
Simulating Task-Free Continual Learning Streams From Existing Datasets
Appendix

A. More Simulated Task-Free Streams
In Figure 1, Figure 2, Figure 3, we present a comparison

of a conventional distinct-task stream and a simulated task-
free (STF) for EMNIST, CIFAR-100, and tinyImageNet re-
spectively.

B. Architectures
Please refer to Table 1.

C. Setting the Average Standard Deviation
We set the values of µσ by associating them to a num-

ber of tasks. Previous work typically uses a range of 5–20
number of tasks. In that case, each class’s distribution is
essentially a uniform with support the inverse of the num-
ber of tasks. If the number of tasks is set to T , the standard
deviation of a uniform with support 1/T is

√
1/12 × 1/T .

Here, we have used average standard deviations µσ which
correspond to T = 12, 5, 10, 20 tasks for EMNIST, CIFAR-
10, CIFAR-100, and tinyImageNet, respectively.

D. Beta and the Truncated Normal
Since the truncated normal is the maximum-entropy dis-

tribution of a given mean and standard deviation defined on
a closed interval, we want to examine how much of its en-
tropy the Beta can capture. We start by sampling a mean
µ ∈ [0, 1] and a standard deviation σ ∈ [0, 0.5], and we
take a normal distribution with these moments and truncate
it in [0, 1]. We evaluate the mean µ̂ and standard devia-
tion σ̂ of the truncated normal, and define a Beta with the
same moments. Afterwards, we can evaluate the ratio of
the entropy of the truncated normal that the Beta can cap-
ture. Performing this simulation 105 times, we find that the
Beta captures 99.84% of the entropy of the truncated nor-
mal. Hence, we argue that the Beta can serve as a substitute
for the truncated normal, since, as we mentioned earlier, it
is more convenient mathematically.

E. On the Truncated Exponential
The truncated exponential distribution, with a rate pa-

rameter λ ̸= 0 and the truncation parameter γ > 0 for its

support, is defined as

fE(x | λ, γ) ≜ ceλx, x ∈ [0, γ], (1)

where c = λ/(eλγ − 1) is the normalizing constant. The
mean of a E(λ, γ) over its support is computed as

µ = c

∫ γ

0

xeλxdx =
(λγ − 1)eλγ + 1

λ(eλγ − 1)
=

γ

1− e−λγ
− 1

λ
.

(2)
An appropriate rate can be found by numerically solving the
previous equation for specific values of µ and γ.

The cumulative distribution function (CDF) is

FE(x | λ, γ) = eλx − 1

eλγ − 1
, x ∈ [0, γ], (3)

hence, we can sample from a TE distribution using inverse-
transform sampling (ITS) as follows:

x =
1

λ
ln
[
(eλγ − 1)u+ 1

]
, where u ∼ U[0, 1]. (4)

F. On the Beta Distribution
Here, we discuss our motivation for using instances of

the Beta distribution to model the individual class distribu-
tions. Let us assume that we have sampled a mean µj and
a standard deviation σj for each class j in our dataset, and
now we want to assign to that class a distribution defined
on the interval [0, 1], with the same mean and standard de-
viation. The maximum-entropy distribution of a specified
mean and standard deviation, and also defined on a bounded
interval is called the truncated Gaussian [?]. However, we
would also like to be able to easily derive the parameters
of each distribution given its mean and standard deviation.
In the case of the truncated normal, deriving its parameter-
ization involves solving a non-linear system of equations,
which does not have an analytical solution and is not guar-
anteed to be solvable in a numerically stable way. Instead,
we argue that the Beta distribution is a more appropriate
choice for a number reasons. First, deriving the parameters
of a Beta given a desired mean and standard deviation is
trivial (see ?? and ??). Second, as we discussed earlier in
the appendix, we empirically found that the Beta captures
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Figure 1. A conventional EMNIST stream with disjoint tasks (left) and a simulated task-free (STF) stream of the same dataset (right). Best
viewed zoomed-in and in color.
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Figure 2. A conventional CIFAR-100 stream with disjoint tasks (left) and a simulated task-free (STF) stream of the same dataset (right).
Best viewed zoomed-in and in color.
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Figure 3. A conventional tinyImageNet stream with disjoint tasks (left) and a simulated task-free (STF) stream of the same dataset (right).
Best viewed zoomed-in and in color.

Table 1. (left) A simple convolutional block; (middle) The Convolutional Neural Network (CNN) architecture used in the EM-
NIST experiments. (right) The reduced ResNet-18 architecture used for CIFAR-10, CIFAR-100, and tinyImageNet, is built using the
BasicBlock(nf , nb, ns) from [?], where nf is the number of convolutional filters, nb is the number of sub-blocks per block, and ns is the
stride of the layer.

ConvBlock CNN Reduced ResNet-18

Conv2D(nin, nout) ConvBlock(1, 32) BasicBlock(20, 2, 1)
ReLU ConvBlock(32, 64) BasicBlock(40, 2, 2)
BatchNorm2D(nout) Linear(64, c) BasicBlock(80, 2, 2)
Conv2D(nout, nout) BasicBlock(160, 2, 2)
ReLU AveragePooling
BatchNorm2D(nout) Linear(160, c)
MaxPooling2D(2, 2)

99.84% of the entropy of the truncated normal, on average.
Third, the Beta is mathematically convenient for our use-
case since its support is the interval [0, 1]. Fourth, the Beta
distribution takes various shapes (e.g., constant, bell-like,
skewed to the left or to the right, etc.) for different parame-
terizations, a feature which allows for the creation of more
diverse streams (please refer to Figure 4 for an illustration).
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Figure 4. The Beta distribution can take a number of different shapes depending on its parameterization.


	. More Simulated Task-Free Streams
	. Architectures
	. Setting the Average Standard Deviation
	. Beta and the Truncated Normal
	. On the Truncated Exponential
	. On the Beta Distribution

