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Abstract

The ability to acquire new skills and knowledge contin-
ually is one of the defining qualities of the human brain,
which is critically missing in most modern machine vision
systems. In this work, we focus on knowledge transfer in the
lifelong learning setting. We propose a lifelong learner that
models the similarities between the optimal weight spaces of
tasks and exploits this in order to enable knowledge transfer
across tasks in a continual learning setting. To characterize
the “task-parameter relationships”, we propose a metric
called adaptation rate integral (ARI), which measures the
expected rate of adaptation over a finite number of steps for
a (task, parameter) pair. These task-parameter relationships
are learned using an auxiliary network trained on guided
explorations of parameter space. The learned auxiliary net-
work is then used to heuristically select the best parameter
sets on seen tasks, which are consolidated using a hypernet-
work. Given a new (unseen) task, knowledge transfer occurs
through the selection of the most suitable parameter set from
the hypernetwork that can be rapidly finetuned. We show
that the proposed approach can improve knowledge transfer
between tasks across standard benchmarks without any in-
crease in overall model capacity, while naturally mitigating
catastrophic forgetting.

1. Introduction
An embodied agent that operates in the unbounded

partially-observable real-world with its diversity of tasks,
must possess the ability to acquire knowledge and skills
continually. An embodied and therefore finite agent, cannot
feasibly grow its skill set as a set of disjoint abilities learnt
afresh for each task. For complex tasks, this form of learn-
ing would be prohibitively expensive. Conversely, learning
a single skill that can be modulated and maintained to be
effective on the large diversity of tasks is infeasible (a broad
proof is provided in the No Free Lunch Theorems; [42]). A
skill set is therefore necessary - one that allows the agent

Figure 1. Exploiting shared structure in the optimal weight mani-
folds of tasks: Parameters trained on tasks with a greater vicinity
of their optimal weight manifolds (W∗), may be transferred with
a higher adaptation rate (illustrated as a faster path). Parameters
adapted from the initialization set Θ0 ∼ p(Θ) (centered, in grey)
for tasks τ1, τ2, τ3 in sequence. In this work, we model relation-
ships between parameters in weight space and adaptation path
lengths (and vicinity) to the optimal weight manifold of tasks.

to benefit from the redundancies between similar tasks that
require similar skills. Skills optimized for previous tasks
may reasonably be leveraged to improve learning quality and
efficiency on unseen yet related tasks.

Such mechanisms are widely reflected in fundamental
neuro-cognitive processes in human learning and memory
[3,38]. The re-use of neural circuitry across diverse cognitive
tasks appears to be a central organizational principle of the
brain [2]. Shared structures and properties across tasks and
environments are exploited. Similar tasks are solved rapidly
and more effectively by re-using acquired skills, while novel
experiences are prioritized within the learning bandwidths
[3, 6]. A continual consolidation of knowledge occurs [1,
32, 41] aimed at retaining salient, widely and frequently
re-usable knowledge/skills. This is particularly evident in
memory organization, knowledge consolidation, and the role
of novelty and forgetting in the memory [32, 38]. The aim
of our work is to incorporate these mechanisms within the
continual learning (CL) setting.
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Modern machine learning (ML) algorithms still struggle
to replicate this human ability to learn continually and uti-
lize existing knowledge to learn faster without forgetting.
The phenomenon of catastrophic forgetting [11, 28] - the
difficulty in the retention of old information when new in-
formation is acquired, is commonly observed in training
continually across multiple domains. This is a fundamental
consequence of the transfer-interference trade-off [31] - for
a singular finite network continually adapted to a shifting
distribution, catastrophic forgetting is inevitable. The field
of continual learning (CL) has therefore focused largely on
mitigating catastrophic forgetting - with limited success in
enabling knowledge transfer [21, 26, 30, 43] due in part to
the single network constraints generally applied in CL [29].

In contrast, an important characteristic of the human learn-
ing process is the elevated ‘quality of convergence’ onto new
tasks that share observed structures - a knowledge transfer
that enables a higher rate and quality of learning (varying
with the degree and type of shared task structures). In a life-
long learning setting, an efficient use of continually acquired
knowledge necessitates a benefit to such quality of adapta-
tion on new, albeit related tasks. In the limit, a continually
learning agent that most rapidly converges on a new task,
effectively already understands the task. This manner of op-
timization benefits an agent’s supervision/data requirements
in learning a new task.

We motivate this re-use of acquired skills for improved
adaptation quality on new tasks, as an important trait of a
generally learning agent. A faster ‘rate of adaptation’ (or con-
vergence) in ML can be formulated as a shorter adaptation
trajectory to the basin of convergence. This can be achieved
by an initialization with a higher affinity to the basin or by
enforcing a more direct trajectory [10] through auxiliary
feedback/constraints. In contrast, work on mitigating catas-
trophic forgetting is focused on retaining parameters within
the (optimal) weight manifolds learned for a task [31]. In
this work, we begin with the hypothesis that the shared struc-
ture between tasks may be captured in the optimal weight
spaces of the (networks trained on the) tasks. We also argue
that in order to allow skill re-use for a new task, a heuristic
to search the explored (or previously learned) weights set for
the most promising weights is required.

To this end, we make the following contributions:

• To measure ‘adaptation quality’ for a (parameter θ, task
τ ), we formulate a metric - adaptation rate integral
(ARI) that captures the convergence rate and perfor-
mance of a parameter θ trained on a task τ .

• We develop a heuristic that can efficiently search the ob-
served space of parameters (base model weights trained
on previous tasks) by estimating the adaptation quality
of any (θ, τ ) pair using an auxiliary network.

• Finally, in order to efficiently store the parameters
learned from previous tasks, we employ a meta model
that stores all observed parameters in its representation.
This approach does not require any additional model
capacity compared to a single (base) model.

We leverage these contributions to incrementally learn
and explore the observed space of parameters, improving
the degree of knowledge transfer as well as the retained
accuracy of the continual learner. We show that the benefits
to knowledge transfer come with no increase in overall model
capacity, while mitigating catastrophic forgetting naturally.

2. Preliminaries
In a supervised learning setting, a hypothesis h : X →

Y, h ∈ H is learned on the input and label spaces X , and
Y (H is the hypothesis space). The learner h ≡ f(·; θ) :
X → Y can be defined as a ML model f parameterized by θ.
The input and label spaces are related by a joint probability
distribution P (x, y) | x ∈ X and y ∈ Y . The empirical risk
minimization (ERM) principle formulates this problem of
learning h as a minimization of the population risk eP (h) =
P(h(x) ̸= y). For a finite sample set S ≡ (X,Y ) =
{xi, yi}i∈[1,N ] of sizeN seen by the learner h, the empirical
risk is êS(h) = 1

N

∑N
i=1 1h(xi )̸=yi where 1z is an indicator

function. The constrained ERM optimization problem is
therefore defined as:

ERM Optimization: min
∀ h∈H

êS(h). (1)

While in a typical continual learning (CL) setting [12], the
learner observes a sequence of M tasks [τ1, τ2, ..., τM ]; τi ∼
P (τ) sampled from a distribution of tasks P (τ). Here, a
task τi is defined as a set of Ni input, label pairs: Si ≡
(Xi,Y i) = {xn, yn}n∈[1,Ni]. Typically, the objective is to
find parameters θ that minimize the cumulative loss on all
m seen tasks τ[1:m], while having limited access to data Si
from previous tasks τi (i < m). The CL objective is:

min
θ

m∑
i=1

ESi

[
li( f(Xi; θ),Y i)

]
= min

θ

ES[1:m]

[
Lm(f(X [1:m]; θ),Y [1:m])

] (2)

where li is the loss on task τi and Lm is the cumulative sum
of all m task-specific losses Lm =

∑m
i=1 li.

3. Methodology
Our proposed continual learning algorithm operates in the

meta space of parameters. It uses a heuristic to incrementally
explore the meta space and consolidate parameters that are
estimated to do well on the distribution of observed tasks
within a knowledge base. Note that a parameter (θ) refers to
the set of weights of a ‘base’ model trained on a task.
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Figure 2. Overall Method: During training, a set of parameters are trained on the given task and their corresponding ARIs are calculated.
After filtering using the estimated ARI metric, the selected parameters are stored in the hypernetwork for future retrieval. At Inference, from
the parameter set ΘMem stored in the hypernetwork, the parameter θi with the maximum predicted ARI for the given inference task τk is
fetched, finetuned, and evaluated.

3.1. Proposed CL Algorithm

The proposed approach relies on (i) a small auxiliary
network Qϕ that estimates the ‘quality of convergence’ of a
parameter θ trained on a task τ and (ii) a meta model FΦ that
efficiently stores parameters as a knowledge base (ΘMem).
The algorithm consists of two phases: training and inference.
Training consists of an Exploration and a Consolidation
phase. Let Θinit be a set of randomly initialized parameters.

1. Exploration: A combined training set Θexp of param-
eters from the knowledge base and initialization set
(Θexp ⊆ ΘMem ∪Θinit) is selected and adapted on task
τ . A measure of the convergence quality of all Θexp

parameters on task τ is calculated and retained.

2. Consolidation: The calculated convergence qualities
from all observed (parameter, task) pairs is used to
train the auxiliary network Qϕ. Finally, the subset of
the combined knowledge base and adapted training set
(ΘMem ∪ Θ̂exp), that has the highest estimated quality
of convergence on the observed distribution of tasks, is
retained in the updated knowledge base ΘMem.

Inference consists of selecting the parameter from the knowl-
edge base, with the highest estimated quality of convergence
for the new task, fine-tuning and evaluating it.

A training budget Q can be enforced by simply using
the auxiliary network Qϕ to select the best candidate net-
works for training on a task. Further, as the architectures

are the same, data streams (identical &) independent and
only the initializations differ, training of the parameter sets
is fully parallelizable with negligible overhead to training
time complexity.

3.2. Convergence Quality Measure: Adaptation
Rate Integral (ARI)

To formalize the ‘quality of convergence’ of a given pa-
rameter to the task space, we introduce the Adaptation Rate
Integral (ARI) metric. In a typical supervised learning set-
ting, solving the ERM optimization (eq. 1) involves itera-
tively modifying an initial hypothesis h(0) in discrete steps
h(t + 1) = h(t) + α(t).δ(t). Here, t ∈ [0, T ] denotes the
step index, h(t) represents the hypothesis at step t, α(t) de-
notes the learning rate, and δ(t) is typically an estimate of
the gradient of the empirical risk. We define the adaptation
rate integral or ARI, as simply the step-averaged area under
the curve of (1− êS(h(t))) ∀ t ∈ [0, T ]. For a continuous
step space with infinitesimally small step sizes dt,

ψ (ARI) = 1− 1

T

∫ T

0

êS(h(t)) dt (3)

If the optimizer is allowed a maximum of T steps to solve eq.
1, the adaptation rate integral (ARI) is maximized when the
step averaged empirical risk on sample set S over T steps is
minimum. Ideally, a learning algorithm should converge to
a good quality solution (one that achieves global minimum
of the empirical risk) in the fewest possible steps. The ARI
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value attempts to measure both the quality of the converged
solution and how fast this solution can be reached. The
challenge lies in how to estimate the value of ψ given an
initial hypothesis h(0) and the optimizer, without explicitly
constructing the complete adaptation trajectory h.

3.2.1 Proposed CL Objective: ARI Maximization

Let the initial parameters of function f(·; θ) adapting on
task τ with a loss function l be θ0. Then, an SGD operator
U(θ0) acting on parameter θ0 is defined as follows: U(θ0) =
θ1 = θ0 − α∇θ0 l(θ0). Thus, the parameters θT obtained
after T adaptation steps can be composed as UT (θ0) =
U ◦ U · · · ◦ U(θ0) = θT . In the CL setting, for a model f
with initial parameters θ0 adapted on task τi over T steps,
the adaptation rate integral is defined as:

ψ(θ0, τi, T ) = 1− 1

T

T∑
t=0

êSi
(f(Xi; θt),Y i) ; Ut(θ0) = θt

(4)
Now, in order to learn the optimal initial parameters θ∗0 ∈ Θ
that maximizes the rate of adaptation on a distribution of
tasks τ ∼ P(τ), the learning objective using ARI maximiza-
tion becomes:

max
θ0∈Θ

Eτi∼P(τ)

[
ψ(θ0, τi, T )

]
=

max
θ0∈Θ

Eτi∼P(τ) [1−
1

T

T∑
t=0

êSi
(f(Xi; θt),Y i)]

(5)

For the continual learning setting, the ARI maximization
objective can thus be expressed as:

max
θ0∈Θ

M∑
i=1

ψ(θ0, τi, T ) = max
θ0∈Θ

Ψ(θ0, τ[1:m], T ) (6)

where the learner has a budget of T iterations/steps
to converge to each task τ , and Ψ(θ0, τ[1:m], T ) =∑m
i=1 ψ(θ0, τi, T ). In simple terms, given a new task τ

where a learner’s initial parameter θ0 is evolved across T
adaptation steps θT = UT (θ0), we would like to find the
optimal θ0 ∈ Θ such that the expected step-averaged em-
pirical risk on τ across the T steps is minimized (Eq. 5).
The proposed objective explicitly attempts to maximize the
quality of adaptation of the learner to the observed task set
as well as new tasks, which are sampled from the same task
distribution.

3.3. Overall Lifelong Learner & Components

As a lifelong learner, our proposed approach operates as
a compressed knowledge base ΘMem = {θ1, θ2, · · · , θN }
of explored base model parameters that are optimized for
maximal ‘adaptation quality’ to the distribution of tasks
τ ∼ P (τ) (while requiring the parameter budget of a single

base model). Typically, models are often over-parameterized
in continual learning with wider layers to mitigate the degree
of interference. We circumvent the problem of interference,
by searching the space of base model parameters and main-
taining the subset of parameters with maximal expected ARI
on the observed task distribution.

Algorithm 1 Lifelong Learning Algorithm
Input: Observed Tasks: τ[1:i−1] = {τ1, τ2, · · · , τi−1},
memory budget B, training budget Q
Require: ARI Estimator: Qϕ, meta model FΦ and embed-
ding vectors EM, model and task encoders: Eparam, Etask that
generate model, task encodings ηθ,ητ resp. , Generated
initialization set Θinit = {θ10, θ20, .., θN0 }
Ensure: |ΘM | ≤ B and |Θexp| ≤ Q

1: Knowledge Base ΘMem,Exploration Set Θexp,Buffer S =
{}

2: for Training on task τi do
3: ΘMem ← Retrieve from meta-model FΦ

▷ Exploration
4: Select exploration set Θexp:

Θexp ← argminΘexp

∑
θ0∈Θexp

Qϕ(ηθ0 ,ητi)

where Θexp ⊆ (ΘMem ∪Θinit), |Θexp| ≤ Q
5: Train parameters in exploration set Θexp:

Θexp ← {UT (θexp)},∀ θexp ∈ Θexp

6: Calculate and store true ARIs into buffer:
S = S ∪ {ψ(θexp, τi, T ),ηθexp

,ητi}∀ θexp ∈ Θexp

▷ Consolidation
7: Train ARI Estimator Qϕ on S,

ϕ← ϕ−ν∇ϕ
∑

{ψ,ηθ,ητ}∈S
||ψ−Qϕ(ηθ,ητ )||22

(Eq. 7)
8: Consolidate ΘMem:

ΘMem ← argminΘMem

∑
θ∈ΘMem

Qϕ(ηθ,ητ[1:i])

where ΘMem ⊆ (Θexp ∪ΘMem), |ΘMem| ≤ B
9: end for

▷ Inference
10: for Inference on task τm do
11: ΘMem ← {FΦ(ei)∀ei ∈ EM} Generate from meta-

model
12: θ∗ ← argmaxθ∗∈ΘMem

Qϕ(ηθ∗ ,ητm)
13: θ∗ ← Finetune θ∗ using exemplar memory D, then

infer on τm
14: end for

The proposed overall lifelong learning algorithm is de-
tailed in Algorithm 1. Below, we detail the various compo-
nents of the CL learner:

3.3.1 ARI Estimator

As searching exhaustively through a large space of param-
eters is prohibitively expensive, we propose a heuristic
method to search the parameter space efficiently for pa-
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rameters that most effectively adapt to observed and new
tasks. Such a heuristic would effectively characterize the
model-task relationships.

We learn a small-capacity auxiliary network Qϕ that es-
timates the true ARI ψ(θ, τ, T ) for a (parameter, task) pair
(θ, τ), θ ∈ Θ, τ ∼ P (τ). Thus, when a new task τ is ob-
served, an estimation of adaptation rate of the parameter
θ to the task τ can be generated off hand by the auxiliary
network, without requiring a full training pass over the task.
However, this first requires a projection of the parameters
and tasks into a shared representational space γ, which is
informative of a parameter θ’s adaptation rates for a task
as well as a task τ ’s characteristics. We learn two auxiliary
encoders - a parameter encoder Eparam and a task encoder
Etask. Following the approach in [17], we extract functional
signatures of the parameters gα(θ) and the task gβ(τ) and
pass them to the encoders to generate the respective embed-
dings ηθ = Eparam(gα(θ)) and ητ = Etask(gβ(τ)). These
embeddings are then used by the ARI estimator network
Qϕ, which learns to regress the true ARI measured when
parameter θ is adapted on task τ for T steps via solving the
following optimization objective.

min
ϕ
||ψ(θj , τi, T )−Qϕ(ηθj ,ητi)||

2
2 ∀ θj ∈ ΘMem, τi ∈ τ[1:t],

(7)
where ΘMem is the set of explored parameters (knowledge
base) that has been adapted on them observed tasks τ [1 : m].
Note that ϕ includes the parameters of the two encoders
Eparam and Etask as well as the regression modelQϕ. Given an
embedding space that captures degrees of structural/domain
similarity across the task distribution, the auxiliary network
Qϕ generalizes to predict the rate of adaptability to new tasks
similar to the observed set. The training objective (Eq. 7) is
continually ‘consolidated’ and we hypothesize that the ARI
estimator may naturally become more stable as number of
observed tasks increases.

3.4. Knowledge Base Representation using Hyper-
networks

In order to efficiently maintain the set of explored pa-
rameters (knowledge base) ΘMem without explicitly storing
them, we leverage a hypernetwork meta model FΦ. Hyper-
networks [14] are meta models that learn to map embedding
vectors to parameters [40], and can be thought of as weight
generators. They have been shown to efficiently retain a large
parameter set with no decrease in the evaluated performance
of the parameters [40].

We train the hypernetwork FΦ to map the knowledge base
ΘMem to a set of learned embedding vectors {ei}n(Θ)

i=1 that
can be thought of as indices for parameters in ΘMem. Thus,
given a parameter index i, the parameter θi can be be readily
generated using the hypernetwork as θi = FΦ(ei). This
effectively reduces the storage complexity of the knowledge

base from |ΘMem| to |FΦ|, where |FΦ| ≊ |θ|, θ ∈ ΘMem. We
discuss the details of the hyper-network architecture and
hyperparameters in Section 4.4.

4. Experiments
Following earlier continual learning literature [5,26], and

owing to compute restrictions involved in training base mod-
els parallely, we conduct experiments and ablations using
4 smaller scale continual learning benchmarks - SplitM-
NIST [4], PermutedMNIST [43], Split CIFAR10 [43] and
Split CIFAR100 [30]. We evaluate against several standard
baselines in continual learning - ER [31], GEM [26], A-
GEM [5], iCaRL [30], EWC [21] and MER [31].

4.1. Datasets

The benchmarks considered for the continual learning
experiments are described briefly below:

Split-MNIST: The MNIST dataset [25] is split into 5
incremental tasks of 2 consecutive classes each [4].

Permuted-MNIST consists of 10 tasks each with a ran-
dom spatial permutation of the MNIST dataset. Each task
contains 1000 images for training and the original MNIST
test set for evaluation [26].

Split CIFAR-10 and Split CIFAR-100: Similarly,
CIFAR-10 [22] and CIFAR-100 datasets are split into 10
and 20 independent incremental tasks by grouping 5 and 10
classes together into a task, respectively. Class grouping fol-
lows the standard protocol in [22]. Each task contains 2500
images for training, with the original test set for evaluation.

4.2. Baselines

We briefly describe the baseline formulations below:
Fine-tuning model - A naive baseline where a single

model is trained continually on all tasks.
Experience Replay (ER) [31] - A strong replay-based

baseline where samples from previous tasks are interleaved
with samples of the current task.

GEM [26] and Averaged GEM (A-GEM) [5] - GEM and
its efficient approximation A-GEM methods explicitly bound
the model’s loss on samples of previous tasks (stored in a
memory buffer).

iCaRL [30] - uses a nearest-mean-of-exemplars classifica-
tion strategy, with a knowledge distillation loss over feature
representations of past tasks to limit catastrophic forgetting.

EWC [21] - A regularization based approach to mitigate
catastrophic forgetting, where the parameters are crucial to
the performance on previous tasks, as measured by the Fisher
Information Matrix (FIM), are not modified. We consider the
approach in online EWC [34] to calculate FIM as a moving
average.

MER [31] - formulates replay as a meta-learning opti-
mization where gradient alignment is enforced to minimize
interference between task gradients and encourage transfer.
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Table 1. Average Accuracy (ACC), Backward Transfer (BWT) and Forward Transfer (FWT) across 4 benchmarks. Values averaged across 3
runs (Standard deviations are reported in the supplementary material.)

Datasets→ Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100

Methods ↓ ACC FWT BWT ACC FWT BWT ACC FWT BWT ACC FWT BWT

Fine-tuning 30.2 1.2 −51.2 63.4 0.0 −60.1 41.3 0.9 −30.1 22.1 1.0 −24.0
ER 84.6 45.5 −5.4 76.6 10.2 −9.0 79.8 50.1 −3.2 44.6 49.0 −5.4

EWC [21] 43.9 4.2 −25.5 72.36 2.1 −14.9 59.1 13.6 −18.2 34.1 29.2 −11.7
GEM [26] 81.1 31.0 −8.3 82.8 8.0 −6.7 75.3 34.0 −14.7 44.3 45.8 −5.5

A-GEM [5] 77.8 25.4 −11.0 78.2 7.3 −10.5 70.7 32.1 −16.8 39.9 32.1 −5.9
iCaRL [30] 85.4 56.2 −3.1 − − − 66.2 27.4 −5.1 31.9 15.7 −1.2
MER [31] 86.1 62.5 −4.5 81.4 9.1 −5.8 80.5 54.8 −2.9 46.2 50.1 −2.2

Proposed (Ours*) 88.7 67.1 −1.1 84.2 10.4 +0.9 81.9 58.0 −1.7 48.8 54.2 −1.0

4.3. Evaluation Metrics

Following previous works [4,26], we consider the metrics
of Average Accuracy (ACC), Backward Transfer (BWT),
and Forward Transfer (FWT) for all experiments. Once
the model is trained on task ti, it is evaluated on the
test-sets of all tasks in task-set T , resulting in a matrix
R ∈ RT×T . Each element Rij is the test-classification
accuracy of the model on task tj after learning on exam-
ples from task ti. Average accuracy (ACC ∈ [0, 100]) after
learning task T can be defined as: ACC = 1

T

∑T
i=1RT,i.

The degree of Backward Transfer (BWT) is defined as:
BWT = 1

T−1

∑T−1
i=1 RT,i −Ri,i. A positive BWT implies

that learning a new task t improves the performance of the
model on a previously seen task k. A significant negative
BWT indicates that catastrophic forgetting has occurred. For-
ward Transfer (FWT) = 1

T−1

∑T
i=2Ri−1,i − b̂i quantifies

the degree to which learning a task t affects the performance
of the model on future tasks k > t. A positive FWT signifies
that the model will be successful in performing ‘zero-shot’
predictions on unseen tasks k > t as a result of learning
given task t.

4.4. Experimental Settings

We follow the protocols in [26] for our choice of exper-
imental settings and build on the implementation provided
by [12] and [40] to implement our baselines and hypernet-
work meta-models respectively.

For MNIST experiments, we follow [26] and use a
two layer, 100-neuron each, fully-connnected neural net-
work with ReLU activation for the MNIST datasets. As
a meta model, we use a fully-connected two-hidden layer
([100, 100]) chunked hypernetwork [40] with a chunk size of
200 and embedding vectors of size 8. The meta model con-
tains 59,668 weights in comparison to a single base model
with 89,400 weights. All experiments occur in the task-aware
setting, and all baselines including ours are implemented us-

ing a single-headed base network. Our base models are
trained in parallel for every task with parallel streams of
training data from each task, and inference is done on the
base model selected from the Knowledge Base ΘMem.

For CIFAR, we use a modified version of the ResNet18
[15] with one-third the feature maps across all layers, as
in [26]. As a meta model, we use a larger hypernetwork
with structured chunking that internally maintains 6 smaller
composite two hidden layer ([25, 25]) hypernetworks, for a
total of 166,610 weights (compared to 181,495 for a single
base model). The baselines for CIFAR are all multi-headed
and task-aware, while base models of our method are trained
as single-headed networks (for each task).

The hypernetworks are trained with embedding vectors
of size 8. Similar to the baseline [26], we maintain a small
exemplar memory D of size 200 for MNIST experiments
and 400 for CIFAR. For our ARI estimator, we follow [18] in
generating task or parameter signatures by the activations of
a pre-trained ResNet18 on samples per class (of each task) or
the activations of the parameters on random gaussian noise,
respectively. The activations are normalized and padded to
a size of 2048, before being projected to 128 dimensions.
The ARI estimator is a simple two hidden layer ([100, 100])
network with ReLU activations. We enforce a maximum
size of 20 parameter sets on the knowledge base, and a
training budget of 10 base models per task (see ablation
in Sec. 5.1). Our initialization set contains 3 randomly
generated parameters.

4.5. Training Details

To train the base model across all baselines we use the
Adam [20] optimizer set with an initial learning rate of 0.001,
weight decay of 0.001, and a batch size of 10, similar to
baseline methods [21, 26, 30]. We also utilize a small buffer
S to store the collected (ARI, task & parameter encoding)
tuples. For our method, the ARI values for each parameter,
task pair are calculated based on empirical steps required till
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Table 2. Ablation: Influence of # of base models (B) in the knowledge base across all benchmarks. Selected default configuration is
highlighted in light blue, with cases having at least 1 model per task highlighted in grey. Values have been averaged across 2 runs.

Datasets→ Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100

Methods ↓ ACC FWT BWT ACC FWT BWT ACC FWT BWT ACC FWT BWT

Fine-tuning 30.2 1.2 −51.2 63.4 0.0 −60.1 41.3 0.9 −30.1 22.1 1.0 −24.0
B = 1 22.5 0.4 −55.0 40.5 2.0 −72.3 31.1 0.1 −65.0 14.0 0.0 −45.5
B = 2 38.9 2.3 −35.1 62.1 1.7 −35.2 56.2 10.4 −25.1 29.3 22.9 −10.3
B = 5 80.1 30.2 −9.4 74.5 5.5 −11.1 68.9 28.5 −20.8 37.7 30.5 −15.5
B = 10 85.2 54.1 −2.5 81.0 6.7 −2.0 77.2 38.9 −3.0 43.2 34.1 −3.2
B = 20 88.7 67.1 −1.1 84.2 10.4 +0.9 81.9 58.0 −1.7 48.8 54.2 −1.0
B = 30 87.2 63.9 −1.9 82.9 8.3 +0.1 80.3 52.3 −1.1 48.9 57.2 −1.8

Table 3. Ablation Study: Evaluating the ARI Estimator

Datasets→ Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100

Methods ↓ ACC FWT BWT ACC FWT BWT ACC FWT BWT ACC FWT BWT

Random Selection 60.1 15.7 −37.2 45.4 1.5 −55.1 49.2 0.0 −32.3 31.4 4.3 −18.1
ARI Estimator (Ours*) 88.7 67.1 −1.1 84.2 10.4 +0.9 81.9 58.0 −1.7 48.8 54.2 −1.0

convergence. The ARI estimator is trained for 1000 epochs
with a batch size of 250 (parameter & task embeddings,
ARI) tuples. Finally, the meta-models are trained using the
SGD optimizer till convergence (an MSE error of 1e-3), and
perform a single pass of the entire parameter set in one batch.

5. Results and Discussion
We discuss the performance comparison between our

method and the selected baselines, provide an ablation study
of the memory size of the knowledge base, the heuristic used
to selected the candidate base model for inference, as well
as the memory complexity utilized by the method.

The ACC, BWT, and FWT metrics for various methods
are summarized in Table 1. Our approach achieves near
consistent improvements in both Accuracy (ACC) as well
as knowledge transfer (BWT and FWT) with large gains
in BWT in particular with signficantly lower catastrophic
forgetting and a positive BWT in the case of the Permuted-
MNIST benchmark. It is arguably the case that a lower
catastrophic forgetting naturally results from the presence
of multiple parameters retrievable from previously observed
tasks. However, the improvements in FWT across all bench-
marks show that the candidates retrieved for training on new
tasks observe improvements over a single learner. Addition-
ally we note that the baseline MER [31] performs compa-
rably in terms of ACC in Split-MNIST and Split-CIFAR10
however a clear benefit to FWT and BWT is observed in all
benchmarks. As expected, iCaRL [30] achieves lower for-
getting on most datasets compared to other baselines, except

MER and the proposed method. This can be attributed to
its auxiliary knowledge distillation loss [16, 19]. Next, we
discuss the ablation on the heuristic used to pick the best
candidate models from the knowledge base, as well as the
memory budget of the knowledge base in our approach.

5.1. Ablation: Trivial heuristic to pick candidate
models

In our ablation study, we evaluate the benefit from our
ARI estimator. Table 3 shows the performance of our ap-
proach with the proposed ARI estimator along with the per-
formance of the same method with a random selection heuris-
tic. In this random selection heuristic, the parameters from
the hypernetwork are selected during training and inference
using a random heuristic. We observe a clear and large re-
duction in the average accuracy as well as an increase in the
degree of forgetting observed. Without the proposed ARI
estimator based heuristic, the approach collapses as it fails to
select the appropriate parameters for the test tasks. Random
selection also prevents retaining the optimal weights in the
hypernetwork (memory). We posit that the proposed ARI
estimator models the relationships between the learned task
weights (of the base models trained on the task), the task
features and the expected ARI for this (model, task) pair.

5.2. Ablation: Number of base models in knowledge
base

In Table 2, we show an ablation on the number of base
model parameters B stored by the hypernetwork (knowledge
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# of params in→ GEM [26] Ours*
Split MNIST 89610 59668
Permuted MNIST 89610 59668
Split CIFAR 10 181495 166610
Split CIFAR 100 181495 166610

Table 4. Parameter requirements of the proposed method vs. GEM
[26] baseline.

base memory budget B = ΘMem). For each budget B, the
number of models in the knowledge base are at most B
during the continual training, and the number of candidate
models remain same as other experiments (training budget
of 10 base models). We observe that the performance of
the proposed method largely increases across all metrics
(FWT, BWT, ACC) steeply till a peak at budget B = 20 after
which it falls gradually. Additionally, the performance of
the approach deteriorates completely with a singular base
model budget. This suggests that multiple base models are
necessary for good model performance. On the other hand,
the ARI estimator based search heuristic is less precise for a
large number of base models.

5.3. Memory Complexity

Across all benchmarks, we utilize the same or smaller
base models as compared to established baselines [26] (as
shown in Table 4). Only the parameters of the hypernetwork
themselves are retained in memory, and the weights of the
trained base models are discarded after training. Thus, the
total parameter size stored in memory remains constant and
equal to the parameters of the hypernetwork, which is 1.4×
(in case of MNIST) and equal or less than the parameters of
a single base model in other benchmarks.

6. Related Literature
6.1. Neuroscience

Vital to the process of learning and ‘memorization’ in hu-
mans is the continual familiarity-based modification of input
instances within the Hippocampus [1, 3, 23, 41]. Input pat-
terns that are similar to a familiar/stored pattern are modified
to either be more similar (pattern completion) or differenti-
ated (pattern separation) to those stored patterns [23]. New
memory is allocated if the input instance is sufficiently dis-
tinct from stored instances. In case there is high overlap
between input instance and one of the stored instances, the
input instance is modified to be closer to the matched stored
instance.

6.2. Continual Learning

Over the last few years, several directions of work have
attempted to address these issues of catastrophic forgetting
and beneficial knowledge transfer in a continual learning

setting. Methods retain past knowledge either by replaying
stored [26, 30] or generated samples [36, 39], regularizing
task-specific weights [4, 24, 37], or scaling parameters to
account for new tasks [8, 27, 35]. While attempting to ex-
plicitly prevent the learning dynamics that cause the loss of
task-specific knowledge, approaches have inevitably focused
on modelling the transfer-interference trade-off between gra-
dients of different tasks [7, 26, 33]. In [29], authors intro-
duce the idea of building a growing zoo of small capacity
multi-tasking models, where synergistic tasks share models,
enabling transfer of knowledge between them.

6.3. Meta Learning Approaches for CL

Recently, there has been work applying meta-learning ap-
proaches successfully to the continual setting [9, 12, 19, 31].
Online-aware Meta Learning (OML) [9] introduced the ap-
plication of Meta Learning approaches to the lifelong learn-
ing setting. A meta-objective was used to learn the task
distribution in an offline manner, which could then be lever-
aged for efficient online continual learning. Meta-learning
approaches to continual learning such as MER [31] and
La-MAML [12] leverage gradient alignments to enforce
compatibility of tasks within a finite capacity. MER [31]
enforces gradient alignment between observed and future
tasks using replay while La-MAML [13] incrementally mod-
ulates parameter-specific learning rates based on gradient
alignment across tasks to reduce forgetting. MERLIN [19]
introduced the idea of ‘meta-consolidation’ and replay in the
meta space of parameters learned by the meta model across
all tasks. Parameters are generated by the meta model trained
on all observed base model parameters, and ensembled to
make predictions.

7. Conclusion

In this work, we motivate the quality of adaptation to im-
prove knowledge transfer in the lifelong learning setting. We
propose to represent task-model relationships as the expected
adaptation rate of a (model, task) pair. In order to leverage
(model, task) relationships, we replace a single network used
for lifelong learning with an equivalent set of small-capacity
networks such that the overall model capacity is conserved.
We show that the proposed approach can transfer knowl-
edge to new tasks without any increase in overall model
capacity, while naturally mitigating catastrophic forgetting.

References

[1] Pablo Alvarez and Larry R Squire. Memory consoli-
dation and the medial temporal lobe: a simple network
model. Proceedings of the national academy of sci-
ences, 91(15):7041–7045, 1994. 1, 8

2532



[2] Michael L Anderson. Neural reuse: A fundamental
organizational principle of the brain. Behavioral and
brain sciences, 33(4):245–266, 2010. 1

[3] Alfonso Caramazza and Jennifer R Shelton. Domain-
specific knowledge systems in the brain: The animate-
inanimate distinction. Journal of cognitive neuro-
science, 10(1):1–34, 1998. 1, 8

[4] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam
Ajanthan, and Philip HS Torr. Riemannian walk for
incremental learning: Understanding forgetting and
intransigence. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 532–547,
2018. 5, 6, 8

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420,
2018. 5, 6

[6] Marc N Coutanche and Sharon L Thompson-Schill.
Rapid consolidation of new knowledge in adulthood via
fast mapping. Trends in cognitive sciences, 19(9):486–
488, 2015. 1

[7] Danruo Deng, Guangyong Chen, Jianye Hao, Qiong
Wang, and Pheng-Ann Heng. Flattening sharpness for
dynamic gradient projection memory benefits continual
learning. Advances in Neural Information Processing
Systems, 34:18710–18721, 2021. 8

[8] Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle,
and Neil Lawrence. Continual learning in practice.
arXiv preprint arXiv:1903.05202, 2019. 8

[9] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and
Sergey Levine. Online meta-learning. In International
Conference on Machine Learning, pages 1920–1930.
PMLR, 2019. 8

[10] Sebastian Flennerhag, Pablo G Moreno, Neil D
Lawrence, and Andreas Damianou. Transferring
knowledge across learning processes. arXiv preprint
arXiv:1812.01054, 2018. 2

[11] Robert M French. Catastrophic forgetting in connec-
tionist networks. Trends in cognitive sciences, 3(4):128–
135, 1999. 2

[12] Gunshi Gupta, Karmesh Yadav, and Liam Paull. La-
maml: Look-ahead meta learning for continual learn-
ing. arXiv preprint arXiv:2007.13904, 2020. 2, 6,
8

[13] Gunshi Gupta, Karmesh Yadav, and Liam Paull. Look-
ahead meta learning for continual learning. Advances
in Neural Information Processing Systems, 33:11588–
11598, 2020. 8

[14] David Ha, Andrew Dai, and Quoc V Le. Hypernet-
works. arXiv preprint arXiv:1609.09106, 2016. 5

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.
6

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 7

[17] Wonyong Jeong, Hayeon Lee, Gun Park, Eunyoung
Hyung, Jinheon Baek, and Sung Ju Hwang. Task-
adaptive neural network search with meta-contrastive
learning, 2021. 5

[18] Wonyong Jeong, Hayeon Lee, Geon Park, Eunyoung
Hyung, Jinheon Baek, and Sung Ju Hwang. Task-
adaptive neural network search with meta-contrastive
learning. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2021. 6

[19] KJ Joseph and Vineeth N Balasubramanian. Meta-
consolidation for continual learning. arXiv preprint
arXiv:2010.00352, 2020. 7, 8

[20] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 6

[21] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the na-
tional academy of sciences, 114(13):3521–3526, 2017.
2, 5, 6

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Technical
Report, 2009. 5

[23] Dharshan Kumaran, Demis Hassabis, and James L Mc-
Clelland. What learning systems do intelligent agents
need? complementary learning systems theory updated.
Trends in cognitive sciences, 20(7):512–534, 2016. 8

[24] Richard Kurle, Botond Cseke, Alexej Klushyn, Patrick
van der Smagt, and Stephan Günnemann. Contin-
ual learning with bayesian neural networks for non-
stationary data. In International Conference on Learn-
ing Representations, 2019. 8

[25] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 5

[26] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In Advances
in neural information processing systems, pages 6467–
6476, 2017. 2, 5, 6, 8

[27] Arun Mallya and Svetlana Lazebnik. Packnet: Adding
multiple tasks to a single network by iterative prun-

2533



ing. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7765–
7773, 2018. 8

[28] Michael McCloskey and Neal J Cohen. Catastrophic
interference in connectionist networks: The sequential
learning problem. In Psychology of learning and mo-
tivation, volume 24, pages 109–165. Elsevier, 1989.
2

[29] Rahul Ramesh and Pratik Chaudhari. Model zoo: A
growing brain that learns continually. In International
Conference on Learning Representations, 2021. 2, 8

[30] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 2001–2010, 2017.
2, 5, 6, 7, 8

[31] Matthew Riemer, Ignacio Cases, Robert Ajemian,
Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing
transfer and minimizing interference. arXiv preprint
arXiv:1810.11910, 2018. 2, 5, 6, 7, 8

[32] Victoria JH Ritvo, Nicholas B Turk-Browne, and Ken-
neth A Norman. Nonmonotonic plasticity: how mem-
ory retrieval drives learning. Trends in cognitive sci-
ences, 23(9):726–742, 2019. 1

[33] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradi-
ent projection memory for continual learning. arXiv
preprint arXiv:2103.09762, 2021. 8

[34] Jonathan Schwarz, Jelena Luketina, Wojciech M Czar-
necki, Agnieszka Grabska-Barwinska, Yee Whye Teh,
Razvan Pascanu, and Raia Hadsell. Progress & com-
press: A scalable framework for continual learning.
arXiv preprint arXiv:1805.06370, 2018. 5

[35] Joan Serra, Didac Suris, Marius Miron, and Alexan-
dros Karatzoglou. Overcoming catastrophic forget-
ting with hard attention to the task. arXiv preprint
arXiv:1801.01423, 2018. 8

[36] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. Continual learning with deep generative replay.
In Advances in Neural Information Processing Systems,
pages 2990–2999, 2017. 8

[37] Michalis K Titsias, Jonathan Schwarz, Alexander G
de G Matthews, Razvan Pascanu, and Yee Whye Teh.
Functional regularisation for continual learning with
gaussian processes. arXiv preprint arXiv:1901.11356,
2019. 8

[38] Tyler M Tomita, Morgan D Barense, and Christopher J
Honey. The similarity structure of real-world memories.
bioRxiv, 2021. 1

[39] Gido M van de Ven and Andreas S Tolias. Gen-
erative replay with feedback connections as a gen-
eral strategy for continual learning. arXiv preprint
arXiv:1809.10635, 2018. 8

[40] Johannes Von Oswald, Christian Henning, João Sacra-
mento, and Benjamin F Grewe. Continual learning
with hypernetworks. arXiv preprint arXiv:1906.00695,
2019. 5, 6

[41] Matthew A Wilson and Bruce L McNaughton. Re-
activation of hippocampal ensemble memories during
sleep. Science, 265(5172):676–679, 1994. 1, 8

[42] David H Wolpert and William G Macready. No free
lunch theorems for optimization. IEEE transactions on
evolutionary computation, 1(1):67–82, 1997. 1

[43] Friedemann Zenke, Ben Poole, and Surya Ganguli.
Continual learning through synaptic intelligence. Pro-
ceedings of machine learning research, 70:3987, 2017.
2, 5

2534


