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Abstract

Currently, mixed reality head-mounted displays tracking
the full body of users is an important human-computer in-
teraction mode through the pose of the head and the hands.
Unfortunately, users’ virtual representation and experience
is limited due to high reconstruction error when simple
transformer network architecture is applied. In this pa-
per, we present a novel model, named Dual Attention Poser,
which can learn the whole body reconstruction at a high ac-
curacy. The proposed model consists of three key modules.
Among them, dual-path attention encoder is designed to ex-
tract feature of the sparse signals. Cross attention mixer
module enable the fusion of representation in the double
path. Attention-gated-mlp decoder is applied to decode the
hidden feature from the sparse input through attention gate.
Test results on the AMASS dataset show that Dual Attention
Poser can reduce the error by up to 18.2% in comparison
with the state-of-the-art results.

1. Introduction
Since the popularity of virtual reality(VR) and aug-

mented reality(AR), interaction in these environments is in
great demand. Firstly, hand tracking is fully developed on
VR/AR devices for common applications such as virtual
reality games, remote medical control and employment of
robots. It is applied to the control of virtual and real objects
using hands directly and the experience of the real interac-
tion between objects and human. Secondly, human body re-
construction is of wide application for social demand in the
virtual reality and augmented reality. For example, face-to-
face communication in digital games and remote meetings
plays a key role in social activities in the virtual 3D environ-
ment. Therefore, body reconstruction is in great demand for
rich experience on faces, hands, arms, and legs. As collabo-
rative interactive with the full body tracking is demonstrated
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to exceed manual first-person tasks, the embodiment of full
avatar representation is well explored through a variety of
hardware equipment.

Figure 1. Attention-based Dual Attention Poser can generate a
full-body pose over 22 joints with the input of the positions and
orientations of one headset and two hands only. Compared with
the state-of-the-art methods, our method reaches the highest pre-
diction accuracy, which significantly enhances the performance
and immersion of Mixed Reality.

There are a variety of hardware equipment which are de-
signed for body tracking based on sparse input available.
Additional trackers are employed on user’s body to render
the body of an avatar, such as 6D pelvis tracker [38], body-
worn inertial sensors [13]. The motion diversity of subjects
is extended to give more sparse input for rendering the body
and supporting the representation of the body to be more
natural and accurate. However, for the common hardware
of virtual reality, an accurate full body reconstruction based
on the sparse signals from two controllers and one headset is
far from satisfactory accuracy. Extra dense motion capture

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2795



Figure 2. End to end full body reconstruction from sparse input. The network proposed consists of three key modules, including dual path
attention encoder, cross attention mixer, and attention-gated-mlp decoder.

system is expensive and common consumers are unwilling
to afford it. Therefore, the methods on the post-process of
body joints are well explored to handle failures of body re-
construction.

Among the existing works, inverse kinematics(IK) based
on human biological motion is usually applied for the esti-
mation of full-body poses. Inverse kinematics(IK) is well
explored in the field of robotics to calculate the joint param-
eters, which is widely used in the application [22,26,29,36]
of robotics and computer animation [9, 10, 25, 30, 43] via
iterative optimization. The IK based optimization on this
numerical iteration is lack of generative ability and the opti-
mization is time-consuming. For the limits, the neural net-
works are applied to calculate the desired end-effect loca-
tion, which can speed up the computation. However, the
learning based IK methods only refine the position of joints
a little.

Besides, in order to improve the accuracy of body re-
construction, a general method is to increase the num-
ber of sparse sensors. A variety of inertial measurement
unit(IMU) sensors are applied to reconstruct the legs of the
body, where LSTM [41] are applied in the models to pro-
cess the signals of the IMU sensors in real-time. However,
users are required to wear more sensors, which is inconve-
nient. Meanwhile, it’s not friendly to wear extra equipment
on legs and arms to attend virtual social meeting or other
virtual activities. In addition, the reconstruction accuracy
of the whole body is not fully satisfied when users play vir-
tual games or attend virtual social activities. Furthermore,
the extra equipment for the tracking of the whole body is
not easily carried on and the users have to use them at a
particular location such as home or VR room.

Then, transformer based methods [14] are applied to
increase the accuracy of the body, where attention mod-
ules provide a better presentation of sparse input from sen-

sors. In [14], sparse input are decoded into features of the
two paths and fed into the Forward-Kinematics Module, in
which they are modeled separately to be the joints of the
body limbs and the rotation of the whole body, as shown in
the blue and green parts on Figure2. However, the local and
the global feature are not be separated before decoder, and
both the mutual information and the relationship between
the local body pose and the global orient is not be used.

Therefore, we proposed a novel model with the combi-
nation of separate encoders and fusion modules which learn
the mutual benefits and the relationship between the local
and the global paths, and conduct ablation studies on dif-
ferent variants of the proposed multi-task model. The pro-
posed model is designed consisting of three key modules.
One module, dual path transformer encoder, is applied to
extract the local and the global information in the separated
path. Cross attention module can fuse the representation
of the two paths. Another module, attention-gated-mlp de-
coder, is used to generate 6 DoF pose of landmarks of the
body and reconstruct the whole body.

The method proposed is tested on AMASS dataset. The
results show that the method achieves the higher accu-
racy of full body reconstruction and the error is reduced
by up to 18.2%, in comparison with the state-of-the-art
methods including transformer based methods and non-
transformer methods. Besides, quality evaluation is con-
ducted to demonstrate the effectiveness of our proposed
model.

2. Related Work

The following works of full body pose estimation and
reconstruction, vision transformers, and multilayer percep-
tron networks are the most related work.
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2.1. Full Body Pose Estimation and Reconstruction

Among the previous works on body pose estimation, the
3D skeleton is an effective form for the representation of
human body [34]. The prediction of 3D joints is produced
through the application of joints positions [23] and volumet-
ric heat-maps [28]. Then, in order to encode pose and shape
parameters of the human body, SMPL known as the skinned
multi-person linear model is built for the generation of trian-
gular faces of human body. Afterwards, the reconstruction
of human body is built with both optimization and regres-
sion methods. For example, the optimization of the param-
eters of SCAPE [3] model is used for 2D keypoints annota-
tion. A CNN network is used to regress the parameters from
the silhouettes and 2D joint heatmaps [27]. However, the in-
put of images are not practical for the full body reconstruc-
tion from virtual reality glass/augmented reality glass. The
reason is that it’s hard to capture the down body part such
as legs for the cameras of these glasses. Therefore, body re-
construction for these glasses is then predicted from sparse
sensors. 6 body-worn inertial sensors [13, 35, 39, 40] are
used as the sparse sensors. They are commonly distributed
over head, arms, pelvis, and legs. Firstly, a KNN-based
method [1] is applied to interpolate poses from a smaller
dataset with only specific motion. Secondly, a GRU net-
work is trained for the prediction of the lower-body pose
from the sparse input and the calculation of upper-body
pose through an IK solver [38]. However, these techniques
of full body reconstruction from both dense and sparse input
are not effective and have high errors. They are not practical
for the application on virtual reality devices.

2.2. Vision Transformer

Due to the success of transformer in the vision tasks,
attention modules are widely used in the vision tasks and
the performance is improved significantly in the following
tasks particularly, including image classification [7, 8, 19],
detection [4, 31, 45], image restoration [16, 37, 42]. Then,
transformer encoders and decoders are applied to repre-
sent the vertex of human pose and mesh from a single im-
age [17]. Similarly, the body joint correlations and tempo-
ral dependencies are learned through transformers [2, 44].
Afterwards, the prediction of multiple pose hypotheses is
produced from monocular videos through learning spatio-
temporal representation of body poses [15]. However, im-
ages from HMD devices are not able to capture the whole
body, it’s hard to reconstruct the whole body on HMD de-
vices. Therefore, instead of body pose prediction from im-
ages or videos, transformer encoders are applied to repre-
sent the body reconstruction from sparse inputs [14]. But
the architecture of the attention encoder is too simple to
achieve low reconstruction errors, so the reconstruction
from this model is not practical.

2.3. Multi-layer Perceptron Networks

Multi-layer perceptron(MLP) networks are early ex-
plored for image classification and other simple tasks. Re-
cently, a pure MLP network architecture is proposed in
which all layers consist of MLP layers, and the architec-
ture is specially designed for vision tasks [32]. Then, the
graph convolution layer and mlp layer [12] are fused for the
vision tasks, such as image classification and object detec-
tion. Besides, dense prediction of image tasks [5] is learned
through the cycle-like structure of network architecture con-
sisting of mlp layers. Afterwards, a global filter is applied
for the effective representation of image features in the tasks
of image classification. Finally, the mlp architecture, the at-
tention modules, and a dynamic gate are fused to better rep-
resent connectivity of sparese sensors form the two paths.
However, these new MLP architectures cannot represent the
complexity of full body reconstruction from sparse input of
HMD devices. Therefore, the application of the novel mlp
architectures as a module can be a promising work.

3. Method

In this paper, a dual-path cross attention model is pro-
posed for full body reconstruction from the sparse input.
The proposed network consists of three key modules, which
are dual-path attention encoder, cross-attention mixer, and
attention-gated-mlp decoder.

3.1. Problem Formulation

The Problem of the full body reconstruction from sparse
input is defined as the following. Given 6D representation
of the sparse input, which is consisted of p1×3 representing
the global positions in Cartesian coordinates and orienta-
tions in axis-angle representation θ1×3, the model proposed
is to learn a mapping f which reconstructs the joints of the
full body. The mapping function f is represented as the
following:

U1:h
1:j = f({p, θ}1:n1:j ) (1)

where n represents the number of the sparse input, h rep-
resents the number of the joints of the full-body skeleton,
j represents the number of observed frames from the past.
U ∈ SE(3) is the body joint pose which is represented by
U = {p, θ}.

Similarly with avatarposer [14], the value of h is set as
22, and the joints are divided into a root joint and 21 lo-
cal joints to represent the global orient and the other body
pose. Then, the representation and animation of SMPL [20]
model is applied. In our model, dual path encoder-decoder
was utilized to represent the global orient and the other body
pose separately. In the following, they are referred to as
global and local paths, respectively. Besides, at each time
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Figure 3. The structure of the attention-gated-MLP Decoder.

step t, the following three features are used. Firstly, a liner
velocity v is given by backward finite difference as follows:

vt = pt − pt−1 (2)

Secondly, the angular velocity Ωt is defined as the fol-
lowing:

Ωt = R−1
t−1Rt (3)

where R3×3 represents the orientation matrix of the sparse
input [14], it’s calculcated after the conversion [14, 44], the
axis-angle representation θ1×3 is converted to the rotation
matrix R3×3.

Thirdly, the last row of R is discarded to get the 6D rota-
tion representation wt. Then, at each time step t, the feature
of each sparse input contains four feature vectors including
pt, vt, θt, wt. As the number of the sensor is set to 3, the
feature of all sparse input is set as the following:

XS
t = [p1t , v

1
t , θ

1
t , w

1
t , ..., p

3
t , v

3
t , θ

3
t , w

3
t ] (4)

Therefore, the number of features for the input X is 54,
and the output dimension at each time step is 132.

3.2. Dual Attention Encoder

For the global path of representation through atten-
tion, taking the sparse input X, weights of three projec-

tion WQ1 ,WK1 ,WV1 are calculated to produce the matrices
Q1,K1, V1. Then, the attention encoder of the global path
is calculated as the following:

attention(Q1,K1, V1) = softmax(
Q1K

T
1

d1
)V1 (5)

where d1 represents the scale factor.
Similarly, for the local path of representation through at-

tention, after the sparse input X taken, weights of three pro-
jection WQ2 ,WK2 ,WV2 are calculated to produce the ma-
trices Q2,K2, V2. Then, the attention encoder of the local
path is calculated as the following:

attention(Q2,K2, V2) = softmax(
Q2K

T
2

d2
)V2 (6)

where d2 represents the scale factor.
As Figure 2 shown, the two paths are calculated sepa-

rately through the application of multiple layers of attention
modules.

3.3. Cross Attention Mixer

Then, a fusion module is calculated through cross atten-
tion mechanism. It fuses the hidden features from the lo-
cal transformer encoder and the global transformer encoder
(Figure 2). Let Z1 represent the hidden features from the
local transformer, Z2 represent the hidden features from
the global transformer, the cross attention mixer works to
achieve the fusion of the two sparse representation Z1 and
Z2. The cross attention fusion is calculated as the follow-
ing:

Y1 = Fusion1(Z1, Z2), Y2 = Fusion2(Z2, Z1), (7)

FH1→2 = softmax

(
f(Q2)f(K1)

T

d1

)
f(V1), (8)

FH2→1 = softmax

(
f(Q1)f(K2)

T

d2

)
f(V2), (9)

where, Z1 and Z2 are the representations of the local path
and the global path before the fusion, multi-head self-
attention (MHSA) module is applied to obtain the query,
key, and value features of the local feature Z1, and the val-
ues are indicated by Q1, K1, V1. Similarly, MHSA module
is applied to obtain the query, key, and value features of
the global feature Z2, and the values are represented as Q2,
K2, V2. T represents the matrix transpose. FH1→2 and
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Figure 4. Visual comparison between AvatarPoser [14] and our method. The extent of the error is indicated by the intensity in red. The
first row represents the ground truth of reconstruction body. The second row represents the reconstruction results of our models. The third
row represents the results of the state-of-the-art model Avatarposer [14].

Figure 5. Visual comparisons between AvatarPoser and our method. The first row represents the ground truth of reconstruction body in a
motion sequence. The second row represents the reconstruction results of our models in a motion sequence. The third row represents the
results of the state-of-the-art model Avatarposer [14].
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FH2→1 are the cross attention features encoding the corre-
lation between the features in the local and the global path.
d1 and d2 are a normalization constant and f represents the
function with the three features as input respectively. The
cross attention features are merged into the two features Z1

and Z2 by a pointwise MLP layer fp respectively, which is
calculated as the following:

FHFusion
1 = fp(Z1 + FH1→2

1 ), (10)

FHFusion
2 = fp(Z2 + FH2→1

2 ), (11)

where FHFusion
1 and FHFusion

2 are the output of features
of the local and the global path after the cross attention
mixer.

3.4. Attention-Gated-MLP Decoder

Two attention-gated-mlp decoders are applied to decode
the features FHFusion

1 and FHFusion
2 of the local and the

global path. Firstly, a stack of 2 blocks are applied to decode
the feature FHFusion

1 of the first path, each block is defined
as the following:

Hi
α = σ(Hi

inU
1) (12)

where σ is an activate function such as GeLU [11], U1 de-
fines linear projection along the channel dimension for the
i-th block. Hi

in and Hi
α represent the input and output

for the σ function at the i-th block. Here, H1
in is set to

FHFusion
1 for the first block.

Hi
β = FS(H

i
α) (13)

where FS represents the function of the linear gating, the
mapping is calculated as the following:

fw,b(H
i
α) = W iHi

α + bi (14)

FS(H
i
α) = Hi

α ⊙ fw,b(H
i
α) (15)

For i-th block, Wi is a parameter matrix, bi refers token-
specific biases, ⊙ denotes the element-wise multiplication.
It’s critical to initialize Wi as near-zero values and bi as ones
for the training stability, which means that fw,b

(
Hi

α

)
≈ 1

and FS

(
Hi

α

)
≈ Hi

α at the beginning of the training. Be-
sides, Fs is split into two independent parts, which are
proven to be more effective in training and testing [18]. The
split is converted as the following:

FS

(
Hi

α

)
= Hi

α1 ⊙ fw,b

(
Hi

α2

)
(16)

where Hi
α is split into two parts

(
Hi

α1, H
i
α2

)
along the

channel dimension for the gating function and for the mul-
tiplicative bypass.

Hi
out = Hi

βV
1 (17)

Then, Hi
out is calculated by applying V 1 defining linear

projection along the channel dimension in the i-th block.
Similarly, the operation of the feature FHFusion

2 of the
second path takes the same network structure and calcula-
tion process.

Further, skip connection between the first block and the
second block is used for each attention gated mlp decoder.
The structure of each block is shown in Figure 3.

3.5. Concatenation

Additionally, the input FHFusion
1 of the first path is con-

catenated with the input FHFusion
2 of the second path, The

concatenation is calculated as the following:

FHconcat
1 = FHFusion

1 ⊕ FHFusion
2 (18)

where the ⊕ represents the concatenation operator.

4. Experiments
4.1. Training Process and Dataset

Our model is trained and tested on three subsets of
AMASS dataset [21] (CMU, BMLrub [33] and HDM05
[24]). Each frame of the AMASS data contains the full
SMPL pose parameters (159 dimensions), which include
global translations and rotations of the hand joints and the
body. To adapt to VR devices, the positions and rotation
matrix of head and hands are extracted from the dataset as
the input to predict the full SMPL body pose. For a fair
comparison with AvatarPoser [14], the same training and
the same testing dataset are used. In our training procedure,
Adam solver is used to optimize Dual Attention Poser, in
which 40 frames of each motion are fed with batch size 256
.The learning rate starts from 1e − 4 and decays by 0.5 ev-
ery 2e5 iterations. The model is trained with Pytorch on
NVIDIA GeForce GTX 3090 GPU with 24GB RAM.

4.2. Evaluation

Our model, Dual Attention Poser, is compared with
the state-of-the-art method (AvatarPoser [14]) and other
body tracking models including CoolMoves [1], LoBSTr
[38] and VAE-HMD [6]. Similar to AvatarPoser, we use
MPJRE(Mean Per Joint Rotation Error), MPJPE(Mean Per
Joint Position Error), and MPJVE(Mean Per Joint Velocity
Error) as the evaluation metrics. Lower evaluation metrics
indicate better performance of the model. The reconstruc-
tion error is represented in Table 1.

Based on the same training and testing dataset, the test
results between AvatarPoser and ours model are shown in
Tabel 1, which shows that our model has better performance
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Ground Truth DAP(Ours) Ablation Study 1 Ablation Study 2 Ablation Study 3 Ablation Study 4

Figure 6. Visual results of Ablation Study. Ablation Study1-Ablation Study4 corresponds to “No Dual Attention Encoder”, “No Cross
Attention Mixer”, “No Attention-Gate-MLP Decoder” and “No Concatenation”.

Model MPJRE (◦) MPJPE (cm) MPJVE (cm/s)

CoolMoves [1] 5.20 7.83 100.54
LoBSTr [38] 10.69 9.02 44.97

VAE-HMD [6] 4.11 6.83 37.99
AvatarPoser [14] 3.21 4.18 29.40

DAP(Ours) 2.69 3.68 24.03

Table 1. Comparision results with the state-of-the-art methods on the AMASS dataset.

on three metrics, with MPJRE, MPJPE, and MPJVE reduc-
ing by 16.1%, 11.9% and 18.2% respectively.

To better illustrate the performance of our model, visual-
ization experiments are conducted and the results are shown
in Figure 4, in which the extent of the error is indicated by
the intensity in red. The results represents that both meth-
ods have good performance in the standing and the slow
walking tasks. However, for complex movements, such as
running, squatting, and dancing etc, our model shows better
accuracy on the prediction of body pose.

In addition, two different motion sequences are selected
for the further comparisons. As shown in Figure 5, at the
beginning of each sequence, both models are able to pre-
dict the body motion. With the increasing complexity of the
action, our model shows the higher accuracy.

Besides, to further evaluate the generalization ability of
our model, a 3-fold cross-dataset evaluation method [14] is
performed among different models. The experiment result

of different models tested on sub-dataset CMU, BMLrub,
and HDM05 of the AMASS dataset [21] is shown in Table
2, from which the error is reduced by up to 9.6% in com-
parison with AvatarPoser [14].

4.3. Ablation Studies

To investigate the effectiveness of each submodule of
our Dual Attention Poser, an ablation study is performed
to evaluate the need for each submodule. The experiments
are conducted on the same test set as Tabel 1. The re-
sults are shown in Table 3 and visualized in Figure 6, in
which MPJRE, MPJPE and MPJVE are used as the evalua-
tion metrics.

4.3.1 No Dual Attention Encoder

We remove the dual attention encoder and use a single trans-
former encoder to encode the input serials. According to the
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Dataset Model MPJRE (◦) MPJPE (cm) MPJVE (cm/s)
CoolMoves [1] 9.20 18.77 139.17
LoBSTr [38] 12.51 12.96 49.94

CMU VAE-HMD [6] 6.53 13.04 51.69
AvatarPoser [14] 5.93 8.37 35.76

DAP(Ours) 5.46 8.15 32.32
CoolMoves [1] 7.93 13.30 134.77
LoBSTr [38] 10.79 11.00 60.74

BMLrub VAE-HMD [6] 5.34 9.69 51.80
AvatarPoser [14] 4.92 7.04 43.70

DAP(Ours) 4.75 6.81 42.78
CoolMoves [1] 9.47 17.90 140.61
LoBSTr [38] 13.17 11.94 48.26

HDM05 VAE-HMD [6] 6.45 10.21 40.07
AvatarPoser [14] 6.39 8.05 30.85

DAP(Ours) 6.18 7.84 29.17

Table 2. Results of cross-dataset evaluation in comparison with different methods.

Model MPJRE (◦) MPJPE (cm) MPJVE (cm/s)
No Dual Attention 2.85 3.87 25.35
No Cross Attention 2.89 3.97 25.17

No Attention-Gate-MLP 2.83 3.92 25.41
No Concatenation 2.80 3.99 26.51

DAP(Ours) 2.69 3.68 24.03

Table 3. Results of the ablation studies.

results of the ablation study, MPJRE and MPJPE increased
by 5.9% and 5.1%, which shows the use of dual attention
encoder might help the network capture the root orientation
of the body and the information of the other body pose re-
spectively. It also enables the next Cross Attention Mixer to
better integrate features of the two paths.

4.3.2 No Cross Attention Mixer

Removing the Cross Attention Mixer increases the MPJRE
and MPJPE by 7.4% and 7.8% respectively, which makes
our network becomes a simple encoder-decoder structure
and the representation between the two paths cannot be in-
tegrated. With the removal of the Mixer, the mutual infor-
mation of global and local paths cannot be effectively fused.
As shown in the fourth column of Figure 6, our model can-
not predict some complex body poses accurately with the
Cross Attention Mixer removed.

4.3.3 No Attention-Gated-MLP Decoder

The Attention-Gated-MLP Decoder is removed and two
MLP is used to decode the features of the two paths respec-
tively, in which MPJRE and MPJPE increased by 5.2% and
6.5%. Although the increase in metrics is not significant,

the visualized results in Figure 6 indicate that the Attention-
Gated-MLP can help the model reduce dramatic pose errors.

4.3.4 No Concatenation

Before decoding the joint pose, we concatenate the features
of the two paths in our model. The MPJRE and MPJPE
are increased by 4.0% and 8.4% respectively. The error in-
creases and the results are visualized in Figure 6.

5. Conclusion

The dual attention poser, a novel model, is proposed to
estimate realistic human poses from motion signals of the
mixed reality headset and the user’s hands or hand-held
controllers. In the network architecture, we build a dual
path encoder-decoder framework to predict the 6Dof pose
of landmarks of the body, According to the comparison re-
sults with the state-of-the-art models, the model proposed
achieves more robust estimations results and the higher ac-
curacy of the body reconstruction. The future work will
focus on the reconstruction of the body and hand pose in
one end-to-end network architecture, the exploration of ef-
ficient network architecture to reduce the latency of the cur-
rent body reconstruction models and etc.
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