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Abstract

In this paper, we propose to develop a method to address
unsupervised domain adaptation (UDA) in a practical set-
ting of continual learning (CL). The goal is to update the
model on continually changing domains while preserving
domain-specific knowledge to prevent catastrophic forget-
ting of past-seen domains. To this end, we build a frame-
work for preserving domain-specific features utilizing the
inherent model capacity via pruning. We also perform effec-
tive inference using a novel batch-norm based metric to pre-
dict the final model parameters to be used accurately. Our
approach achieves not only state-of-the-art performance
but also prevents catastrophic forgetting of past domains
significantly. Our code is made publicly available.".

1. Introduction

Deep learning models often fail to perform well on unseen
data (target domain) that is different from their training data
(source domain) distribution (referred to as domain-shift).
Domain adaptation techniques [5, 23, 25] seek to address
this problem of domain shift by adapting the source model
to the new target domain. However, they fail to general-
ize well in the case of multiple sequentially changing do-
mains. In our work, we explore a challenging setting of
continual learning (CL) in domain adaptation, where the
goal is to keep adapting the model over several sequen-
tial domain shifts. For instance, a model trained on clear
weather data must adapt to other weather conditions such
as snowy, foggy, and rainy to achieve optimal performance
[27]. Therefore, developing a robust approach toward con-
tinual domain adaptation is essential for real-world deploy-
ment scenarios. Also, we assume a practical setting of
source-free DA [10] where data sharing across domains is
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Figure 1. A. Conventional Source-Free Domain Adaptation
(SFDA) works do not preserve the source domain performance
after domain shift occurs, leading to catastrophic forgetting and a
sharp decline in the source domain accuracy. B. Our method pre-
serves domain-specific characteristics inherently within the model
to prevent catastrophic forgetting of previously-seen domains.

restricted due to privacy concerns, as seen in most real-life
scenarios.

Prior works on source-free domain adaptation [15,30] aim
to enhance the in-domain performance by adapting the
source model to the incoming target data. However, such an
approach depletes the crucial domain-specific knowledge of
the source domain, resulting in catastrophic forgetting (as
shown in Fig. 1). As a result, these methods fail to scale se-
quentially changing domains. A possible solution is to store
a set of samples from each domain [21], but such methods
are ineffective for real-world applications with privacy con-
cerns (where data sharing between parties is restricted) or
high memory limitations (e.g., in mobile devices).

In our work, we provide a way to preserve the domain-
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specific properties within the model and prevent catas-
trophic forgetting without requiring additional storage. We
also learn domain-specific features for a new target domain
while maintaining the performance on the previously en-
countered domains. Since the source domain is inaccessible
after source-side training, we explore the inherent poten-
tial of the model to preserve domain-specific features us-
ing pruning. We find that a fraction of model parameters is
sufficient to preserve the domain-specific statistics. Hence,
we develop a novel pruning-based algorithm Pruning-aided
Continual Domain Adaptation (PaCDA) for the challeng-
ing task of continual domain adaptation. We also propose
a novel Batch Norm Statistic Deviation (BNSD) metric to
evaluate which model parameters to be used during infer-
ence for a test domain.

We outline the major contributions of our work as follows:

* We investigate and provide pruning-based results on
how a model’s inherent capacity could be leveraged
to store domain-specific features. To this end, we de-
velop our novel framework Pruning-aided Continual
Domain Adaptation (PaCDA) for enhancing domain-
specific knowledge in the model

¢ We define a novel Batch Norm Statistic Deviation
(BNSD) metric for model parameter selection during
inference. We also demonstrate the effectiveness of
the proposed metric on the Office-Home dataset.

* We achieve state-of-the-art performance on a contin-
ual DA benchmark, significantly reducing catastrophic
forgetting of the past seen domains.

2. Related Works
2.1. Source-free UDA

Unsupervised Domain adaptation [2, 19,20,24,28,32] aims
to adapt a model trained on a source domain to a new target
domain. Source-free domain adaptation (SFDA) [14,30] is
a more constrained setting where the source domain data
is not accessible during target adaptation. However, these
methods are directly not applicable for a continual learn-
ing setting [21] where the goal is to retain performance on
previously trained domains.

2.2, Continual Domain Adaptation

Prior works [21,29] propose to tackle the novel setting of
continual DA where domain shifts occur sequentially. Ros-
tami et al. [21] use experience replay from a memory buffer
that stores a fixed number of confident samples per class
per domain. This buffer is appended with the current train-
ing data. Our work adheres to the restriction of source-free
DA [10] since storing samples for replay is prohibited due to
privacy restrictions. On the other hand, GSFDA [31] does
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Figure 2. A. Accuracy vs. Pruning % on a model trained using Art
domain data from Office-home. Note that, until 50% pruning, the
model’s accuracy is approximately as good as the original model.
The model’s performance does not deteriorate significantly until
70% pruning. B. Catastrophic forgetting of previously trained do-
mains over PACR sequence. Source domain acc. drops by 23.3%,
which significantly impacts performance.

not use experience replay but assumes the availability of
domain-id of the inference samples to use appropriate do-
main attention vectors. Our work PaCDA uses a novel strat-
egy to identify the domain of the incoming batch of samples
during inference time and does not require prior knowledge
of the domain to which inference samples belong.

2.3. Pruning for Incremental/Continual Learning

Prior works [11, 13] use knowledge distillation strategies to
minimize forgetting in a task-incremental setting. Pruning-
based works [7,16,18,22,33] aim to sparsify and create dif-
ferent network parameters for every new task. PackNet [ 18]
uses iterative pruning for learning new tasks and retains the
performance on previously learned tasks while training on
subsequent tasks. Pruning-based DA works also exist in
medical imaging [ 1] and automatic speech recognition [17].
We draw motivation from these prior pruning works and
aim to leverage weight-masking for faster domain adapta-
tion without increasing the model’s parameters.

3. Approach
3.1. Notation

We consider a labeled source domain dataset
D = {(zs,ys) : xs€X,ys €Y} where X denotes the
input data space and ) denotes the task label set. We
operate in a practical setting of continual DA [21] where
the source-trained model encounters new target domains
sequentially and data-sharing among domains is restricted.
Our work follows a practical source-free vendor-client
setting [10] where a vendor shares a source model but
with multiple clients, one after the other. Hence, the
vendor-trained source model encounters different target
domains sequentially. Our goal is to update this source-
trained model continually on the subsequent target domains
Dy ={z;: 2, €X} where t € {1,2,..T}, such that the
model achieves best performance on all the domains and
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catastrophic forgetting on past seen domains are minimized.
Please note that we assume that all domains share the same
task label set ).

Prior works of domain invariance [6] propose to capture
domain-invariant features that generalize well to multiple
domains. However, an optimal model requires domain-
specific knowledge [3] to achieve the best performance.
Conventional SFDA works [14,15,30] enhance the domain-
specific knowledge to improve adaptation performance, but
this often leads to catastrophic forgetting of the past seen
source domain. As a Baseline, we extend the SHOT ap-
proach [14] to a Continual DA setting (shown in Table 1),
where we adapt to successive domains using SHOT with-
out any mechanism to mitigate catastrophic forgetting. This
leads to a sharp decline in the accuracy of past-seen do-
mains, proving the unsuitability of the SFDA methods in a
practical scenario of continual DA. In practice, a deployed
model often encounters data from different domains se-
quentially. Hence, it is crucial to leverage the knowledge
learned from the old domains to not only improve learn-
ing in new domains but also prevent catastrophic forgetting.
Therefore, in our work, we propose to address the critical
question: "How do we build a framework for learning con-
tinually changing domains while maintaining good perfor-
mance on all previously-seen domains?”

3.2. Exploiting the inherent potential of the source
model

In order to build our framework, we propose to preserve the
domain-specific knowledge for each domain in the model it-
self to prevent forgetting. The Lottery Ticket Hypothesis [4]
states that a subset of model parameters, i.e., a “winning”
ticket, is sufficient for attaining the desired task accuracy.
So pruning away the other parameters does not cause a sig-
nificant performance drop. To investigate this phenomenon
in the context of domain adaptation, we first train a model
on a source domain (domain Art in Office-Home) and ob-
serve the drop in the task accuracy after different percent-
ages of L1-based weight pruning [7, 8]. Figure 2 shows that
the task performance declines only after 50% of the model
parameters are pruned. This demonstrates that the inher-
ent redundancy of a neural network could be leveraged to
compress the model capacity and utilize the remaining pa-
rameters for storing additional domain-specific knowledge
encountered in future domains. Hence, this motivates us to
explore a pruning-based framework for domain adaptation
in a continual DA setting.

3.3. Training algorithm

We propose our novel algorithm Pruning-aided Continual
Domain Adaptation (PaCDA), that mainly comprises of
Domain-specific weight selection and training phase, and
an inference phase. The vendor uses the weight selection
algorithm to prepare and share the model with the client.

During inference, the client uses a batch norm based infer-
ence metric to predict the network mask and identify the
model parameters for the incoming data batch. The follow-
ing sections explain the details of each component of the
algorithm.

3.3.1 Source Model Training

The source model consists of two modules: the feature en-
coding module g, : X — R and the classifier module
hs : RT — RE ie., fs(z) = hs (gs()). Here, d denotes
the feature dimension, and K denotes the number of task la-
bels. The source model is trained on labeled source domain
data Ds by minimizing the cross-entropy loss as follows:

K
—E(o, .y exxy Z 412 logdy(fs(zs))

k=1
ey

Ls(fs; Ls, ys) =
where q,lj is obtained by label smoothing [14].

Domain-Specific Weight Selection: At first, the entire
source model is trained with the supervised cross-entropy
loss. Once the training completes, we use a procedure of
L1-norm-based pruning to prune 1 — pq fraction of the pa-
rameters, retaining pg fraction for the source domain 0. The
weights in each layer of the backbone feature extractor and
bottleneck layers are pruned by 1 — pq fraction, while the
classifier layer is not. Once pruning is done, we fine-tune
the po fraction of the model parameters to regain the per-
formance. We refer to these weights as domain-specific
weights of the source since they hold the crucial source do-
main features. After this, the vendor sends the fine-tuned
network to the client side for adaptation.

3.3.2 Client-side Adaptation

The client-side adaptation is done by optimizing on
Information-Maximization (IM) loss [14]. The IM loss is
a constitution of L.,,; and Lg4;, as follows:

K
Lent(ft; Xi) = —Ep,ex, Zk:l Ok (fi(we))log Ok (fi (1)),

Laiv(fr; X)) = ZK

.y Prlog Py

= Dk r(p, %h{) —log K,

2
where f;(z) = hi(g:(x)) is the K-dimensional output of
each target sample, 1 is a K-dimensional vector with all
ones, and p = E,,cx,[0(ft(z¢))] is the mean output em-
bedding of the whole target domain.

On the client side, target adaptation is performed keeping
the source domain-specific weights frozen. Since domains

are encountered sequentially, a client with target domain ¢

2459



A. Vendor-side Procurement

Vendor

-

Source

! Source Domain-specific
Domain :

weights

Domain-
Specific
Weight
Selection

Algorithm

Client1

Pruned-weights :

)

Domain-specific 5
weight Selection e

@

Target Domain 1

B. Sequentially occuring Client-side Deployments

Domain specific
weights

Domain specific
weights

0
Do_maln—spec_n‘m I,
weight selection

Client 2

[O]L1]

Target Domain 2

Figure 3. PaCDA Approach: A. Vendor side Procurement: The vendor uses the domain-specific weight selection algorithm to select
domain-specific weights into the source model. B. Client-side adaptation: The vendor-trained Source model is shared with client 1 to
update only domain-specific weights from the remaining pruned ones. Client 2 obtains the Client 1 trained model and follows the same
procedure. During inference, a batch-norm based metric is used to obtain the final model predictions.

might receive a model trained on the previous ¢t — 1 do-
mains. For each domain, p; fraction of domain-specific
weights is preserved. Hence, the client uses the domain-
specific weight selection algorithm to prune weights from
the remaining 1 — Zf;(l) p; parameters. Once the weights
are pruned, fine-tuning is performed to obtain p, fraction of
domain-specific weights for the domain ¢. We also main-
tain a separate set of batch norm parameters for each do-
main as prior works [12] indicate that batch norm layers
preserve domain-specific characteristics. A parameter mask
M; indicates the set of active weights for a domain with Os
corresponding to the pruned weights and 1s for the active
weights. Also, during the training of domain t, the mask
1 — M;_4 is used to freeze the parameters of previously
trained domains. Hence, in this way, the model keeps train-
ing for sequentially arriving client domains, ensuring that
we preserve domain-specific knowledge for each domain to
reduce catastrophic forgetting significantly. These masks
need to be stored for use during inference, but since these
are binary masks, they can be stored efficiently without sig-
nificant extra memory requirements.

3.3.3 Batch norm based Inference

Once the model is trained on a source domain and T — 1
target domains, we have T parameter masks and T cor-
responding Batch Norm layers. During inference, a sam-
ple from any of the trained domains might be encountered.
Hence, the task is to identify the parameter mask and Batch
Norm layer to be chosen as the final model to get the best
performance on inference samples. For this, we introduce
a novel metric Batch Norm Statistic Deviation (BNSD).
Batch Norm layers for each domain contain the running-
mean and running-variance statistics. Note that, we only
use the mean and variance statistics of each domain, with-

Algorithm 1 Pruning-aided Continual Domain Adaptation

Input: Source model fs = hs(gs), Target Data D; = (%),
where ¢ € {1, 2,...T}, n_epochs_train, n_epochs_finetune
Initialize f; to f, and freeze h
for each domain d do
1. Train f; for n_epochs_train by masking the gradient
using 1 — M1
2. Prune 1 — ZE:O p; fraction of the model using
L1-pruning and obtain M;
3. Store M; and Batch Norm layers for current domain ¢
4. Fine-tune f; for n_epochs_finetune
5. Reset Batch Norm layers to Source Model initialization
end for

out storing any additional samples for training or inference.
BNSD measures the deviation of the inference batch’s mean
and variance from the stored running statistics associated
with the Batch Norm parameters. We propose to use only
the model’s first layer batch norm since it is closest to the
input layer and captures domain-specific information from
the input. The BNSD metric is defined as follows:

BNSD(b;, BN, M/; f) =
(Mean( faq (b;)) — BN”.running-mean)?+-
(Var(faq (bs)) — BN”.running-var)?  (3)

where b; is the it batch of inference data, BN’ is the first
Batch Norm layer with which the BNSD of the input batch
is calculated, M’ is the mask corresponding to BN” and f
is the final model obtained after training on all domains.
faqe is the resultant model to be used when the mask M’ is
applied on the model f. The PaCDA algorithm 1 chooses
the Batch Norm layer and corresponding parameter mask
which gives the least BNSD for a given batch of samples.
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A—-C—-P—R

C—-A—-P—>R

P—-A—-C—R R—-A—-C—P

Method A C P R C A P R P A C R R A C P
Baseline 61.3 54.7 68.6 70.8 | 57.7 67.7 739 732 | 72.1 645 512 7055 | 743 657 558 721
. (-12.6) (-1.3) (+0.25) (+0) | (-23.2) (-0.6) (-0.4) (+0) | (-20.6) (-3.7) (-1.2) (+0) | (-11.6) (-5.00 (-1.2) (+0)
GSFDA [31] 72.6 55.6 72.7 772 | 78.6 64.9 728 724 | 88.6 63.1 51.5 765 84.2 69.1 574  80.5
-1.9) (-1.0) (-0.3) (+0) | (-3.6) (-0.5) (-0.1) (+0) | (-3.4) (-0.5) (-1.6) (+0) | (-1.8) (-3.3) (-L.7) (+0)
Ours(with Domain-id) 737 560 718 769 | 809 671 727 764 | 929 672 558 781 | 862 733 58.1 792
(+0) (+0) (+0) (+0) (+0) (+0) +0) (+0) (+0) (+0) (+0) (+0) (+0) (+0) +0)  (+0)
Ours(w/o Domain-id) 73.7 56.0 71.7 76.1 | 80.9 672 726 7154 | 929 67.2 558 718 86.2 72.8 581 792
(+0) (+0) (-0.1) (+0) | (+0) (+0.1) (-0.1) (+0) | (+0) +#0)  (+0)  (+0) (+0) (-03) (+0) (+0)

Table 1. Accuracy (%) of each method on various Continual Domain Adaptation sequences of Office-Home dataset using ResNet-50 as
the backbone. The values in parentheses denote the difference between the model’s accuracy at the end of the sequence and the accuracy
right after the training of that domain. The lower the value in the parentheses, the higher the catastrophic forgetting. It can be noted that
our method performs significantly better at reducing catastrophic forgetting compared to baseline and GSFDA [31].

4. Experiments and Results
4.1. Dataset

We demonstrate the efficacy of our approach on the Office-
Home dataset [26], which contains a total of 15,500 images
belonging to 4 domains with 65 categories each. We pro-
pose to use this dataset since it contains a sizeable inter-
domain gap and the effects of catastrophic forgetting would
be more evident.

4.2. Implementation details

We follow the same experimental setting as SHOT [14]
and initialize the backbone with an ImageNet pre-trained
ResNet-50 [9] model. We optimize the loss mentioned in
Eq. 1, Eq. 2 using Stochastic Gradient Descent with a mo-
mentum of 0.9 and weight decay of 1e~3. We ran our ex-
periments on 12 GB NVIDIA GeForce GTX Titan X GPU.

4.3. Comparison with other methods

In Table 1, we evaluate our method against other methods in
terms of accuracy(%) at the end of each sequence and catas-
trophic forgetting relative to the accuracy right after train-
ing. The Baseline method (shown in Table 1) is a sequen-
tial training approach of domains using SHOT [ 14] method.
Since SHOT is well-suited to maximise accuracy on target
domains only, we observe significant catastrophic forget-
ting across all sequences. We evaluated both variants of our
method - with Domain-id (having access to domain-ID of
inference samples) and w/o domain-ID (using BNSD met-
ric to map the inference batch to the appropriate domain-
specific parameter mask). We also compare our results with
GSFDA [31], which reported Continual DA results for the
same four Office-Home sequences. We also use the same
0.8/0.2 train-test split on the source domain as GSFDA, and
source-domain accuracies are reported on the test split. Our
method not only achieves higher accuracy than GSFDA, but
even without using domain-id, PaCDA significantly reduces
catastrophic forgetting.

A C P R C A P R
A | 737 441 645 731 C | 809 508 60.1 63.7
C|671 560 604 677 || A|7033 67.1 655 69.5
P|663 530 718 733 | P| 723 667 727 755
R|681 531 714 769 | R| 71.0 67.6 717 764
P A C R R A C P
P | 929 521 417 730 | R | 862 648 458 76.7
A| 845 672 441 742 | A | 826 733 487 75.1
C 8.0 630 558 699 C| 780 674 581 702
R|843 666 528 7811 P | 805 682 552 792

Table 2. Accuracy of each domain data when inferred using dif-
ferent domain-specific weights for four sequences on the Office-
Home dataset. Each quadrant is a sequence in which parameter
mask changes along the rows and input domain changes along the
column. In each column of a sequence, the bold value is the ex-
pected best accuracy, and the underlined value is the actual best
accuracy obtained.

Our inference process, using the BNSD metric, selects the
suitable mask and batch norm layer almost perfectly, and
the performance of our PaCDA method without domain-id
is almost as good as PaCDA with domain-id method.

In Table 2, for the same set of sequences, we evaluate the
accuracy of each domain when using different parameter
masks (and their corresponding batch norm layers) on the
final model obtained at the end of the sequence. As ex-
pected, the corresponding parameter mask for each domain
gives the best results. One intriguing result to note is, in
Table 2 sequence CAPR, the accuracy on domain A using
parameter mask of R is slightly higher than the accuracy ob-
tained using parameter mask of A. This also reflects in Table
1 sequence CAPR, when inferred on domain A, PaCDA w/o
Domain-id accuracy is higher than with domain-id.

5. Conclusion

In this work, we address the practical problem of Con-
tinual Domain Adaptation using a pruning-aided approach
(PaCDA). At first, we investigate and find that prun-
ing model parameters provides room for storing crucial
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domain-specific knowledge. We introduce a novel domain-
specific weight selection algorithm for multiple client do-
mains and reduce catastrophic forgetting of past-seen do-
mains to a vast extent. We use a novel batch norm based
metric to infer on test domain batches during inference.
Hence, we not only achieve state-of-the-art results on stan-
dard DA benchmarks, but our results also demonstrate that
appropriate model parameters are chosen during inference.
As a part of future analysis, we plan to extend our work us-
ing model expansion approaches to enable the learning of a
larger number of domains sequentially.
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