines Zelch,
Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Re-
liable age and gender estimation from face images: Stating
the confidence of model predictions. In 10th IEEE Interna-
tional Conference on Biometrics Theory, Applications and
Systems, BTAS 2019, Tampa, FL, USA, September 23-26,
2019, pages 1–8. IEEE, 2019. 2

[20] Philipp Terhörst, Malte Ihlefeld, Marco Huber, Naser Damer,
Florian Kirchbuchner, Kiran B. Raja, and Arjan Kuijper.
Qmagface: Simple and accurate quality-aware face recog-
nition. CoRR, abs/2111.13475, 2021. 4

[21] Philipp Terhörst, Jan Niklas Kolf, Naser Damer, Florian
Kirchbuchner, and Arjan Kuijper. SER-FIQ: unsupervised
estimation of face image quality based on stochastic embed-
ding robustness. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pages 5650–5659. Computer
Vision Foundation / IEEE, 2020. 4, 7

[22] Mei Wang and Weihong Deng. Deep face recognition: A
survey. Neurocomputing, 429:215–244, 2021. 1

[23] Nick Yeung and Christopher Summerfield. Metacognition in
human decision-making: confidence and error monitoring.
Philosophical Transactions of the Royal Society B: Biologi-
cal Sciences, 367(1594):1310–1321, 2012. 1

[24] Chris G. Zeinstra, Didier Meuwly, Raymond N. J. Veldhuis,
and Luuk J. Spreeuwers. Mind the gap: A practical frame-
work for classifiers in a forensic context. In 9th IEEE Inter-
national Conference on Biometrics Theory, Applications and
Systems, BTAS 2018, Redondo Beach, CA, USA, October 22-
25, 2018, pages 1–9. IEEE, 2018. 2, 4

1029


