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Abstract

In recent years, online distillation has emerged as a pow-
erful technique for adapting real-time deep neural networks
on the fly using a slow, but accurate teacher model. How-
ever, a major challenge in online distillation is catastrophic
forgetting when the domain shifts, which occurs when the
student model is updated with data from the new domain
and forgets previously learned knowledge. In this paper,
we propose a solution to this issue by leveraging the power
of continual learning methods to reduce the impact of do-
main shifts. Specifically, we integrate several state-of-the-
art continual learning methods in the context of online dis-
tillation and demonstrate their effectiveness in reducing
catastrophic forgetting. Furthermore, we provide a detailed
analysis of our proposed solution in the case of cyclic do-
main shifts. Our experimental results demonstrate the effi-
cacy of our approach in improving the robustness and ac-
curacy of online distillation, with potential applications in
domains such as video surveillance or autonomous driv-
ing. Overall, our work represents an important step for-
ward in the field of online distillation and continual learn-
ing, with the potential to significantly impact real-world ap-
plications.

1. Introduction
Deep Neural Networks (DNNs) have shown remarkable

performance on various computer vision tasks thanks in
part to the assumption that the training and testing data
are identically distributed [21, 27, 37]. However, DNNs’
performance degrade significantly when tested on out-of-
distribution data, such as testing data that contains domain
shifts relative to the training data [22, 23]. Even worse,
DNNs tend to forget previously learned distributions when
learning continually on a stream of tasks [24]. This perfor-
mance loss is a major concern because domain shifts are
likely to occur in real-world deployments due to changes
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Figure 1. Online distillation with continual learning. When
cyclic domain shifts occur in long videos, the online distillation
framework proposed by Cioppa et al. [10] forgets the previously
acquired knowledge as it fine-tunes on the current domain. In this
work, we study the inclusion of state-of-the-art continual learning
methods inside the online distillation framework to mitigate this
catastrophic forgetting around the domain shifts.

in brightness between day and night, weather conditions
across seasons, and sensor perturbations [35]. Therefore, it
is essential to develop algorithms that can enable DNNs to
adapt to such domain shifts and maintain high performance
in real-world settings.

Continual learning aims at building machine learning
models that can learn from a continuous stream of data
without forgetting previously learned knowledge [9,20,26].
We investigate a practical scenario of online continual learn-
ing [7]. Specifically, we consider cyclic domain shifts
where a stream of data consistently alternates in revealing
new unlabeled data from one of two distributions for a pe-
riod of time. For instance, consider an autonomous driv-
ing system that frequently travels between cities and coun-
trysides, where the distribution of instances varies between
the two scenes. Such domain variation can cause the on-
line learner to fail in adapting to this distribution shift, rais-
ing concerns about the real-world deployment of such sys-
tems. While online continual learning has been studied in

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2437



several contexts, such as domain incremental learning [18],
unsupervised domain adaptation [39], and test-time adapta-
tion [41], these works typically analyze the more general,
and potentially less realistic, setup where domain variations
are unconditional. Our focus on cyclic domain shifts en-
ables us to explore a pragmatic setting and develop novel
algorithms that can better adapt to these changes.

In this work, we propose a novel approach to address
the challenge of adapting to cyclic domain shifts in the con-
text of online domain incremental learning. Specifically, we
employ a previously published real-time online distillation
technique [10] to learn from the unlabeled cyclic stream of
data. Online distillation asynchronously updates a student-
teacher based approach on the received data, which enables
the model to continually learn from new data. However,
we found that the cyclic domain shift can cause the student
to forget the previously learned domain, leading to a sig-
nificant loss in performance. To mitigate this undesirable
effect, we combine online distillation with state-of-the-art
continual learning as shown in Figure 1, leveraging both
regularization- and replay-based approaches from the con-
tinual learning literature. Our proposed approach enables
the student to effectively adapt to cyclic domain shifts and
maintain high performance over time, making it suitable for
real-world deployment.

Contributions. We summarize our contributions in two
points: (i) We define the cyclic online continual learn-
ing problem setup and propose corresponding evaluation
metrics. (ii) We combine online distillation with both
regularization- and replay-based continual learning ap-
proaches to better learn on cyclic domains. We conduct
experiments on the proposed stream where we show that
our approach mitigates the forgetting of the original online
distillation framework.

2. Related Work

Domain shifts. A domain shift is a change in the statistical
distribution of data between different domains [15]. This
phenomenon is commonly observed at test time in open-
world scenarios [4, 19, 28, 42]. In autonomous driving, do-
main shift can be caused by many diverse factors [40], such
as different environments (e.g., rural or urban roads), light-
ing conditions (e.g., day or night), weather conditions (e.g.,
sunny or snowy) [35], traffic conditions or even differences
in the appearance of roads or traffic signs across different
countries [44]. However, it is crucial for autonomous ve-
hicles to have algorithms that are robust to these dynamic
domain shifts in order to constantly be able to perceive
and understand their surrounding environment to avoid ob-
stacles. Domain adaptation is an active area of research
that aims at addressing the domain shift problem, espe-
cially in open-world applications such as autonomous ve-

hicles [25,30,32,33,40], where data is collected in a highly
dynamic environment. In this work, we study the particular
case of cyclic domain shifts in the field of autonomous driv-
ing, where the domains can be represented as a succession
of highway and downtown driving conditions.

Online distillation. In the field of deep neural networks,
there is a trade-off between speed, performance, and gen-
eralizability across multiple domains. While the best-
performing models often exhibit high performance across
diverse domains, they tend to be memory-greedy for em-
bedded systems or too slow for use in real-time applica-
tions [43,46,47]. In contrast, lightweight and fast networks
show good performance on smaller domains but lack gener-
alizability [12]. To address this issue, Cioppa et al. [10]
proposed an online distillation approach for videos, that
enables the online training of a lightweight student net-
work using a slower, larger teacher model. At test time,
the teacher provides pseudo ground truths to the student,
allowing it to specialize in the specific domain being an-
alyzed. The student model therefore adapts to changing
video conditions, even matching the performance of the
slower teacher. This online distillation approach may be
used for different tasks such as semantic segmentation [10]
or multi-modal object detection [11]. However, this tech-
nique experiences a temporary loss of performance during
domain shifts. In this paper, we investigate several contin-
ual techniques to mitigate the effects of catastrophic for-
getting in online distillation, particularly in cases of cyclic
domain shifts. We combine online distillation with both
regularization- and replay-based approaches for a better
continual learning scheme.

Continual learning. Continual Learning (CL) aims at
learning from data arriving as a stream with changing dis-
tribution [16, 31]. However, this learning paradigm face
the catastrophic forgetting challenge, that is, previously
learned knowledge is forgotten when adapting to the newly
arriving data samples [9, 24]. One approach of mitigat-
ing the forgetting effect is regularizing the training pro-
cess through constraining the changes of important net-
work parameters [2, 8, 24] or performing knowledge distil-
lation [17, 26, 38]. Alternatively, replay-based methods re-
hearse previously seen examples by storing a subset of the
observed data in a replay buffer [3, 9, 29, 34]. While both
approaches were originally proposed for class-incremental
setup and classification task, they were recently extended to
the more realistic domain incremental setup and the more
challenging semantic segmentation task [1, 18]. Neverthe-
less, prior art assumes fully supervised setups where the
stream reveals labeled data for the student learner. To that
end, we analyze the domain incremental setup for semantic
segmentation under an unsupervised setup.

2438



3. Methodology

In this section, we first describe online distillation in a
mathematical framework suited for continual learning. Next
we detail the regularization-based and replay-based contin-
ual learning methods that we integrate into the online dis-
tillation framework. Finally, we explain how to evaluate
and benchmark online continual leaning methods under our
cyclic stream.

3.1. Online distillation framework

The online distillation framework proposed by Cioppa et
al. [10] allows a real-time network to adapt to domain shifts
at test time. Formally, given a long untrimmed video V
composed of a stream of frames xi produced at a rate rV
and a task T (e.g., object detection, semantic segmentation,
etc.), the objective is to produce a stream of predictions ŷi
for each frame xi in real time (i.e., at a rate rV ). To do
so, the authors leverage a student-teacher architecture with
a fast and slow route. In the fast route (inference), a student
network S computes ŷi = S(xi) at the rate rV . In parallel
in the slow route (training), a slower but high-performance
frozen teacher network T produces pseudo ground-truths
ỹi′ = T(xi′) at an asynchronous slower rate rT on a subset
of V . Each new pair (xi′ , ỹi′) is then stored through an up-
date function fU into an online dataset D of size N that is
used to train a copy Sc of the student network. In the orig-
inal framework, fU is chosen as a First In First Out (FIFO)
algorithm. Iteratively, Sc is trained on selected samples ex-
tracted from D by a function fS , by minimizing the loss:

L =

N∑
n=1

L(Sc(xn), ỹn) ,

where L is a distance function suited to learn task T . In the
original framework, fS selects all pairs in D one time. The
parameters of S are updated by copying the parameters θ of
Sc at the rate rSc

, corresponding to the inverse of the train-
ing time of Sc on one epoch of D. The complete pipeline
may be found in Figure 2.

Thanks to this framework, S becomes specialized to the
last minutes of the particular video it is analyzing. This al-
lows it to adapt to slowly changing domains in V as long
as T is able to produce reliable predictions. However, this
continual fine-tuning makes it forget previously acquired
knowledge over time. For instance, when sudden shifts in
domain occurs, S needs several updates to recover good per-
formance even if the same domain already appeared in the
video. In the following, we propose to incorporate Contin-
ual Learning (CL) techniques in the existing online distil-
lation framework to minimize the catastrophic forgetting of
previously acquired knowledge in the case of cyclic domain
shifts. In particular, we benchmark several replay-based

methods (CLRep) that act on D and regularization-based
methods (CLReg) that act on L as shown in Figure 2.

3.2. Replay-based methods

This set of methods leverage a replay buffer (i.e. a col-
lection of data and corresponding ground-truth labels) of
finite size that is accessed by the selection function fS and
updated with new data by an update function fU at each
training epoch. The online distillation framework presented
above can be formulated as a replay-based method, where
the replay buffer corresponds to D, the labels are the pseudo
ground-truth predictions ỹn, fS selects all data of the replay
buffer to be used during the training epoch, and fU deter-
mines the policy to update samples in the replay buffer. In
the original online distillation framework, the size of the re-
play buffer is also the number of samples, N , passed to the
model at each training step. We extend the replay buffer
to include M ≥ N samples where we sample N samples
without replacement from the buffer at each training step.
We augment the selected samples with the new incoming
data from the stream.

We consider several strategies to modify fU and fS to
reduce the catastrophic forgetting: FIFO, Uniform, Priori-
tized, and MIR.
FIFO: fU stores the most recent samples in the replay
buffer while removing oldest ones. This is equivalent to
the original framework’s update strategy that is used as a
baseline for comparison with other methods.
Uniform: fU stores incoming data at randomly selected re-
play buffer indices. This strategy leads to an expected re-
maining lifespan of data to decay exponentially [5], which
could avoid forgetting. As for memory selection fS , it per-
forms a random selection from memory for constructing a
training batch.
Prioritized: Adapting the work of Schaul et al. [36] on re-
inforcement learning, we set fU to assign an importance
score I for each sample in the replay buffer following:

In = L(S(xn),T(xn)) .

The importance score is then used as a probability of de-
termining which samples to remove from the replay buffer
following:

pn =
I−1
n∑M

n′=1 I
−1
n′

.

To perform the memory selection fS operation, prioritized
follows the same strategy described above for the update
function fU .
MIR [3]: is a selection function fS that selects a subset of
the replay buffer samples that are maximally interfered by
the incoming data in a stream. In other words, it constructs
a set of training samples from memory that are negatively
affected the most by the next parameter update.
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Figure 2. Online distillation. The framework is composed of a fast and a slow route. In the fast route (inference), the video stream V is
processed by a student network S on a task T (e.g., semantic segmentation for autonomous driving) and produces predictions ŷi for each
frame of the video xi at the original video rate rV (i.e., in real time). In parallel in the slow route (training), a frozen teacher T produces
pseudo ground-truths ỹi′ from a subset of frames xi′ at a slower rate rT. The pair (xi′ , ỹi′) are then stored in an online dataset (or replay
buffer) D through an update function fU . D is sampled through a selection function fS and the selected pairs (xn, ỹn) are used to train a
copy of the student network Sc for one epoch using a loss L. The parameters θ of Sc are then transferred to S at a rate rSc (corresponding
to the inverse of the training time of Sc on one epoch) so that S improves on the latest domain of V . One of the contribution of our paper
consists in including replay-based Continual Learning (CL) methods, CLRep, inside D and regularization-based methods, CLReg , on L.

3.3. Regularization-based methods

Regularization-based methods mitigate forgetting by
adding a regularization term to the training loss function L.
Generally, this can be formulated as:

L =

N∑
n=1

L(Sc(xn), ỹn) +R ,

where R is a method-specific regularization term. In this
paper, we consider four different regularization-based con-
tinual learning methods: ER-ACE [6], LwF [26], MAS [2],
and RWalk [8]. We summarize these methods hereafter.
ER-ACE [6] aims at reducing the changes in the learned
representation when training on samples from a new class.
It does so by applying an asymmetric parameter update on
the incoming data and the previously seen data that are sam-
pled from a replay buffer. Specifically, ER-ACE restricts the
loss computation on classes presented in the incoming data
while ignoring remaining classes. We note that ER-ACE
only works on incoming data while keeping the original loss
on the data sampled from replay buffer.

The following methods were originally proposed for set-
tings with clear task boundaries. We adopt them to work on
online streams without task boundaries by using two prop-
erties: (i) warmup and (ii) update frequency. The warmup
defines a time period for the network to be initialized dur-
ing the warmup phase, we set R = 0. The update fre-
quency simulates an artificial task boundary after every k
steps, where k is a fixed hyperparameter for all methods.

LwF [26] uses knowledge distillation to encourage the cur-
rent network’s output to resemble that of a network trained
on data from previous time steps. In our setup, LwF keeps a
previous version of our student network Sc to guide the fu-
ture parameter updates of this network. Maintaining a pre-
vious network that is potentially more tailored to previous
domains could help in preserving learned knowledge.

MAS [2] assigns an importance weight for each network
parameter by approximating the sensitivity of the network
output to a parameter change. When training on new distri-
butions, it penalizes large changes to important parameters
and, thus, preserves previously learned knowledge.

RWalk [8] is a generalized formulation that combines
a modified version of the two popular importance-based
methods: EWC [24] and PI [45]. RWalk computes impor-
tance scores for network parameters, similar to MAS, and
regularizes over the network parameters.

3.4. Evaluation methodology

To evaluate the adaption to new domains and the forget-
ting of past domains, we propose several evaluation met-
rics. Following the work of Cioppa et al. [10], the perfor-
mance of the student network Sc (equivalent to S) over time
is defined as follows: given a task-specific metric M (e.g.,
mIoU for semantic segmentation or accuracy for classi-
fication), a set of size I of frames X ′

i = {xi′ , ..., xi′+I}
and pseudo ground truths Ỹ ′

i = {ỹi′ , ..., ỹi′+I}, the perfor-
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mance of the student network at time i′ is given by:

M(Sc(Xi′ ; θi′), Ỹi′) ,

where θi′ are the parameters of Sc at time i′, which may be
asynchronous with the training of Sc and update of S as it
operates at a the different rate rSc

.
Backward Transfer (BWT): Motivated by the discrete im-
plementation of backward transfer [14], we propose a mod-
ified version for online streams that measures forgetting of
the current student network with respect to previous data,
which corresponds to the previous domain in our case:

BWT(i′) = M(Sc(Xi′−h; θi′), Ỹi′−h) ,

where h refers to the backward time shift.
In addition, we report the Final Backward Transfer

(Final BWT). Given a stream of length K, we evaluate
the backward transfer of the final model θK on the entire
stream, i.e. setting h = 0 in BWT. This metrics allows to
evaluate the final student model on all previous domains,
rather than only one specific past domain.
Forward Transfer (FWT): Similar to the backward trans-
fer, we adapt the discrete version [14] of forward transfer
for our online setup as follows:

FWT(i′) = M(Sc(Xi′+h; θi′), Ỹi′+h) .

Forward transfer measures the model’s performance on fu-
ture unseen data. In our case, this metric is useful in evalu-
ating the current model on the next domain.

4. Experiments
In this section, we first describe the experimental setup

on which we benchmark our continual online distillation
framework. Next, we provide quantitative results including
a comparative study, of our framework using our proposed
evaluation methodology. Finally, we display some quali-
tative results to show the practical impact for autonomous
driving applications.

4.1. Experimental setup

Our online continual learning framework is agnostic to
the task, metric, and training parameters. In this section, we
provide the technical details describing our experiments in
various settings.
Task. We benchmark our framework on the outdoor seman-
tic segmentation task, which consists in assigning a class
label to each pixel of a frame. We study the particular case
of videos taken behind the windshield of vehicles, which is
the typical study-case for autonomous driving applications.
Dataset. The online distillation framework requires long
untrimmed videos, in our case containing cyclic domain

shifts. Additionally, these videos must be relevant to high-
light the task’s objectives. Since most datasets for semantic
segmentation are composed of frames or small video clips
(e.g., CityScapes [13], BDD100K [44], etc.), they cannot
be used in our context of online continual learning. Hence,
we follow the same strategy to simulate long videos with
domain shifts as in [10] and propose to artificially con-
struct a video V by concatenating sequences from 2 differ-
ent domains, DA and DB , alternating in cycle from one
domain to the other. The resulting video is therefore an or-
dered set V = {VA

1 ,VB
1 ,VA

2 ,VB
2 , ...}, where the VA

i and
VB
i are sequences from domain DA and domain DB , re-

spectively. In our autonomous driving case, we define the
two domains DA and DB as a highway environment and
a downtown environment, which differ from the priors on
the semantic classes (e.g., there should be fewer persons
in highways than downtown) or the background (e.g., there
are more buildings in downtown and more empty spaces in
highways). We extract several clips from each domain and
alternatively concatenate them to build V . To consider clips
of different time lengths, we construct two video V streams
where the extracted clips are 20 minutes and 40 minutes
long respectively.

Evaluation metric. Following the standards in semantic
segmentation, we use M = mIoU to evaluate the segmen-
tation masks of each frame as described in Section 3. Fol-
lowing the work of Cioppa et al. [10], since ground-truth
data is unavailable for our dataset, we evaluate the perfor-
mance of the student with respect to the pseudo ground
truths produced by the teacher. This evaluates the capac-
ity of the student to imitate the teacher. We provide the
mIoU , FWT, BWT, Final BWT metrics either during the
video or averaged over the entire video (referred as mean).
We choose I = 1 minute and h = 20 minutes or h = 40
minutes depending on the domain sequences length to eval-
uate the forgetting on the previous or future domains. Fi-
nally, we also compute the average across a time window of
± 2 minutes of each domain shift occurrence. We call this
metric mIoU Near Domain Shifts (mIoU NDS).

Networks and training parameters. For the teacher
network T, we chose SegFormer [43] trained on the
CityScapes dataset, which is the state of the art in seman-
tic segmentation on this dataset. For the student networks
S and Sc, we chose TinyNet [10, 12], a lightweight seg-
mentation network that only needs a few training samples
to specialize on a particular domain, that is fast to train, and
operates in real time (at least 30 frames per second for full-
HD videos on a Nvidia 1080 GPU). The student network Sc

is trained from scratch at the beginning of the video using a
learning rate of 10−4 and ADAM optimizer for online learn-
ing following [10]. The replay buffer size is set to M = 250
and the number of selected frames to N = 100 frames.
Given the chosen video, networks, and replay buffer size,
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Table 1. Quantitative results. We compare several memoryless and replay-based methods with the original baseline framework proposed
by Cioppa et al. [10]. For each category, we benchmark several selection functions fS , update functions fU , and regularizers R. The
performance is provided for our proposed evaluation metrics for the 20/40 concatenated sequences. The replay-based methods generally
outperform the baseline and the memoryless methods. The LwF and MAS regularization methods decrease the performance, while ACE
and RWalk increase the performance. The best results are obtained with a uniform replay buffer, MIR, MIR+ACE, and MIR+RWalk. We
compare the temporal evolution of the performance of the Baseline with one of the best performing method MIR+RWalk in Figure 3.

Methods Parameters Metrics (mean %)
fS fU R mIoU mIoU NDS FWT BWT Final BWT

Memoryless

/ / / 18.4/19.4 14.9/15.1 6.8/4.8 7.8/7.5 14.9/15.0
/ / MAS 14.0/14.0 13.0/13.3 11.1/11.1 12.9/12.9 14.2/14.2
/ / LwF 15.7/15.9 12.0/11.0 9.7/6.8 11.3/8.9 14.7/12.9
/ / RWalk 18.3/19.3 14.6/14.7 7.5/4.7 8.6/6.5 15.1/14.2

Baseline All FIFO / 23.4/24.2 19.8/18.2 14.5/9.5 17.7/13.9 21.9/19.9

Replay Buffer

Uniform Uniform / 25.5/25.0 23.6/21.1 22.2/17.3 30.6/28.8 29.4/28.4
Prioritized Prioritized / 25.1/25.1 23.2/20.8 21.3/17.3 29.2/28.4 29.2/28.9
MIR Uniform / 25.2/25.2 23.7/24.5 21.9/22.5 30.5/28.6 29.5/29.7
MIR Uniform MAS 14.5/14.9 13.4/14.7 12.1/13.6 13.9/15.2 15.1/15.4
MIR Uniform LwF 18.7/18.1 17.6/15.7 17.4/13.9 21.0/20.2 22.4/21.1
MIR Uniform ACE 25.6/25.5 24.2/21.8 22.0/17.5 30.8/29.4 28.8/28.5
MIR Uniform RWalk 25.2/25.4 23.4/22.0 21.8/18.0 30.0/30.8 30.1/30.8

the rates are: rV = 30 frames per second, rT = 3 seconds
per frame, and rSc

= 60 seconds per epoch.

4.2. Quantitative results

We compare the performance of the original framework
with the proposed continual learning approaches. As a
naive approach, we also study a memoryless online distilla-
tion framework, in which the online dataset does not store
any frame. In this setup, the pairs produced by the teacher
are used only once for training and are then deleted. As can
be seen from Table 1, the memoryless approaches perform
worse than the original framework for all metrics, show-
ing that retaining some information in an online dataset (or
replay buffer) improves the performance. Interestingly, all
replay-based methods without regularizers improve com-
pared to the baseline, with the best performance obtained
by MIR overall. Adding a regularizer is however not always
beneficial. For instance, MAS and LwF systematically de-
crease the performance, while ACE and RWalk slightly in-
crease the performance. We hypothesize that this can be at-
tributed to the fact that MAS and LwF were proposed in the
offline setup with the aim of reducing the elasticity of the
model towards adapting to new information. While this ap-
proach was proven to be useful in several scenarios, it could
hinder the student from quickly adapting to new domains
in the online setup. The biggest improvement is therefore
mainly due to the replay buffer method with MIR.

In Figure 3, we show the evolution of the performance
over time for the baseline and on one of the best method

(MIR+RWalk) for cycles of 20. As can be seen from the
mIoU plot, during the two first cycles, both methods have
similar results. This is expected as they both discover the
new domains. The first difference can be seen at the sec-
ond transition, where the first domain is seen once again.
The baseline method has a huge drop, while the continual
learning method shows good performance. At each other
transition, MIR+RWalk does not suffer from the drop in per-
formance caused by the forgetting of the previous domain.
We conduct a comparison between the MIR+RWalk method
and the original online distillation framework (baseline) by
analyzing the performance evolution of the mIoU , BWT,
Final-BWT, and FWT metrics. When evaluated on the pre-
vious domain, MIR+RWalk significantly outperforms the
baseline in BWT, indicating its ability to retain information
about the previous domain on frames it has been trained
on. In the case of Final-BWT, the baseline quickly forgets
past knowledge, while MIR+RWalk is able to maintain high
performance for both domains across many cycles. Finally,
when evaluated on the future domain, MIR+RWalk also
shows significant performance improvements compared to
the baseline in FWT, indicating its ability to generalize on
new frames from a previous domain.

4.3. Qualitative results

We qualitatively demonstrate the effect of the best per-
forming continual learning methods on the catastrophic for-
getting. To do so, we investigate the quality of the seg-
mentation masks right after the second transition from high-
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Figure 3. Evolution of the performance over time. We compare the evolution with respect to mIoU , BWT, Final-BWT, and FWT of
the MIR+RWalk method with the original online distillation framework (baseline). (Top-left) mIoU : the performances are mostly similar
within the domain, but around the domain shifts (from the second cycle), the baseline suffers from forgetting while MIR+RWalk keeps
high performance. (Bottom-left) BWT: when evaluating on the previous domain, MIR+RWalk clearly outperforms the baseline, showing
that it is able to retain information about the previous domain, on frames it has trained on. (Top-right) Final-BWT: the baseline quickly
forgets past knowledge, while MIR+RWalk is able to retain high performance for both domains across many cycles. (Bottom-right) FWT:
when evaluating on the future domain, MIR+RWalk also significantly outperforms the baseline, showing that it is able to generalize on
new frames of a particular domain using information from a previous domain it has seen before.

RGB Image Ground truth Baseline MIR MIR+RWalk

Figure 4. Qualitative results. Comparison of the segmentation masks obtained by different online continual learning methods: (top row)
a frame taken right after second transition between highway and downtown, and (bottom row) a frame taken right after seventh transition
between downtown and highway. The baseline method predicts poor segmentation masks after the domain shift, even though it has already
seen this domain before. In contrast, MIR and MIR+RWalk produce better segmentation masks.

way to downtown (the student has seen the downtown only
once before), and the seventh’s transition from downtown to
highway (the student has already seen the highway domain
6 times before). Figure 4 compares the segmentation masks
obtained by the baseline method, MIR, and MIR+RWalk

with the ground-truth mask. As shown, even though the stu-
dent has already seen the domain previously, the segmenta-
tion masks of the baseline right after the domain shift are
very poor. In practice, this could lead to hazardous situa-
tions for the autonomous vehicle and its passengers. On the

2443



contrary, the segmentation masks obtained with MIR and
MIR+RWalk are much closer to the ground-truth masks.
The quantitative results demonstrate that incorporating con-
tinual learning algorithms into the online distillation frame-
work considerably enhances the quality of the predictions,
rendering it more viable for real-world applications.

5. Conclusion
In conclusion, the development of online distillation has

brought new opportunities for adapting deep neural net-
works in real time, making them more suitable for practi-
cal applications such as autonomous driving. However, the
issue of catastrophic forgetting when the domain shifts has
been a major challenge in the implementation of this tech-
nique. In this paper, we proposed a novel solution to this is-
sue by incorporating continual learning methods. Through
our experimentation, we evaluated several state-of-the-art
continual learning methods and demonstrated their effec-
tiveness in reducing catastrophic forgetting. We also con-
ducted a detailed analysis of our proposed solution in the
case of cyclic domain shifts. The results highlight that our
approach improves the robustness and accuracy of online
distillation, making it a promising technique for real-world
applications. This work represents a significant step for-
ward in the field of online distillation and continual learn-
ing, with the potential to have a meaningful impact on vari-
ous fields such as autonomous driving.
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