Simulating Task-Free Continual Learning Streams From Existing Datasets
Appendix

A. More Simulated Task-Free Streams

In Figure 1, Figure 2, Figure 3, we present a comparison
of a conventional distinct-task stream and a simulated task-
free (STF) for EMNIST, CIFAR-100, and tinyImageNet re-
spectively.

B. Architectures

Please refer to Table 1.

C. Setting the Average Standard Deviation

We set the values of u, by associating them to a num-
ber of tasks. Previous work typically uses a range of 5—-20
number of tasks. In that case, each class’s distribution is
essentially a uniform with support the inverse of the num-
ber of tasks. If the number of tasks is set to 7', the standard
deviation of a uniform with support 1/7"is \/1/12 x 1/T.
Here, we have used average standard deviations p, which
correspond to T = 12,5, 10, 20 tasks for EMNIST, CIFAR-
10, CIFAR-100, and tinyImageNet, respectively.

D. Beta and the Truncated Normal

Since the truncated normal is the maximum-entropy dis-
tribution of a given mean and standard deviation defined on
a closed interval, we want to examine how much of its en-
tropy the Beta can capture. We start by sampling a mean
p € [0,1] and a standard deviation o € [0,0.5], and we
take a normal distribution with these moments and truncate
it in [0,1]. We evaluate the mean /i and standard devia-
tion ¢ of the truncated normal, and define a Beta with the
same moments. Afterwards, we can evaluate the ratio of
the entropy of the truncated normal that the Beta can cap-
ture. Performing this simulation 105 times, we find that the
Beta captures 99.84% of the entropy of the truncated nor-
mal. Hence, we argue that the Beta can serve as a substitute
for the truncated normal, since, as we mentioned earlier, it
is more convenient mathematically.

E. On the Truncated Exponential

The truncated exponential distribution, with a rate pa-
rameter A # 0 and the truncation parameter v > 0 for its

support, is defined as
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where ¢ = \/(e\ — 1) is the normalizing constant. The
mean of a €(A, ) over its support is computed as
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An appropriate rate can be found by numerically solving the
previous equation for specific values of 1 and .
The cumulative distribution function (CDF) is

|
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hence, we can sample from a TE distribution using inverse-
transform sampling (ITS) as follows:

T = iln[(em - Du+1],

F. On the Beta Distribution

where u ~ U[0,1].  (4)

Here, we discuss our motivation for using instances of
the Beta distribution to model the individual class distribu-
tions. Let us assume that we have sampled a mean yi; and
a standard deviation ¢ for each class j in our dataset, and
now we want to assign to that class a distribution defined
on the interval [0, 1], with the same mean and standard de-
viation. The maximum-entropy distribution of a specified
mean and standard deviation, and also defined on a bounded
interval is called the truncated Gaussian [?]. However, we
would also like to be able to easily derive the parameters
of each distribution given its mean and standard deviation.
In the case of the truncated normal, deriving its parameter-
ization involves solving a non-linear system of equations,
which does not have an analytical solution and is not guar-
anteed to be solvable in a numerically stable way. Instead,
we argue that the Beta distribution is a more appropriate
choice for a number reasons. First, deriving the parameters
of a Beta given a desired mean and standard deviation is
trivial (see ?? and ??). Second, as we discussed earlier in
the appendix, we empirically found that the Beta captures
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Figure 1. A conventional EMNIST stream with disjoint tasks (left) and a simulated task-free (STF) stream of the same dataset (right). Best
viewed zoomed-in and in color.
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Figure 2. A conventional CIFAR-100 stream with disjoint tasks (left) and a simulated task-free (STF) stream of the same dataset (right).
Best viewed zoomed-in and in color.




Continuum with Disjoint Tasks Task-Free Continuum

ro0.8

Label

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Stream Progression Stream Progression

Figure 3. A conventional tinylmageNet stream with disjoint tasks (left) and a simulated task-free (STF) stream of the same dataset (right).
Best viewed zoomed-in and in color.

Table 1. (left) A simple convolutional block; (middle) The Convolutional Neural Network (CNN) architecture used in the EM-
NIST experiments. (right) The reduced ResNet-18 architecture used for CIFAR-10, CIFAR-100, and tinyImageNet, is built using the
BasicBlock(n ¢, ny, ns) from [?], where ny is the number of convolutional filters, ny is the number of sub-blocks per block, and n is the
stride of the layer.

ConvBlock CNN Reduced ResNet-18
Conv2D(nin, Tout) ConvBlock(1, 32) BasicBlock(20, 2, 1)
ReLU ConvBlock(32, 64) BasicBlock(40, 2, 2)
BatchNorm2D (7oy) Linear(64, c) BasicBlock(80, 2, 2)
Conv2D(nout, Nout) BasicBlock(160, 2, 2)
ReLU AveragePooling
BatchNorm2D (7oy) Linear(160, c)

MaxPooling2D(2, 2)

99.84% of the entropy of the truncated normal, on average.
Third, the Beta is mathematically convenient for our use-
case since its support is the interval [0, 1]. Fourth, the Beta
distribution takes various shapes (e.g., constant, bell-like,
skewed to the left or to the right, etc.) for different parame-
terizations, a feature which allows for the creation of more
diverse streams (please refer to Figure 4 for an illustration).
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Figure 4. The Beta distribution can take a number of different shapes depending on its parameterization.
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