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Abstract

Task-free continual learning is the subfield of machine
learning that focuses on learning online from a stream
whose distribution changes continuously over time. In con-
trast, previous works evaluate task-free continual learning
using streams with distributions that change not continu-
ously, but only at a few distinct points in time. In order to
address the discrepancy between the definition and evalu-
ation of task-free continual learning, we propose a princi-
pled algorithm that can permute any labeled dataset into a
stream that is continuously nonstationary. We empirically
show that the streams generated by our algorithm are less
structured than the ones conventionally used in the litera-
ture. Moreover, we use our simulated task-free streams to
benchmark multiple methods applicable to the task-free set-
ting. We hope that our work will allow other researchers to
better evaluate learning performance on continuously non-
stationary streams.

1. Introduction
The dominant paradigm in the field of machine learning

involves building a model using a static set of pre-collected
data [21, 23]. Unfortunately, it might not be always possi-
ble to stick to this paradigm. In the real world, animals and
humans extract knowledge from their observations contin-
ually, and under changing circumstances [25]. The field of
continual learning studies exactly this problem—namely,
how to train a machine learning model using data provided
by a nonstationary distribution [3, 8].

Within the continual learning literature, different under-
lying assumptions give rise to a number of continual learn-
ing settings. Such assumptions might reflect whether the
data distribution is continuously nonstationary or not, or
whether the model optimization takes place online (with
small minibatches of data) or offline (with large batches of
data) [10]. In this paper, we focus on task-free continual
learning, which we consider to be the setting closest to how

humans and animals learn. In task-free continual learning,
the data distribution is assumed to be continuously nonsta-
tionary and the optimization takes place online [2].

The observation that motivated this work is that there is
a clear gap between how task-free continual learning is de-
fined and how it is evaluated. In fact, previous works eval-
uate task-free continual learning using streams with data
distributions that are not continuously nonstationary, but
change only at a few distinct moments in time and remain
stationary otherwise [2, 16]. Arguably, real-world task-
free continual learning streams will each have its individual
characteristics and will probably be quite dissimilar to each
other. Therefore, constructing a single new dataset would
not be helpful, since it would only be a single example of
a continuously nonstationary stream. Instead, we have cre-
ated an algorithm, which given a labeled dataset, is able to
reorder it into multiple diverse, continuously nonstationary
streams.

Our contributions are the following. First, we provide
a principled algorithm that can reorder any labeled dataset
into a simulated task-free (STF) continual learning stream.
Second, we perform a detailed comparison between STF
streams generated by the proposed algorithm and the type
of streams conventionally used in previous works. Via
this comparison, we detail a number of different ways
the streams conventionally used are different to our STF
streams. Third, we transform four well-known datasets into
STF streams, and use them to benchmark a number of meth-
ods applicable to task-free continual learning. Finally, in
order for other researchers to be able to easily use our work,
we will open-source our code upon acceptance.

The remainder of the paper is structured as follows. In
Section 2, we provide an introduction to continual learning
and online continual learning, and extensively discuss the
gap between the definition and evaluation of task-free con-
tinual learning. In Section 3, we present our algorithm for
generating STF streams, and motivate its design. In Sec-
tion 4, we present and discuss our experiments, and, finally,
in Section 5, we summarize our work, discuss its limita-
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tions, and offer a future perspective.

2. Background
2.1. Continual Learning

In general, continual learning is defined as learning from
data that are generated by a nonstationary distribution, that
is to say, a distribution that changes over time [8,19,35]. An
alternative definition of continual learning is the learning of
a sequence of tasks over time [10,28,31]. But, what exactly
is a task?

In the context of continual learning, the term task is gen-
erally used to describe a collection of data which the model
observes in an independent and identically distributed (iid)
manner. Tasks are often assumed to be class-disjoint, that is,
if data from a particular class appear in a task, no data from
the same class will be present in any other task [28,31]. Pre-
vious works sometimes assume access to task labels, which
explicitly inform the learner to which task each data point
belongs [24, 35]. The setting of class-incremental contin-
ual learning assumes that task labels are only known dur-
ing training, while the setting of task-incremental continual
learning assumes access to task labels both during training
and during evaluation [10, 22, 31].

Besides access to task labels, another distinction can be
made with regard to whether continual learning takes place
online or offline. In the offline setting, the learner has access
to all data from the present task and can perform multiple
passes over these data [10,28]. Conversely, in the online set-
ting, the learner receives data from a nonstationary stream
in the form of small minibatches, and only has access to one
of those minibatches at a time [3, 5, 8].

2.2. Online Continual Learning Settings

To avoid potential confusion, we offer precise definitions
for online, task-agnostic, and task-free continual learning.
First, online continual learning has evolved1 to be an um-
brella term that encompasses all settings in which a model
should be trained online using small minibatches of data
that are generated by a nonstationary stream [1, 26, 34].

Task-agnostic and task-free continual learning are both
types of online continual learning. In task-agnostic con-
tinual learning the stream is assumed to be a sequence of
tasks but without task labels being available. In other words,
the stream consists of a number contiguous iid sub-streams
(each one corresponding to a task), and the distribution only
changes when there is a transition from one sub-stream to
the next. In this setting, however, it is relatively easy to infer
task labels during training [17, 36].

1We write evolved because online continual learning was originally de-
fined to be a nonstationary online learning problem without access to task
labels [3]. A number of subsequent works, however, study online continual
learning and do assume access to task labels [26, 34].

Finally, in task-free continual learning the concept of a
data distribution that changes at distinct points during learn-
ing, is generalized to one that changes constantly over time
[2]. Therefore, in a task-free stream, there are no iid sub-
streams, hence the concepts of tasks, task labels, and task
boundaries cannot be defined.

2.3. Task-Free Continual Learning

We argue that, in terms of its applicability, task-free con-
tinual learning is the most general continual learning set-
ting. To understand why, we need to consider the various
aforementioned settings in the context of the simplifying
assumptions they make. The most widely adopted assump-
tions are a) the existence of tasks, b) task labels during train-
ing, c) concurrent access to all data from the present task,
and d) task labels during evaluation. Generally speaking,
the more simplifying assumptions a setting adopts, the more
niche this setting is, but also, the less applicable in real-life
situations it becomes. The task-incremental setting assumes
all four, the class-incremental setting assumes the first three,
and the task-agnostic setting, in theory, assumes only the
first (but, as we discussed earlier, task labels during train-
ing can be inferred). In the task-free setting, however, there
are no simplifying assumptions. Put another way, task-free
continual learning adopts the most general definition of con-
tinual learning.

To reinforce this point, let us consider the four real-life
continual learning scenarios identified by [11]: a) a disease-
diagnosis system trained incrementally with data different
from different populations; b) a wind-turbine-safety sys-
tem that learns to predict when to deactivate the turbine in
order to prevent damage from strong winds; c) a recom-
mender system that learns to serve ads tailored to a user’s
needs and interests; d) a exploration rover that learns to
navigate the various terrains of the planet Mars. These ex-
amples were meant to describe continual learning in gen-
eral, but, interestingly, all but one are task-free continual
learning problems (the only exception is the first one). In-
deed, the latter three problems all involve data distributions
that change continuously over time (seasonal and climate
changes, changes in trends and individual interests, and ter-
rain changes, respectively), not in distinct steps. If these
examples are any indication, many real-life continual learn-
ing problems are task-free.

Unfortunately, there is a significant discrepancy between
how task-free continual learning is defined and how it is
evaluated. Due to the lack of appropriate task-free bench-
marks, previous works proposing methods that do not make
assumptions about the nature of the input stream, evaluate
their performance on streams that are not continuously non-
stationary [1, 16]. Therefore, we argue that task-free con-
tinual learning should be evaluated using task-free streams.
One way to achieve this goal, would be to build new ordered
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datasets from real-world task-free continual learning prob-
lems. However, this process is slow and, potentially, very
expensive. Instead, we developed a principled algorithm
that can transform any labeled dataset into a stream that is
continuously nonstationary. We describe and motivate this
algorithm in the following section.

3. Methodology
3.1. Problem Formulation

Let D = {(xi, yi)}ni=1 be an arbitrary labeled dataset
of size n, where xi are the data instances and yi are their
corresponding labels. This dataset contains data instances
xi of c distinct classes, that is to say, for i = 1, . . . , n, it is
yi ∈ {1, . . . , c}.

Our goal is to permute the order in which the data in-
stances appear within the dataset, so that when the per-
muted dataset is broken down in small mini-batches, it ap-
proximates the characteristics of task-free continual learn-
ing streams. In simple terms, we want the data distribution
of the resulting streams to be changing throughout the dura-
tion of learning, and not just at distinct points in time (as is
the case in non-task-free settings). Moreover, we would like
the resulting streams to contain little design bias, in order
for them to serve as benchmarks that generalize adequately
to real-world task-free continual learning problems. Since
such streams are an attempt to simulate the characteristics
of real-world task-free continual learning streams, we will
call them simulated task-free (STF) streams.

Formally, our goal is to assign to each data instance xi

a permutation index pi that specifies in which position xi

will appear in the permutation. In particular, if pi = k the
data instance xi, which was the i-th instance in the dataset’s
original order, will appear as the k-th instance in the per-
muted order.

We break this problem down into two sub-problems.
First, in Section 3.2, we discuss how to assign to each class
j a unidimensional distribution Dj (for all j = 1, . . . , c).
Then, in Section 3.3, we explain how to use the assigned
distributions Dj to generate a dataset permutation.

3.2. Assigning a Distribution to Each Class

Let t ∈ [0, 1] be the time interval during which the con-
tinual learning takes place, where we assume that learning
starts at t = 0 and ends at t = 1. We define the class distri-
butions Dj as distributions over the random variable t. At a
high level, the time distribution Dj(t) of class j will deter-
mine how early or late in the stream instances of class j are
likely to appear compared to instances of the other classes.
For instance, if E

[
D1(t)

]
> E

[
D2(t)

]
, that is, the mean of

the time distribution of class 1 is greater than the mean of
the time distribution of class 2, then instances of class 1 are
more likely to appear in the stream later than those of class

Algorithm 1 Assign a distribution to each class.

Number of classes c
Desired average standard deviation µσ

1: Find rate λ such that γ
1−e−λγ − 1

λ = µσ

2: for class j in 1, . . . , c do
3: Sample the standard deviation: σj ∼ E(σ | λ, γ)
4: Compute rj =

√
1
4 − σ2

j

5: Sample the mean: µj ∼ U
(
µ | 0.5− rj , 0.5 + rj

)
6: Compute αj = µj

[
µj(1−µj)

σ2
j

− 1
]

7: Compute βj = (1− µj)
[
µj(1−µj)

σ2
j

− 1
]

8: Set Dj = B(αj , βj)
9: end for

2. In addition, the standard deviation of the time distribu-
tion of each class will determine whether its instances are
likely to appear more concentrated or more dispersed over
the stream.

Given the information in the previous paragraph, there
are several questions that need to be answered. We start by
describing the principle of maximum entropy [13, 14], and
how we apply it in order to assign a mean µj and a stan-
dard deviation σj to each class j. Subsequently, we discuss
and motivate which family of distributions we decided to
use. Finally, we explain how to derive the parameters of
each class’s distribution given its mean µj and its standard
deviation σj .

The principle of maximum entropy states that when se-
lecting what kind of distribution to use to represent cur-
rent knowledge about a system, out of all the distributions
consistent with this current knowledge, one should select
the distribution with the maximum entropy [13, 14]. Intu-
itively, the maximum-entropy distribution is the most un-
informative distribution consistent with current knowledge.
Hence, by choosing the maximum-entropy distribution, the
user takes into account only what the current knowledge
suggests, without adding any unnecessary bias [15]. In the
context of this work, we follow this principle so as to gen-
erate streams of diverse characteristics.

In order to use the maximum-entropy principle to sample
the means µj , we need to first consider what is our current
knowledge about them. Since the class distributions Dj(t)
are defined on the interval [0, 1], their corresponding means
µj should also be contained in the same interval. Hence we
are looking for the maximum-entropy distribution defined
over the closed interval [0, 1]. This distribution is the Uni-
form [30]:

U(µ | 0, 1) =
{

1, for µ ∈ [0, 1]
0, elsewhere. (1)
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Now we move on to sampling the standard deviations σj .
Once again, we need to consider what our current knowl-
edge suggests. Since the class distributions Dj(t) are de-
fined on the interval [0, 1], it must hold that 0 ≤ σj ≤ 0.5
for all j (this result follows directly from Popoviciu’s in-
equality on variances [27]). Also, in contrast to how we
sample the means, we would now like to be able to manu-
ally set the average standard deviation µσ over all classes
(in Section 4.4 we show that by changing the value of µσ ,
the resulting streams can become easier or harder to learn
from). In short, we are looking for the maximum-entropy
distribution that is defined on the interval σ ∈ [0, 0.5], and
of which the mean value is µσ . This distribution is the
truncated-exponential [30], and is defined as

E(σ | λ, γ) = ceλσ, σ ∈ [0, γ], (2)

where c is the normalizing constant, and γ is the truncation
parameter, which in our case is set to 0.5. The parameter
λ is called the rate of the distribution and is set so that the
expected value of the truncated exponential is equal to the
desired value µσ:

E[σ] =
γ

1− e−λγ
− 1

λ
= µσ. (3)

We discuss the truncated exponential more extensively in
the appendix (including how to compute the normalization
constant, how to find the appropriate rate λ given the desired
mean µσ , and how to draw samples from it).

We use various instances of the Beta distribution to con-
struct the individual class distributions. (In the appendix,
we discuss the motivation behind this choice.) The Beta
distribution is defined as

B(α, β) = cxα−1(1− x)β−1, x ∈ [0, 1], (4)

and is parameterized by its shape parameters α and β, while
c is a normalization constant. Given a desired mean µj and
standard deviation σj , the shape parameters αj and βj of a
Beta with the same mean and standard deviation are com-
puted as follows:

αj = µj

[
µj(1− µj)

σ2
j

− 1

]
, (5)

βj = (1− µj)

[
µj(1− µj)

σ2
j

− 1

]
. (6)

However, we need to be able to guarantee the existence of
a distribution with support [0, 1] given the mean µj and the
standard deviation σj that we have sampled for each class j.
With regard to the Beta distribution, the relevant necessary
condition is

σ2
j < µj(1− µj). (7)

Algorithm 2 Permute the dataset.

Dataset D = {(xi, yi)}ni=1

Class distributions B(αj , βj), for j = 1, . . . , c

1: for data instance i in 1, . . . , n do
2: Set j = yi
3: Sample timestamp: ti ∼ B(αj , βj)
4: end for
5: Compute permutation: p = argsort(t1, . . . , tn)
6: Permute dataset D according to permutation p

Therefore, we need to make sure this condition holds for
every class j. A simple way to ensure that, would be to first
sample a mean µj in [0, 1] as described above, and then to
sample the standard deviation σj , with rejection sampling
[6], until we find a pair (µj , σj) that satisfies Eq. 7. An
alternative would be to first sample the standard deviation
σj , and then to shrink the support of the uniform distribution
from which µj is sampled, in order to guarantee that Eq. 7
will be satisfied for any choice within the shrunk support.
After some algebra, we get the shrunk support:

[
0.5− rj , 0.5 + rj

]
, where rj ≜

√
1

4
− σ2

j . (8)

In our view, using the shrunk-support approach is superior
to rejection sampling since it does not require repeated sam-
pling steps to succeed. The entire sampling process is pre-
sented in Algorithm 1.

3.3. Permuting the Dataset

Now we will describe how to use the class distributions
Dj = B(αj , βj) to permute the dataset D (see also Algo-
rithm 2). First, we assign a timestamp ti to each instance i
of the dataset. These timestamps will then be used to pro-
duce a permutation p, according to which we will permute
the dataset D.

For each data instance (xi, yi), we sample a timestamp
from the distribution of its class. In other words, we set j =
yi, and then sample ti ∼ B(αj , βj). Hence, we see that the
timestamps of all data instances of a particular class j are
sampled from the same distribution, namely, B(αj , βj). Af-
terwards, we compute the permutation p = (p1, . . . , pn) as
the vector of indexes that would sort the vector (t1, . . . , tn).
In other words, (p1, . . . , pn) is computed by applying the
argsort operation on the vector (t1, . . . , tn). Finally, we per-
mute the dataset according to p. Intuitively, in the permuted
dataset, the data instance with the smallest timestamp will
appear first, the one with the second-smallest timestamp
will appear second, while the one with the largest timestamp
will appear last. A toy example of a dataset permutation is
presented in Figure 1.
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Sampled Distributions
Class 1 Class 2 Class 3
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Labels of Permuted Stream

Figure 1. We use a toy dataset with 13, 17, and 10 instances, for class 1, 2, and 3, respectively. A task-free stream is constructed by sorting
the timestamps sampled from the class distributions.

4. Experiments

4.1. Experimental Settings

Datasets We use four datasets of varying difficulty.
EMNIST [9] is a dataset containing approximately 130,000
grayscale images of handwritten characters and digits be-
longing to 47 classes. CIFAR-10 and CIFAR-100 [18] are
datasets that contain each 50,000 color images of 10 and
100 classes, respectively. Finally, tinyImageNet [20] is the
most challenging dataset widely used in evaluating contin-
ual learners. It contains 100,000 color images of 200 differ-
ent classes. We have not used any data augmentation in our
experiments, since we want to keep our evaluation domain-
agnostic, and data augmentation might not be possible or
practical for data modalities other than images.

Methods Experience replay (ER) [7, 12] is the most
fundamental continual learning baseline. It performs re-
play from a memory which is populated using reservoir
sampling [33]. Maximally-interfered retrieval (MIR) [1] is
an extension of ER that replays the instances which would
experience the largest loss increases if the model were to
be updated using only the current mini-batch of observa-
tions. Class-balancing reservoir sampling (CBRS) [8] uses
a memory population algorithm that maintains the mem-
ory as class-balanced as possible at all times. Greedy
sampler and dumb learner (GDUMB) [28] also uses a
class-balancing memory population algorithm and trains

the model using only data stored in memory.2 Gradient-
based memory editing (GMED) [16] edits the data stored in
memory in order to make them more challenging to memo-
rize. Finally, asymmetric cross entropy (ACE) [4] employs
a modified loss function that improves continual learning
performance by reducing representation drift.

Hyperparameters Following previous work [1, 8, 16],
we use stochastic gradient descent optimization with a
learning rate of 0.1, and we set both the stream and replay
batch sizes to 10. Method-specific hyperparameters are set
based on the values provided in their respective papers. We
use memory sizes in the range of 1–4% of the size of the
stream (2000 for EMNIST, 1000 for CIFAR-10, 2000 for
CIFAR-100, and 4000 for tinyImageNet). Please refer to
the appendix for information on the architectures used.

Evaluation Metrics Following previous work [1,8,16],
we evaluate all methods by calculating the accuracy on the
unseen testing data after the end of learning. Moreover, in
order to also evaluate the longitudinal learning performance
of each method throughout the continuum, we use the infor-
mation retention metric proposed in [5] (accuracy over past
observations) averaged over the entire stream.
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Figure 2. A conventional CIFAR-10 stream with disjoint tasks (left) and a simulated task-free (STF) stream of the same dataset (right).
Best viewed zoomed-in and in color.

4.2. Stream Comparison

We start by comparing a conventional CIFAR-10
distinct-task stream with two instances of streams gener-
ated by our proposed algorithm (see Figure 2). We split
the two streams in 200 chunks, and compute the relative
frequency of each class in each of the 200 chunks. The
conventional stream (left) is split into 5 tasks with 4 dis-
tinct task boundaries between them, and that the data dis-
tribution remains stationary within each task. Conversely,
in the STF stream (right), the distribution changes contin-
uously over time, sometimes more slowly and others more
abruptly. Moreover, we observe other interesting character-
istics of the STF stream, such as a) variation in how dis-
persed or concentrated each class appears over the stream;
b) class distributions with more than one modes (e.g., class
4 on the right); and c) class distributions that are skewed
(e.g., class 5 on the right). We expect all these characteris-
tics to be present in real-world task-free streams, but, unfor-
tunately, they are never present in the conventional distinct-
task streams.

4.3. Benchmarking

At this point we benchmark six methods applicable to
task-free continual learning using our STF streams (see Ta-
ble 1). We describe in the appendix how we set the average
standard deviation µσ for each dataset. ER and its vari-
ants (MIR, CBRS, GMED) perform similarly accross all
datasets. GDUMB is different from all the other methods in
the sense that it is optimizing a model using only data stored
in memory. Such an approach appears to be performing well
in EMNIST and CIFAR-10, but not so well in the datasets
that contain a large number of classes (CIFAR-100, tinyIm-
ageNet). ACE outperforms all other methods in CIFAR-10,
CIFAR-100, and tinyImageNet, a result which suggests that
the use of the asymmetric cross-entropy approach can be
applied successfully in streams with continuously changing

2The original formulation of GDUMB [28] is not directly applicable to
task-free continual learning since it only trains a model after the stream has
been observed in its entirety [32]. Nonetheless, it can be easily extended
for use in task-free continual learning (please refer to the appendix).

data distributions.

4.4. The Effect of Class Dispersion

Here we examine the effect of the hyperparameter µσ ,
which determines how concentrated or spread-out the class
distributions are. In Figure 3, we compare ER, ACE, and
GDUMB in terms of their final accuracy for four differ-
ent values of µσ (we use the values of µσ that we used
in Section 4.3 scaled by 0.5, 1, 2, or 4). We observe that
for all three methods, streams with more dispersed classes
(with larger standard deviations) are easier to learn, and,
conversely, streams with more concentrated classes (with
smaller standard deviations) are more difficult. Our inter-
pretation of these results is that when the class distributions
on average have a higher measure of dispersion, the stream
batches are more likely to contain a larger variety of labels,
and the model can learn better class-discriminative features.
Therefore, we can interpret the value of µσ as a kind of dif-
ficulty knob for the resulting STF streams. It is also inter-
esting to note what happens in the two extreme cases. When
we set σj = 0 for all classes j, the resulting streams become
equivalent to disjoint-task streams with one class per task.
On the other hand, when we set σj = 0.5 for all classes j,
the resulting streams are iid (or, alternatively, one task that
contains all classes).

4.5. Other Considerations

Finally, we want to note some other ways in which STF
streams differ with disjoint-task streams. First, we use the
CIFAR-100 dataset to generate three disjoint-task streams
and three STF streams. In Figure 4, we plot, for both the
disjoint-task (left) and the STF streams (right), the relative
frequency of the most prevalent class at each moment in
time. Since the disjoint-task streams (left) are constructed
with 10 classes per task, the resulting relative frequency is
constantly 0.1. On the contrary, the relative frequencies for
the STF streams vary in all of the three plots on the right,
which is evidence of their lack of structure.

In Figure 5, we plot the loss of the ER method on
CIFAR-100, for three disjoint-task streams (left) and three
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Table 1. Benchmarking task-free continual learning methods using STF streams of four datasets. We present the final accuracy on the
test set after observing the entire stream (Acc.), and the information retention averaged over the entire stream (Av. IR). All entries are
95%-confidence intervals over 20 runs.

EMNIST CIFAR-10 CIFAR-100 tinyImageNet

Acc. Av. IR Acc. Av. IR Acc. Av. IR Acc. Av. IR

ER 80.1± 0.5 87.7± 0.6 38.4± 2.1 56.9± 1.7 14.3± 0.7 27.9± 0.9 8.2± 0.6 16.3± 0.5
MIR 79.0± 0.4 88.4± 0.6 39.9± 1.8 56.2± 2.0 14.1± 0.6 29.2± 1.0 7.7± 0.7 16.4± 0.4
CBRS 79.7± 0.5 87.0± 0.6 38.1± 2.0 53.2± 1.8 14.4± 0.8 26.6± 0.9 8.6± 0.7 15.7± 0.4
GDUMB 81.0± 0.2 88.2± 0.6 41.4± 1.7 53.3± 1.6 12.8± 0.5 23.6± 0.7 6.9± 0.4 14.9± 0.4
GMED 80.4± 0.6 88.0± 0.7 39.3± 1.9 56.2± 1.9 14.5± 1.0 28.2± 1.0 8.5± 0.8 16.3± 0.6
ACE 80.6± 0.4 89.5± 0.6 49.9± 2.0 64.6± 1.6 19.3± 0.5 32.6± 0.8 11.3± 0.4 20.9± 0.5
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Figure 3. We evaluate the final accuracy of ER, ACE, and GDUMB using STF streams generated from four datasets with the µσ values
used in Section 4.3 scaled by 0.5, 1, 2, or 4. All results are presented as 95%-confidence intervals.

STF streams (right). We observe that, since the disjoint-task
streams have always exactly the same structure, their corre-
sponding loss curves are essentially identical (loss spikes
take place every time there is a task transition). In contrast,
because the STF streams are more varied in terms of their
structure, their loss curves are more dissimilar.

5. Discussion & Conclusion

The general goal of research is to increase our knowl-
edge and our ability to solve complex problems, and task-
free continual learning is evidently one of them. Given how
generally applicable this problem is (see our arguments in
Section 2.3), we believe it is critical to have in place eval-
uation frameworks that are in line with real-world applica-
tions. In the opposite case, we cannot be confident that the
algorithms and methodologies that we design will be able
to generalize well when applied in the real world. A rel-
evant metaphor would be transfer learning: the closer the
source distribution is to the target distribution, the easier it
is to transfer knowledge. Applied to our problem, the closer
the evaluation framework is to task-free continual learning,
the more confident we can be that the methods that perform
well in the evaluation framework will also perform well in
the real world.

Furthermore, since there is inherent uncertainty in what

real-world task-free continual learning streams would be
like, we argue that we should not be imposing any un-
necessary structure on our evaluation frameworks. As we
showed in Section 4.5, however, conventional task-disjoint
streams are highly structured. We consider a more general
evaluation framework to be more appropriate as a bench-
mark. Indeed, using on streams with various characteristics
in terms of their underlying data distributions (see Figure 2)
is a more robust evaluation, than only using streams with
exactly the same structure.

One limitation of our stream-simulating algorithm is that
it relies on labels, and hence, cannot be readily extended to
unlabeled datasets. Future work could examine whether this
extension is possible by using unsupervised representations
followed by clustering to assign pseudo-labels to each in-
stance of the dataset. Extending our algorithm to multi-label
classification problems could be possible by transforming
the multi-label problem into a multi-class problem [29].
Moreover, our algorithm could be used on regression prob-
lems by quantizing the output domain of the data.

To summarize, our work is motivated by the observa-
tion that the definition and the evaluation of task-free con-
tinual learning are not aligned. In particular, task-free con-
tinual learning involves data distributions that change con-
tinuously over time, but the evaluation of task-free con-
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Figure 4. We use CIFAR-100 to create three disjoint-task streams with 10 classes per task (left) and three STF streams (right). For each of
the streams, we plot the relative frequency of the most prevalent class at each moment in time.
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Figure 5. We use CIFAR-100 to create three disjoint-task streams with 10 classes per task (left) and three STF streams (right). We run the
ER algorithm on each of the six streams, and plot the corresponding loss curves.

tinual learning is performed using data distributions that
change only at discrete steps. To help remedy this issue,
we have proposed an algorithm that can transform any la-
beled dataset into a task-free continual learning stream, that
is, a stream whose data distribution changes, not just at dis-
tinct steps, but continuously over time. We have demon-
strated experimentally that the STF streams generated using
our algorithm contain much less structure than the disjoint-
task streams conventionally used in past work. This lack
of structure is, in our view, a desirable feature, since the
STF streams can better capture the uncertainty of what a
real-world task-free stream would be like. We hope that our
work will make it more likely that task-free continual learn-
ing contributions proposed in future work will be able to
better generalize to practical applications of task-free con-
tinual learning.
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