
CoVIO: Online Continual Learning for Visual-Inertial Odometry
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Abstract

Visual odometry is a fundamental task for many applica-
tions on mobile devices and robotic platforms. Since such
applications are oftentimes not limited to predefined target
domains and learning-based vision systems are known to
generalize poorly to unseen environments, methods for con-
tinual adaptation during inference time are of significant
interest. In this work, we introduce CoVIO for online con-
tinual learning of visual-inertial odometry. CoVIO effec-
tively adapts to new domains while mitigating catastrophic
forgetting by exploiting experience replay. In particular, we
propose a novel sampling strategy to maximize image diver-
sity in a fixed-size replay buffer that targets the limited stor-
age capacity of embedded devices. We further provide an
asynchronous version that decouples the odometry estima-
tion from the network weight update step enabling continu-
ous inference in real time. We extensively evaluate CoVIO
on various real-world datasets demonstrating that it suc-
cessfully adapts to new domains while outperforming previ-
ous methods. The code of our work is publicly available at
http://continual-slam.cs.uni-freiburg.de.

1. Introduction
Reliable estimation of a robot’s motion based on its on-

board sensors is a fundamental requirement for many down-
stream tasks including localization and navigation. Devices
such as inertial measurement units (IMU) or inertial nav-
igation systems (INS) provide a way to directly measure
the robot’s motion based on acceleration and GNSS read-
ings. An alternative is to use visual odometry (VO) lever-
aging image data from monocular or stereo cameras. Such
VO methods have been successfully used in UAVs [4], mo-
bile applications [24], and even mars rovers [21]. Similar to
other vision tasks, learning-based VO has gained increasing
attention as the learnable high-level features can circumvent
problems in textureless regions [27, 28] or in the presence
of dynamic objects [1] where classical handcrafted meth-
ods suffer. However, learning-based VO lacks the ability to
generalize to unseen domains, hindering their open-world
deployment. Recently, adaptive VO [18] has opened a new
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Figure 1. We propose CoVIO for online continual learning of
visual-inertial odometry. After pretraining on a source domain that
is then discarded, CoVIO further updates the network weights dur-
ing inference on a target domain. Using experience replay CoVIO
successfully mitigates catastrophic forgetting.

avenue of research, e.g., by using continual learning (CL)
methodologies to enhance VO during inference time [30].

Most commonly, learning-based VO leverages monocu-
lar depth estimation as an auxiliary task [13,18,30] and ex-
ploits an unsupervised joint training scheme of a PoseNet,
estimating the camera motion between two frames, and a
DepthNet, estimating depth from a single image [6]. Due
to the unsupervised nature of this approach, learning-based
VO can be continuously trained also during inference time.
In addition to classical domain adaptation [2], where knowl-
edge is transferred from a single source to a single target
domain, the recent study on continual SLAM [30] also in-
vestigates a sequential multi-domain setting as illustrated in
Fig. 1. The authors introduce CL-SLAM, which fuses adap-
tive VO with a graph-based SLAM backend. To avoid catas-
trophic forgetting, i.e., overfitting to the current domain
while losing the ability to perform well on past domains,
CL-SLAM employs a dual-network architecture compris-
ing an expert and a generalizer for both efficient domain
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adaptation and knowledge retention combined with experi-
ence replay. However, the previously proposed CL-SLAM
suffers from three main drawbacks: First, network weights
are transferred from the generalizer to the expert upon the
start of a new evaluation sequence, i.e., a human supervi-
sor decides when new data should be classified as a do-
main change. Second, the utilized replay buffer of the gen-
eralizer is of infinite size and, thus, does not consider the
limited storage capacity of real-world applications. Finally,
since every received frame triggers an update of the network
weights before yielding the VO estimate, real-time usage is
difficult to achieve on low-power devices such as embedded
hardware in robots.

In this work, we propose a novel adaptive visual-
inertial odometry estimation method called CoVIO that ex-
plicitly addresses all of the aforementioned drawbacks of
CL-SLAM. Similar to Kuznietsov et al. [11], we consider a
source-free setting, i.e., experience replay does not include
data from the source domain used for pretraining. In par-
ticular, the contributions of this work can be summarized as
follows:

1. We replace the dual-network architecture with a sin-
gle network addressing both domain adaptation and
knowledge retention but simplifying the overall archi-
tecture and reducing the GPU memory footprint. Ad-
ditionally, this resolves the issue of transferring net-
work weights without domain classification.

2. We propose a fixed-size replay buffer that maximizes
image diversity and addresses the limited storage ca-
pacity of embedded devices.

3. We present an asynchronous version of CoVIO that
separates the core motion estimation from the network
update step allowing true continuous inference.

4. We perform extensive evaluations of CoVIO on var-
ious datasets, both publicly available and in-house,
demonstrating its efficacy compared to other visual
odometry methods.

5. We release the code of our work and trained models at
http://continual-slam.cs.uni-freiburg.de.

2. Related Work

In this section, we provide a brief introduction to contin-
ual and lifelong learning and summarize previous methods
for domain adaptation of learning-based visual odometry.

Continual Learning: Deep learning-based models are com-
monly trained for a specific task, which is defined a pri-
ori, using a fixed set of training data. During inference,
the model is then employed on previously unseen data from
the same domain without further updates of the network
weights. However, in many real-world scenarios, this as-
sumption does not hold true, e.g., the initially used training
data might not well represent the data seen during inference,

thus leading to a domain gap and suboptimal performance.
Additionally, the objective of the task can change over time.
Continual learning (CL) and lifelong learning [26] aim to
overcome these challenges by enabling a method to contin-
ually learn additional tasks given new training data. In con-
trast to vanilla domain adaptation [2], CL methods should
maintain the capability to solve previously learned tasks,
i.e., avoiding catastrophic forgetting. Ideally, learning a
task also yields improved performance on previous tasks
(positive backward transfer) as well as on yet unknown fu-
ture tasks (positive forward transfer) [16]. The majority
of CL approaches can be categorized into three strategies.
First, experience replay directly tackles catastrophic for-
getting from a data-driven perspective. For instance, both
CoDEPS [31] and CoMoDA [10] store images in a replay
buffer and combine online data with replay samples when
updating the network weights. Second, regularization tech-
niques such as knowledge distillation [29] preserve infor-
mation on a more abstract feature level. Finally, architec-
tural methods prevent forgetting by using certain network
structures, e.g., LSTMs [13] and dual-network architec-
tures [30], or by directly freezing internal model parame-
ters. Online continual learning [17, 32] describes an exten-
sion of CL by considering a setting, where the model is con-
tinuously updated on a stream of data during inference time.
Online CL also includes scenarios, which gradually change
from one domain to another [25]. In this work, we employ
online CL with experience replay for learning-based visual-
inertial odometry estimation.

Adaptive Visual Odometry: Online adaptation of learning-
based visual odometry (VO) and simultaneous localiza-
tion and mapping (SLAM) aims to enhance performance
on the fly allowing robotic systems to operate more reli-
ably in previously unseen environments. Most commonly,
learning-based VO relies on monocular depth estimation as
an auxiliary task enabling joint training of a DepthNet and a
PoseNet in an unsupervised manner [6]. In an early work on
adaptive VO, Luo et al. [18] accumulate images from an on-
line camera stream and leverage the unsupervised training
scheme to update both networks. Different to experience
replay in CL, the buffer of accumulated images is emptied
after the update step, i.e., each sample is only seen once.
Li et al. [13] propose an architectural CL technique, replac-
ing the standard convolutional layers with LSTM variants
to prevent forgetting. During deployment, the networks are
continuously trained using only the online data. In a follow-
up work by the same authors [14], the PoseNet is substituted
with optical flow-based point matching. Similarly, GeoRe-
fine [9] combines online depth refinement with dense vi-
sual mapping. While the DepthNet is updated following
the aforementioned works, GeoRefine uses a non-adaptive
odometry and tracking module based on optical flow. Loo et
al. [15] propose an adaptive visual SLAM system that com-
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Figure 2. Our proposed CoVIO performs online continual learning on a stream of RGB images leveraging unsupervised monocular depth
estimation as an auxiliary task. In each update step, the image triplet consisting of the current and the two previous frames is combined
with samples from a replay buffer and then fed to the networks to update their weights via backpropagation. The estimated camera motion
between the previous and the current image corresponds to the generated VO output. The replay buffer is optionally updated if the current
frame is sufficiently different from the existing content.

bines experience replay with a variant of elastic weight con-
solidation (EWC) to further regularize the weight updates
of both the DepthNet and the PoseNet. Finally, to avoid
catastrophic forgetting in a multi-domain adaptation setting,
CL-SLAM [30] exploits a dual-network architecture, which
is composed of an expert to perform effective online adapta-
tion to the new domain and a generalizer to retain previously
acquired knowledge by leveraging experience replay. In this
work, we propose an adaptive method for visual-inertial
odometry built on CL-SLAM that explicitly addresses its
shortcomings as outlined in Sec. 1.

3. Technical Approach
In the following sections, we first describe the net-

work architecture along with the pretraining procedure on
a source domain. Then, we introduce CoVIO and provide
detailed explanations of all contributions.

3.1. Network Architecture and Pretraining

In this section, we detail the network architecture of our
proposed CoVIO and the loss functions that we employ dur-
ing the initial training phase.
Network Architecture: We build our network following the
common scheme of unsupervised monocular depth estima-
tion leveraging two separate networks that we refer to as
DepthNet and PoseNet as depicted in Fig. 2. Similar to
CL-SLAM [30], for an image triplet {It−2, It−1, It} we use
Monodepth2 [6] to jointly predict a dense depth map Dt−1

of the center image and the camera motion with respect to
both neighboring frames, i.e., Ot−2�t−1 and Ot−1�t. In
CoVIO, we then output the latter as the VO estimate. In par-

ticular, we use an implementation comprising two separate
ResNet-18 [8] encoders for the DepthNet and the PoseNet.
Source Domain Pretraining: To initialize CoVIO, we per-
form unsupervised training on a source domain S in an of-
fline manner. In detail, we exploit the photometric reprojec-
tion loss Lpr and the image smoothness loss Lsm to train
the DepthNet and the PoseNet [6]. We additionally super-
vise the PoseNet with scalar velocity readings from the ve-
hicle’s IMU [7]. The applied velocity supervision term Lvel

enforces metric scale-aware odometry estimates. Thus, our
total loss is composed of three terms:

L = Lpr + γLsm + λLvel, (1)

with weighting factors γ and λ.

3.2. Online Continual Learning

After pretraining on a source domain S, we use CoVIO
to perform online continual learning on an unseen target do-
main T . As illustrated in Fig. 2, each new RGB image trig-
gers the following steps:
(1) Create a data triplet comprising the new frame It and

the two previous frames It−1 and It−2 along with the
corresponding IMU readings.

(2) Check whether this triplet should be added to the re-
play buffer using the proposed diversity-based update
mechanism.

(3) Sample from the replay buffer and combine the sam-
ples with the previously generated data triplet.

(4) Estimate the depth map Dt−1 and the camera motions
Ot−2�t−1 and Ot−1�t.
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(5) Compute the loss defined in Eq. (1) and update the net-
work weights via backpropagation.

(6) Repeat steps (4) and (5) for c iterations.
(7) Output Ot−1�t as the odometry estimate.

In the following, we provide more details on the proposed
replay buffer and the online continual learning strategy of
CoVIO. Finally, we propose an asynchronous version of
CoVIO that separates the motion estimation from the net-
work update step allowing continuous inference.

3.2.1 Replay Buffer

As outlined in Sec. 1, previous works [10, 30] typically as-
sumed an infinitely sized replay buffer without considering
the limited storage capacity on robotic platforms or mobile
devices. To address this issue, we use a replay buffer with a
fixed maximum size and propose an image diversity-based
update mechanism that is comprised of two steps shown in
Fig. 3. First, determine whether to add the current online
data into the replay buffer and, second, if adding the data re-
sults in exceeding the predefined buffer size, select a sample
that will be removed from the buffer.

Inspired by the loop closure detection in visual
SLAM [12, 30], we interpret the cosine similarity between
image feature maps as a distance measure between two
frames I1 and I2:

simcos = cos (feat(I1), feat(I2)) , (2)

where feat(·) denotes the respective image features. In or-
der to determine whether adding a new sample would in-
crease the diversity of the replay buffer, we compute its co-
sine similarity with respect to all samples that are already in
the buffer and take the maximum value.

simB(It) = max
Ii∈B

cos (feat(It), feat(Ii)) , (3)

where Ii ∈ B refers to the current content of the buffer.
If the cosine similarity is below a given threshold, i.e.,
simB(It) < θth , the data triplet associated with It is added
to the replay buffer. In case this results in a buffer size larger
than the allowed size, we have to remove a sample from the
buffer. Instead of using random sampling, we remove the
sample that yields maximal diversity within the remaining
samples. Formally, we remove the following sample:

argmax
Ii∈B

∑
Ij∈B

cos (feat(Ii), feat(Ij)) (4)

As described in the next section, we do not update the en-
coder weights of CoVIO. Therefore, to avoid the overhead
of a separate network, we use the encoder of the DepthNet
to generate image features.

Replay buffer
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(a) An image is added to the replay buffer if the cosine similarity
to the most similar image in the buffer is below a threshold, e.g.,
θth = 0.95. Here, the image will be added since 0.92 < θth .

1.00

1.00

1.00

1.00

1.00

0.88

0.90

0.90

0.91

0.89

0.89

0.88

0.88

0.89

0.91

0.91

0.88

0.90

0.92

0.88 0.90

0.89

0.91

0.90 0.92 4.61

4.57

4.54

4.60

4.62

(b) If adding a new image results in exceeding the allowed size of
the replay buffer, the image that is the most similar with respect to
all other images is removed. The table shows the cosine distance
between two frames.

Figure 3. Diversity-based update mechanism of the replay buffer,
separated in (a) adding and (b) removing a sample.

3.2.2 Adaptive Visual-Inertial Odometry

After the replay buffer has been updated, we construct a
batch bt consisting of the data triplet of the current image
It and N samples from the replay buffer.

bt = {It, I1, I2, . . . , IN} (5)

To query the samples from the buffer, we use a uniform
probability distribution across all samples and avoid select-
ing the same sample multiple times if the current size of
the buffer is greater than the requested number of samples.
To further increase diversity, we augment the replay images
in terms of brightness, contrast, saturation, and hue value.
Next, the batch bt, comprising RGB images and velocity
measurements, is fed to the DepthNet to estimate a dense
depth map of the center images and to the PoseNet to es-
timate the camera motion with respect to both neighboring
frames. Following the same procedure as during pretrain-
ing (see Sec. 3.1), we then compute the loss L defined in
Eq. (1) and perform backpropagation to update the network
weights. Following McCraith et al. [22], we do not update
the weights of the encoders but only of the decoders.
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Figure 4. Illustration of the asynchronous variant of CoVIO. While
the predictor generates visual odometry estimates in real time, the
learner updates the network weights via backpropagation. After a
given number of update cycles, the network weights are transferred
from the learner to the predictor.

3.2.3 Asynchronous CoVIO

Finally, we propose an asynchronous variant of CoVIO to
address true continuous inference on robotic platforms in
a real-time capable setting. Since multiple update itera-
tions c can result in a situation, in which the network update
takes longer than the frame rate of the input camera stream,
we also design a version that decouples the VO estimation
from the CL updates. As illustrated in Fig. 4, the predic-
tor continuously generates VO estimates for each incom-
ing image. The learner contains a copy of the network that
is updated using the previously introduced online CL strat-
egy but disregards images if the update step takes longer
than the time until the next frame is available. Compared
to caching frames, this strategy ensures that always the lat-
est information is used to update the network. Then, after
a given number of update cycles, the network weights are
transferred from the learner to the predictor. We include
implementations in both ROS and ROS2 in our published
code base.

4. Experimental Evaluation
In this section, we present extensive experimental results

on the efficiency and efficacy of our proposed CoVIO, com-
pared to previous works. We further conduct multiple ab-
lation studies to demonstrate the effect of newly introduced
hyperparameters and to justify certain design choices.

Throughout all experiments, we report the translation er-
ror terr (in %) and the rotation error rerr (in °/m) as pro-

posed by Geiger et al. [5]. These metrics evaluate the er-
ror as a function of the trajectory length. To ensure a fair
comparison with the base work CL-SLAM [30], we further
utilize the set of network weights that is provided by the au-
thors and was pretrained on the Cityscapes Dataset [3]. We
also follow CL-SLAM and only consider new frames when
the IMU measures a driven distance of at least 0.2m.

4.1. Datasets

We employ our method on various datasets simulating
a diverse set of environments. In particular, we initial-
ize CoVIO with network weights trained on Cityscapes [3]
and perform online continual learning on sequences from
the KITTI odometry benchmark [5], the Oxford RobotCar
Dataset [20], and in-house data.
Cityscapes: The Cityscapes Dataset [3] is a large-scale au-
tonomous driving dataset that contains RGB images and ve-
hicle metadata such as velocity. It was recorded in 50 cities
in Germany, France, and Switzerland. In this work, we use
network weights pretrained on Cityscapes that are provided
by Vödisch et al. [30].
KITTI: The KITTI Dataset [5] is a pioneering autonomous
driving dataset that was recorded in Karlsruhe, Germany.
For continual learning of new domains, we use images and
ground truth poses of multiple sequences from the odometry
benchmark and combine them with the respective IMU data
from the raw dataset.
Oxford RobotCar: The Oxford RobotCar Dataset [20] pro-
vides multiple recordings of the same route that were cap-
tured across one year. We use the included RGB images and
the IMU data. To compute the error metrics, we exploit the
separately released RTK ground truth positions [19].
In-House: Finally, we employ CoVIO on an in-house
dataset recorded in Freiburg, Germany. Our robotic plat-
form includes forward-facing RGB cameras and an inertial
navigation system (INS) that we use to compute the velocity
supervision loss.

4.2. Evaluation of Online Continual Learning

In this section, we conduct a series of experiments
including both simple online domain adaptation from a
source S to a target domain T and online continual learn-
ing from S to a sequence of target domains {T1, T2, . . . }.
Based on the ablation studies in Sec. 4.3, we use a replay
buffer size of |B| = 100, an update batch size of |bt| = 3,
and c = 5 backpropagation steps allowing a fair compari-
son with the base work CL-SLAM [30]. We set a similar-
ity threshold of θth = 0.95 for the diversity-based update
scheme of the replay buffer. For the loss weights, we follow
CL-SLAM and use γ = 0.001 and λ = 0.05. To compare
with other methods, we do not use the asynchronous version
but the same learning scheme as in CL-SLAM.
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Figure 5. Online continual learning results on the KITTI odometry benchmark after pretraining on the Cityscapes dataset.

Table 1. Comparison of continual odometry estimation on the KITTI odometry benchmark.

Method Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 10
terr rerr terr rerr terr rerr terr rerr terr rerr

ORB-SLAM [23] 0.62 0.11 2.51 0.25 7.80 0.35 1.53 0.35 2.96 0.52

Only target 10.72 1.69 34.55 11.88 15.20 5.62 12.77 6.80 55.27 9.50
DeepSLAM [12] 5.22 2.27 4.04 1.40 5.99 1.54 4.88 2.14 10.77 4.45

Only source 28.94 4.64 46.13 19.20 49.57 20.79 37.75 25.42 30.91 15.28
CL-SLAM [30] 4.37 0.51 4.30 1.01 2.53 0.63 2.10 0.83 11.18 1.74
CoVIO (ours) 2.11 0.53 2.88 0.94 2.13 0.47 3.19 1.26 3.71 1.55

Comparison of the translation and rotation errors of our CoVIO with baseline methods evaluated on the KITTI odometry benchmark. “Only target”
and DeepSLAM are trained on sequences {00, 01, 02, 08, 09} without further adaptation. “Only source”, CL-SLAM, and CoVIO are trained on
Cityscapes. Both CL-SLAM and CoVIO perform online adaptation on the respective KITTI sequence. The values of CL-SLAM and “only target”
are reported by Vödisch et al. [30]. The errors of the paths predicted by ORB-SLAM are based on ground truth scaling and are hence not directly
comparable to the other methods. The smallest and second smallest errors across the methods producing metric predictions are shown in bold and
underlined, respectively.

4.2.1 Cityscapes to KITTI

We use our proposed CoVIO to perform online continual
adaptation from Cityscapes to KITTI and compare its per-
formance to other methods shown in Tab. 1. In detail, we
compare with the traditional ORB-SLAM [23] as well as
the following learning-based methods: “Only target” and
DeepSLAM [12] are trained on the KITTI sequences {00,
01, 02, 08, 09} without further adaptation; “only source”,
CL-SLAM [30], and CoVIO are trained on Cityscapes with
online adaptation to KITTI for both CL-SLAM and CoVIO.
Generally, the difference between “only source” and “only
target” demonstrates the domain gap that online adaptation
aims to overcome. Our proposed CoVIO outperforms the
base method CL-SLAM on the majority of sequences and
also improves performance compared to offline training on
the target domain. We visualize the predicted and ground
truth odometry in Fig. 5. Note that, unlike CL-SLAM and
DeepSLAM, we do not include loop closures in CoVIO.

We further perform online continual learning on all se-
quences in a sequential manner, i.e., after pretraining on
Cityscapes, adapt to sequence 04, then sequence 05, etc.,
and list the results in Tab. 2. In particular, we compute
the translation and rotation errors after each step on all se-
quences to determine both forward and backward transfer,
i.e., the effect on previous and yet unseen future sequences.

Since all the sequences of a dataset could be considered to
represent similar domains, e.g., the same camera parameters
and comparable environments, we observe a general trend
of positive forward transfer. Although the performance on
previous sequences cannot be fully retained, CoVIO suc-
cessfully mitigates catastrophic forgetting compared to the
initial performance after pretraining on the source domain.

4.2.2 Cityscapes to In-House Data

Next, we utilize CoVIO to estimate visual odometry on
an in-house dataset, after pretraining on Cityscapes. In
Fig. 6, we provide a qualitative comparison of CoVIO to
CL-SLAM [30] with disabled loop closure detection, no on-
line adaptation, and the measured GNSS position. Since we
do not have access to highly accurate RTK readings, we
omit computing error metrics for this dataset. However, as
demonstrated in Fig. 6, CoVIO is able to maintain accurate
odometry tracking for a longer distance than CL-SLAM.

4.2.3 Cityscapes to KITTI and RobotCar

We further investigate the capability of CoVIO to retain
knowledge in a multi-target setting. In detail, we per-
form the same experiment as conducted by CL-SLAM [30].
After initialization on Cityscapes, we sequentially deploy
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Table 2. Continual odometry estimation results on the KITTI odometry benchmark.

Sequence Images terr rerr terr rerr terr rerr terr rerr terr rerr terr rerr

Cityscapes −−−−−→ Seq. 04 −−−−−→ Seq. 05 −−−−−→ Seq. 06 −−−−−→ Seq. 07 −−−−−→ Seq. 10

Seq. 04 269 28.94 4.64 2.11 0.53 7.66 7.05 8.21 1.48 7.88 3.41 9.80 3.82
Seq. 05 2676 46.13 19.20 59.51 16.99 2.85 1.05 8.49 3.77 6.84 3.64 13.73 5.36
Seq. 06 1099 49.57 20.79 65.39 22.33 20.01 10.83 3.08 1.16 7.77 4.25 5.76 1.92
Seq. 07 993 37.75 25.42 67.67 29.85 7.26 4.93 7.13 3.38 6.05 3.53 9.60 5.33
Seq. 10 1127 30.91 15.28 35.37 10.18 11.13 9.48 5.08 2.47 17.53 7.73 2.65 1.15

We continually employ CoVIO on five KITTI sequences after initialization on Cityscapes. The number of images corresponds to the
number of update batches of a sequence. The cells highlighted in gray denote the results of the current adaptation step. Along one
row, we can measure forward and backward transfer.
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Figure 6. Continual odometry estimation results on in-house data.

CoVIO to KITTI sequence 09, a sequence from RobotCar,
KITTI sequence 10, and another sequence from RobotCar.
For further details on the RobotCar sequences, we refer the
reader to [30]. In Tab. 3, we report the adaptation qual-
ity (AQ) and the retention quality (RQ) as introduced by
Vödisch et al. [30]. Broadly, the AQ score measures the
ability of a method to adapt to a previously unseen en-
vironment, whereas the RQ measures the ability to retain
long-term knowledge when being redeployed to a previ-
ously seen domain. Compared to CL-SLAM, CoVIO im-
proves the AQ score and, with a high margin, the RQ with
respect to the translation error. Although RQrot suffers from
a small decrease, the absolute rotation errors on the four
considered sequences are smaller than those of CL-SLAM,
hence smaller differences between with and without an in-
termediate domain influence the RQ more strongly.

4.3. Ablation Study

In this section, we present the results of various ablation
studies substantiating the design choices for the sizes of the
update batch bt and the replay buffer B. We further demon-
strate that CoVIO is less sensitive to the number of back-
propagation steps per update batch than a previous method.

Table 3. Comparison of adaptation and retention quality.

Previous Current CL-SLAM [30] CoVIO (ours)
sequences sequence terr rerr terr rerr

ct k9 2.50 0.37 3.89 1.49
ct r1 28.94 5.63 6.62 2.61

ct � r1 k9 3.24 0.54 4.09 1.18
ct � k9 r1 30.13 5.87 11.00 3.44

⇒ AQtrans / AQrot 0.85 0.98 0.94 0.99

ct � k9 � r1 k10 4.85 1.59 1.86 0.70
ct � k9 � r1 � k10 r2 20.50 4.77 5.66 3.99

ct � k9 k10 7.48 1.63 1.43 0.73
ct � k9 � r1 r2 16.41 4.58 7.67 3.42

⇒ RQtrans / RQrot ×10−3 -7.30 -0.42 7.89 -1.53

Adaptation quality (AQ) and retention quality (RQ) [30] with respect
to the translation and rotation errors. ct denotes the Cityscapes training
set, k9 and k10 refer to sequences 09 and 10 of the KITTI odometry
benchmark, and r1 and r2 correspond to sequences [30] from Robot-
Car. The values of CL-SLAM are reported by the authors. The best
scores in each category are shown in bold.

In the following studies, we always report the translation
and rotation errors of sequences 04 and 06.

4.3.1 Size of the Update Batch

We first investigate the effect of varying sizes of the update
batch, i.e., the number of replay samples. In Tab. 4, we
list the errors for batch sizes bt = {1, 2, 3, 4, 5} given an
unlimited replay buffer. Note that b = 1 implies that ex-
perience replay is disabled. Therefore, this strategy corre-
sponds to CL-SLAM [30] for source-to-target domain adap-
tation. Generally, the translation error can be reduced by
using replay data, whereas the rotation error is the smallest
when only training with the current sample. As we deem
the translation error more important in terms of mapping
and localization accuracy, we select b = 3.

4.3.2 Size of the Replay Buffer

In the next study, we restrict the size of the replay buffer
to address both scalability of the method and the lim-
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Table 4. Ablation study on the size of the update batch.

Batch size Seq. 04 Seq. 06
terr rerr terr rerr

1 3.56 0.15 2.30 0.18
2 2.97 0.59 1.81 0.50
3 2.79 0.54 1.98 0.59
4 2.89 0.73 1.99 0.54
5 2.89 0.63 2.46 0.70

In this study, we use a replay buffer of infinite size. Batch
sizes greater than 1 imply using replay data in addition
to the online image, i.e., the first row corresponds to the
strategy of CL-SLAM. The smallest and second smallest
errors are shown in bold and underlined, respectively.

Table 5. Ablation study on the size of replay buffer.

Buffer Diversity Seq. 04 Seq. 06
size update terr rerr terr rerr

∞ 2.79 0.54 1.98 0.59

100 2.62 0.52 1.75 0.48
100 ✓ 2.11 0.53 2.13 0.47
50 2.64 0.42 2.72 0.91
50 ✓ 2.11 0.53 2.13 0.47
25 2.51 0.40 2.42 0.77
25 ✓ 2.11 0.53 2.20 0.50
10 2.82 0.33 2.08 0.64
10 ✓ 2.12 0.56 2.21 0.59

In this study, we use a batch size of 3. The effectively
used buffer size of sequence 04 is the same for 25, 50,
and 100. Similarly, in sequence 06 the same number of
samples is added when buffer sizes of 50 and 100 are
available. The first row corresponds to the strategy of
CL-SLAM. The smallest and second smallest errors are
shown in bold and underlined, respectively.

ited storage capacity on mobile devices and robotic plat-
forms. In detail, we report the errors for buffer sizes
|B| = {10, 25, 50, 100,∞} in Tab. 5. For all the buffers
of limited size, we both enable and disable our proposed
diversity-based updating mechanism. In the latter case, we
sample an element from the replay buffer assuming a uni-
form distribution and replace this with the current online
data. Interestingly, the positive effect of enforcing a high di-
versity is more pronounced for sequence 04, where CoVIO
generally yields smaller translation errors with fewer sam-
ples in the buffer. It should further be noted that due to
the length of the sequences, the diversity-based buffer con-
tains the same samples for |BSeq. 04| = {25, 50, 100} and
|BSeq. 06| = {50, 100}. For CoVIO, we select |B| = 100 to
account for the increased storage requirements in a multi-
target setting.

4.3.3 Number of Update Cycles

Lastly, we report the sensitivity of CoVIO with respect to
the number of backpropagation steps c for a single up-

Table 6. Ablation study on the number of update cycles.

Update cycles Seq. 04 Seq. 06
terr rerr terr rerr

1 3.13 1.65 4.07 1.14
2 2.80 1.06 2.62 0.64
3 2.49 0.77 2.61 0.63
4 2.29 0.61 2.31 0.52
5 2.11 0.53 2.13 0.47
6 1.98 0.50 2.15 0.49

For a fair comparison, we use the same number of update cy-
cles c = 5 as CL-SLAM [30]. The smallest and second small-
est errors are shown in bold and underlined, respectively.

date batch. As shown in Tab. 6, more steps decrease both
the errors confirming the results of CL-SLAM [30]. How-
ever, in contrast to the performance reported for CL-SLAM,
CoVIO is noticeably less sensitive and already yields rela-
tively small errors for c = 1. We conclude that this is caused
by using experience replay also for the online learner. To
enable direct comparison with CL-SLAM, we use the same
value c = 5.

5. Conclusion

In this paper, we presented CoVIO for online continual
learning of visual-inertial odometry. CoVIO exploits an un-
supervised training scheme during inference time and thus
seamlessly adapts to new domains. In particular, we ex-
plicitly address the shortcomings of previous works by de-
signing a lightweight network architecture and by propos-
ing a novel fixed-size replay buffer that maximizes image
diversity. Using experience replay, CoVIO successfully
mitigates catastrophic forgetting while achieving efficient
online domain adaptation. We further provide an asyn-
chronous version of CoVIO separating the core motion es-
timation from the network update step, hence allowing true
continuous inference in real time. In extensive evaluations,
we demonstrate that CoVIO outperforms competitive base-
lines. We also make the code and models publicly available
to facilitate future research. Future work will focus on ex-
tending this work to a multi-task setup for robotic vision
systems.
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[30] Niclas Vödisch, Daniele Cattaneo, Wolfram Burgard, and
Abhinav Valada. Continual SLAM: Beyond lifelong simulta-
neous localization and mapping through continual learning.
In Aude Billard, Tamim Asfour, and Oussama Khatib, edi-
tors, Robotics Research, pages 19–35, Cham, 2023. Springer
Nature Switzerland. 1, 2, 3, 4, 5, 6, 7, 8
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