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In this supplementary material, we provide more exper-
iments, discussions, and other details that could not be in-
cluded in the main text due to the lack of pages. The con-
tents are summarized below:

A. Effectiveness of a combination of VPoser [6] and L2
regularizer

B. Qualitative comparisons
C. Implementation details
D. Limitations

A. Effectiveness of a combination of VPoser
and L2 regularizer

Table A shows the effectiveness of 1) usage of
VPoser [6] and 2) weight of L2 regularizer during the
training of the annotation network f . The combination of
VPoser and L2 regularizer is the third recipe, introduced in
Section 2.2 of the main manuscript. Regardless of the usage
of VPoser, setting the non-zero weight of the L2 regularizer
produces lower 3D errors of g. This indicates that despite its
simplicity, the L2 regularizer helps to prevent anatomically
implausible 3D meshes and produce beneficial 3D pseudo-
GTs. In addition, using VPoser achieves lower 3D errors
of g compared to not using it. This is also because VPoser
can effectively limit the 3D mesh to anatomically plausi-
ble space. Training sets of all annotation networks f in the
table are H36M+MI+MSCOCO+3DPW. The ResNet back-
bone [1] of all annotation networks in the table are initial-
ized with ResNet, pre-trianed on ImageNet [7] classification
dataset.

Fig. A shows the effectiveness of 1) using VPoser and
2) applying L2 regularizer. Without VPoser and L2 regu-
larizer, the 3D pseudo-GT has an anatomically implausible
3D mesh although its 2D pose is fit to the image. Using
VPoser makes the 3D pseudo-GT anatomically plausible;
however, it still produces the wrong 3D mesh. The right leg
is too much bent to the left side. Finally, using both VPoser
and L2 regularizer makes the 3D pseudo-GT anatomically

plausible and correct. In particular, additionally using the
L2 regularizer enforces the 3D mesh in the latent space of
VPoser.

B. Qualitative comparisons
Fig. B shows qualitative comparisons between 3D

pseudo-GTs from our annotation network f and NeuralAn-
not [4]. The comparisons show that our 3D pseudo-GTs are
more accurate than those of NeuralAnnot. The results from
the first row to the fourth row show that ours are more ro-
bust to the depth ambiguity. For example, in the fourth row
example, both have almost the same 2D position of the right
knee. However, our 3D position of the right knee is more
accurate as it does not penetrate inside of the left leg.

Fig. C shows (a) rendered 3D pseudo-GTs on various
images of MSCOCO and (b) 3D pseudo-GTs on truncated
images of MSCOCO. The rendered results show that our 3D
pseudo-GTs are well-aligned with the image. In addition,
ours produce robust 3D pseudo-GTs on severely truncated
images by utilizing strong contextual information of image
features.

C. Implementation details of annotation net-
work f

As described in Section 2.1 of the main manuscript, our
annotation network f is based on Pose2Pose network [3].
Hence, most of the details follow theirs. PyTorch [5] is
used for implementation. For the training, we use Adam
optimizer [2] with a mini-batch size of 192. Data augmen-
tations, including scaling, rotation, random horizontal flip,
and color jittering, are performed during the training. The
initial learning rate is set to 10−4 and reduced by a factor
of 10 at the 11th and 13th epoch. We train our annotation
network f for 15 epochs. A single NVIDIA A100 GPU is
used for the experiments, where it takes 6 hours to train our
annotation network f . We modified the Pose2Pose network
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Annotation network f Estimation network g

ID Use VPoser L2 reg. weight Training sets 3D errors
f1-1 ✗ 0.0 H36M+MI+[MSCOCO]f1-1 65.98
f1-2 ✗ 10−1 H36M+MI+[MSCOCO]f1-2 79.07
f1-3 ✗ 10−2 H36M+MI+[MSCOCO]f1-3 64.25
f1-4 ✗ 10−3 H36M+MI+[MSCOCO]f1-4 64.04
f1-5 ✗ 10−4 H36M+MI+[MSCOCO]f1-5 64.67
f1-6 ✗ 10−5 H36M+MI+[MSCOCO]f1-6 64.39
f2-1 ✓ 0.0 H36M+MI+[MSCOCO]f2-1 56.57
f2-2 ✓ 10−1 H36M+MI+[MSCOCO]f2-2 59.22
f2-3 ✓ 10−2 H36M+MI+[MSCOCO]f2-3 51.61
f2-4 ✓ 10−3 H36M+MI+[MSCOCO]f2-4 53.27
f2-5 ✓ 10−4 H36M+MI+[MSCOCO]f2-5 55.06
f2-6 ✓ 10−5 H36M+MI+[MSCOCO]f2-6 56.03

Table A. Comparison of 3D errors of estimation networks g, trained with different 3D pseudo-GTs of MSCOCO. The subscript at the
square brackets denotes a method to obtain the 3D pseudo-GTs. The 3D errors of g (PA MPJPE) are calculated on 3DPW.

Wo. VPoser, Wo. L2 Reg.
Front view Side view

With VPoser, Wo. L2 Reg.
Front view Side view Front view Side view

With VPoser, With L2 Reg.Input image

Figure A. Visual comparison between 3D pseudo-GTs, obtained from annotation networks whose IDs are f1-1, f2-1, and f2-3 of Table A.
Wrong parts are highlighted.

to predict the latent code of VPoser instead of SMPL pose
parameters. The predicted VPoser latent code is passed to
the decoder of VPoser, which outputs the SMPL pose pa-
rameter. The L2 regularizer is applied to the predicted la-
tent code of VPoser and SMPL shape parameter, where its
weight is determined to 10−2 following Table A. A neutral
gender SMPL model is used for the experiments. All other
details are available in the codes of Pose2Pose [3]1.

D. Limitations
Although our annotation network f produces much more

beneficial 3D pseudo-GTs than previous attempts, our 3D
pseudo-GTs still contain some errors in nature. This could
be addressed by collecting more ITW 3D datasets, such as
3DPW, as we made our 3D pseudo-GTs more beneficial by
utilizing 3DPW to train annotation network f . Collecting
ITW 3D datasets is challenging; however, we believe it is
worthwhile considering its usefulness. In particular, Table

1https://github.com/mks0601/Hand4Whole_RELEASE/
tree/Pose2Pose

8 of the main manuscript shows that 3DPW is much more
helpful than existing large-scale ITW 2D datasets, such as
InstaVariety, despite the small scale of 3DPW. We observed
from an additional study that using 50% and 10% of 3DPW
when training the annotation network f decreases 3D error
of the estimation network g only 4% and 7%, respectively.
As such analysis shows that even a small amount of ITW
3D datasets are helpful, it relieves a concern on collection
costs of ITW 3D datasets.
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Figure B. Visual comparison between 3D pseudo-GTs of MSCOCO from ours and NeuralAnnot [4]. Wrong parts are highlighted.



(b) Our 3D pseudo-GTs on truncated images
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(a) Our rendered 3D pseudo-GTs

Figure C. (a) Our rendered 3D pseudo-GTs on images of MSCOCO. (b) Our 3D pseudo-GTs on truncated images of MSCOCO.
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