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Abstract

Connectomics deals with the problem of reconstructing

neural circuitry from electron microscopy images at the

synaptic level. Automatically reconstructing circuits from

these volumes requires high fidelity 3-D instance segmen-

tation, which yet appears to be a daunting task for current

computer vision algorithms. Hence, to date, most datasets

are not reconstructed by fully-automated methods. Even af-

ter painstaking proofreading, these methods still produce

numerous small errors. In this paper, we propose an ap-

proach to accelerate manual reconstructions by learning

to correct imperfect manual annotations. To achieve this,

we designed a novel solution for the canonical problem

of marker-based 2-D instance segmentation, reporting a

new state-of-the-art for region-growing algorithms demon-

strated on challenging electron microscopy image stacks.

We use our marker-based instance segmentation algorithm

to learn to correct all “sloppy” object annotations by re-

ducing and expanding all annotations. Our correction algo-

rithm results in high quality morphological reconstruction

(near ground truth quality), while significantly cutting an-

notation time (∼8x) for several examples in connectomics.

We demonstrate the accuracy of our approach on public

connectomics benchmarks and on a set of large-scale neu-

ron reconstruction problems, including on a new octopus

dataset that cannot be automatically segmented at scale by

existing algorithms.

1. Introduction

Recent advances in electron microscopy (EM) allow

scientists to image neurons at the synaptic level using

nanoscale resolution. Connectomics is the field of neurobi-

ology that aims to reconstruct the neural circuitry from these

image-stacks, and ultimately from entire organisms [1, 75].

A cubic millimeter of brain tissue, the size of a grain of

sand, contains about 100 thousand neurons, and is repre-

sented by a petabyte-scale image-stack of EM data. Data

on such a scale cannot be reconstructed manually in rea-

sonable time, and we must rely on high-fidelity and high-

performance computer systems to effectively segment the

Figure 1. A high-level overview of our work. Swiftly made in-

accurate annotations (imperfect instance segmentation) are cor-

rected by a single computational primitive EMProof with end-to-

end learning. The input to EMProof can be any partial instance

segmentation such as skeletons or tiny seeds.

objects (neurons) in the image volume [46]. This trend will

be exacerbated as scientists aim for an exabyte scale com-

plete mouse brain [1].

Connectomics thus poses one of the hardest known cases

of automated 3-D instance segmentation. In other domains,

2-D instance segmentation tasks have received consider-

able attention, and satisfactory solutions exist for natural

[13, 14, 19, 35, 47] and biomedical [20, 28, 67, 72, 73] im-

ages, and for video tracking applications [43, 71, 74]. How-

ever, there has not been a 3-D instance segmentation so-

lution that can meet human reconstruction accuracy, and

fully-automated methods are applicable only for datasets of

exceptional quality (see progress by [4–6, 30, 39, 44, 51]).

The solution for small connectomics labs is thus to man-

ually reconstruct small EM volumes. Occasionally, hybrid

solutions are applied on larger volumes of high image qual-

ity: firstly perform automatic reconstruction based on ma-

chine learning algorithms, and then follow it with a manual

human-expert led correction process. Unfortunately, be-

cause automated solutions make unacceptable amounts of

errors on very thin objects even on high-quality datasets, the

human corrector, even with state-of-the-art semi-automated

proofreading tools such as [10, 16, 27, 33, 80], cannot effec-

tively correct all errors and attain ground truth quality. Of-
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Figure 2. Inputs to EMProof: Sloppy annotations, Skeleton seeds, Round seeds and Coarse segmentation, compared with the ground truth.

ten, hundreds of undergraduate students [36] are required

to painstakingly certify or correct every slice and every

tile of a terabyte-scale 3-D reconstruction merely to get a

wiring diagram. A recent study employed 87 annotators for

about 4,000 human annotation hours [55] by proofreading

thousands of thin objects of an automated reconstruction,

which is a considerable improvement to the 20,000 annota-

tion hours of an earlier study of a mammalian retina [36].

Although significant progress has been made to improve the

proofreading speeds and accuracy [7, 25, 33, 49, 57, 61, 64],

hybrid approaches so far have not been able to produce

the level of accuracy obtained by pure manual segmenta-

tion. So far, no large scale volume has been densely seg-

mented and proofread at the accuracy offered by purely

manual segmentation [41]. Furthermore, since automated

solutions are costly and require datasets of supreme seg-

mentability [39, 40], numerous labs have focused on small

datasets that can be manually reconstructed. Significantly

cutting down human investment in manual annotation tasks

is therefore of immense importance.

In this paper, we advocate an alternative approach for

the cases where ground truth quality is required: have hu-

man annotators invest a minimal amount of time first, to

quickly create “sloppy” annotations of EM images, and then

use an automated machine learning technique to complete

and correct these “sloppy” annotations into highly accurate

reconstructions. A high level overview of our pipeline is

described in Fig. 1. To achieve this ambitious goal, we set

out to improve the state-of-the-art in seeded segmentation of

electron microscopy images. We believe pushing forward

this canonical problem could have numerous applications

beyond connectomics.

For connectomics, we present a new technique for cor-

recting “sloppy” annotations of EM images. “Sloppy” in

this context refers to manual pixel paintings that are done

hastily in as little time as possible as shown in Fig. 2,

which tend not to respect neuron boundaries [54]. We de-

sign our solution based on the wisdom in connectomics that

quick expert annotators tend to produce many geometri-

cal errors while maintaining correct object topology. Our

pipeline corrects these errors by leveraging and improv-

ing recent advances in label propagation across EM images

[51]. We present an end-to-end learning mechanism, EM-

Proof, which expands and corrects imperfect sloppy anno-

tations. We investigate this strategy and show that it offers

a segmentation with negligible morphological errors (negli-

gible variation of information), significantly outperforming

strong seed-growing techniques.

This suggests that a collaboration between a sloppy, but

very fast human annotator, and an effective machine learn-

ing tool, can cut down human resources resulting in a much

faster reconstruction compared to a purely manual one. Our

pipeline also manages to attain accuracy akin to the ground

truth. Since our pipeline relies on manual tracking of the

objects, object splits and merge errors that are common to

auto-segmentation pipelines, are not present in our solution.

Our pipeline is also able to take human-annotated skeletons

(as is often produced in connectomics; e.g., [3, 70, 76]) and

map them directly to volumetric objects.

EMProof takes an imperfect 3-D annotation and aims

to repaint it correctly using supervised learning methods.

Imperfect annotations are first skeletonized in 2-D, fol-

lowed by a novel fast segmentation algorithm that expands

these skeleton objects to accurately attain the correct neu-

ronal boundaries. We use skeletons rather than the anno-

tations themselves to ensure that object’s topology takes

precedence. This reduces the impact of the incorrect paint-

ing over the neurons boundaries that are often made by

the “sloppy” annotators. We also choose to go with the

skeletons and not the annotations themselves to make the

pipeline more invariant to the annotation and painting style

of the annotators (which vary widely).

We demonstrate the scalability of our pipeline by accel-

erating the reconstruction time of a new large-scale Octopus

vulgaris brain electron microscopy dataset [11], as well as

on the widely studied mouse cortex dataset of [41], offer-

ing a speedup of up to 8x over the manual annotation with

only marginal loss in quality. We demonstrate the accuracy

of EMproof using the public benchmark CREMI [29] (fly

brain) for 2-D instance segmentation. Although simpler,

our solution provides a new state-of-the-art for this canoni-

cal problem. Most seeded image segmentation methods fol-

low two steps [15, 17, 56, 65, 79]: first predicting the affin-

ity graph of the image, and then diffusing the seeds from

their initial locations into the foreground as defined by the

affinity graph. We replace this practice by training a neu-
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ral network, end-to-end, to predict labels directly, removing

the dependency on affinity maps. Utilizing this simpler de-

sign while outperforming strong baselines on challenging

EM tasks is likely to have direct impact on other biomedi-

cal problems.

We continue by demonstrating the ability of EMProof

to achieve super-resolution of instance segmentation, in

the context of connectomics, on two public connectomic

datasets (AC3 and a larger-scale Somatosensory Cortex

dataset [41]).

The main contributions of this paper are as follows:

• We improve the accuracy of the canonical problem of

seeded segmentation and demonstrate it on challeng-

ing electron microscopy images, offering a strong al-

ternative to watershed-like algorithms, while not re-

quiring intermediate affinity maps.

• We propose a new way to accelerate high quality

manual reconstruction of neurons from electron mi-

croscopy volumes (attaining ground truth quality on

several data sets).

• We define a new class of problems dealing with the

correction and proofreading of human annotations.

The rest of this paper is organized as follows. We review

related work in Section 2 and describe the methodological

issues in Section 3. The details of our experiments are pro-

vided in Section 4.

2. Related Work

Traditional approaches for seeded segmentation involved

three steps. The first would be the generation of affinity

graphs. These affinity graphs would then be used to define

seeds which would then be propagated to obtain a seeded

segmentation. Before the advent of deep learning, affinity

graphs were obtained by computing domain specific feature

maps such as color saliency [26, 60, 66] and random for-

est based constructions [24, 42, 84]. The pioneering work

of Ciresan et al. [21], which like ours focused on connec-

tomics, demonstrated that deep learning can produce supe-

rior border predictions [62]. Although, it still builds on a

traditional design after this step by employing non-trainable

algorithms such as diffusion on affinity graphs to expand

seeds [44, 58]. Non-trainable algorithms, while successful

in some cases [6,12], cannot be seamlessly adapted for other

use cases.

Several recent supervised learning studies show that

learning to diffuse seeds in space is possible, for exam-

ple, by learned watersheds [79] and learned random walk-

ers [17] and their variants [77, 78]. These have performed

exceedingly well; however, in similar to the model-based

optimization studies, they require a preliminary border map

or affinity graph on which learning to diffuse takes place.

The dependency of border maps is tackled by Flood Fill-

ing Networks (FFNs) by Januszewski et al. [39]. FFNs learn

to expand object seeds to their appropriate territories in one

step without the aid of border maps. The primary drawbacks

of the algorithm are related to scalability as it operates on

individual masks, thus requiring to iterate over thousands of

objects, sometimes lying within a single image tile. Another

drawback is that FFNs use complicated recursive learning

and non-trivial heuristics. Cross Classification Clustering

(3C) [51] improved the scalability of FFNs by offering an

end-to-end approach to jointly classify multiple object in-

stances, thereby improving scalability. However, 3C suffers

from a dependency on high-quality border maps to define

the initial seeds and propagate them across image sections.

Our proposed pipeline adopts 3C as a computational primi-

tive, whilst eliminating the dependency on border maps by

using an attention network which jointly predicts both the

borders and the segmentation results. Furthermore, we re-

design the 3C primitive to operate with small seeds, improv-

ing segmentation resiliency and improving the accuracy of

current seeded segmentation algorithms (see below).

Seeded Segmentation Seeded segmentation [17, 45,

79, 81] is a special case of instance segmentation where the

objects labels are already associated with predefined sets

of pixels (the seeds). Seeded segmentation is an impor-

tant problem both for general instance segmentation tasks

[22,31] and for interactive segmentation [18,52,59]. Grady

et al. [32] proposed the random walker algorithm which

uses linear diffusion to solve the seeded segmentation prob-

lem. Zhu et al. associated Gaussian Markov Random Fields

(GMRFs) with the problem of seeded segmentation [83].

Samuel et al. managed to learn context dependent poten-

tials for GMRFs [63]. Jancsary et al. pioneered the use of

flexible nonparmetric classifiers to determine the potentials

in a Conditional GMRF [38]. Bertasius et al. attempted

learning an end-to-end network for GMRF [9]. Cousty

et al. proposed watershed method based on min-max cri-

terion [23]. Although these methods have been used quite

successfully, they are limited by the quality of the initially

computed affinity graph. Our end-to-end trained pipeline

eliminates the dependency on affinity graphs in seeded seg-

mentation, and at the same time improving the accuracy of

the expanded objects, which we believe could be useful to

problems outside connectomics.

Attention Our initial experiments indicated that learn-

ing to expand very thin objects is hard to achieve, per-

haps since reliably propagating information from feature

masks over a long distance requires considerable network

structure. We propose to tackle this difficulty by includ-

ing an attention mechanism which has shown success in

various domains [37, 69, 82]. Vaswani et al. used atten-

tion mechanisms to produce top scores in machine trans-

lation [69]. Later, Hu et al. proposed attention mecha-

4275



nisms using Squeeze-and-Excitation Networks which use

channel-wise relationships to enhance the representational

power of the network [37]. In EMProof, we incorporate a

self-attention block to capture the long-range relationship

between the seeds and the pixels.

3. Methodology

In this section, we describe our automated correction of

human-made neuronal annotations. We begin with a top-

down description of our algorithm and continue with a de-

scription of our approach toward the end-to-end learning of

seeded segmentation. We then describe our architecture and

the self-attention mechanism used in our experiments while

providing our design insights.

3.1. Top-down Description

Our general approach is described in Fig. 1. The pipeline

takes as input a “sloppy” painting that is done by a quick

annotator who paints hastily on each image. Our EMProof

method learns how to map such an error-prone weak anno-

tation into one that has correct morphology and crisp bound-

aries. Applying such transformation one object at a time

is wasteful and will require to compute the neural network

model a linear number of times (in the number of object

instances). We use the idea of Cross Classification Cluster-

ing (3C) [51] as shown in Fig. 4 to perform this classifica-

tion by computing the neural network logarithmic number

of times. First, to alleviate the dependency on the style of

annotation and keep it robust, we compute skeletal seeds

for each of the instance objects in the image. We then col-

orize the labels of the skeletons using l-length strings using

k different colors, where l= log(n) and n is the number of

distinct skeleton labels in the input image. This yields l dif-

ferent skeleton images, where each image now only has k

colors. Each pair of skeleton and EM images is then fed

into the network. Each computation of the model will pro-

duce an image with k expanded skeletons. The 3C mech-

anism guarantees that the l= log(n) model predictions can

be concatenated pixel-wise and uniquely remapped to the

labels appearing in the input image (allowing arbitrary num-

ber of instances). Hence, all expanded skeleton images form

together the final result (instance segmentation).To accom-

plish the above we redesigned 3C entirely so as to work with

thin and/or round seeds (sparse inputs) rather than densely

segmented images as in [51], and unlike other works to op-

erate directly on microscopy images without affinity maps.

3.2. Architecture

The general network architecture, as given in Fig. 3, is

a fully convolutional neural network [48] borrowing design

principles from the widely used semantic segmentation net-

work U-Net [62]. Our experiments supported replacing the

encoder part of U-Net with the SE-ResNext-50 blocks [37].

In addition, the deepest representational features are trans-

formed by self-attention block, where it encourages the

feature tensor X∈R
C×W×H to focus closely on the input

seeds and the object boundaries. After that, we split the

network into two branches, segmentation and boundary pre-

diction, to force the network to learn the spatial integrity of

the instances. Each of the branches has the same architec-

ture. The decoders take as input the aggregated information

O∈R
(C+C

′)×W×H from a self-attention block. To capture

multi-scale information, decoders are concatenated with an

encoder using the same strategy of U-Net, and the upsam-

pled outputs of the decoders are aggregated into a hypercol-

umn. Last, a fully convolutional layer is applied to make

the prediction for each branch; one branch predicts object

boundaries while the other predicts k-class instance seg-

mentation. We present below results from ablation studies

corroborating the above design choices.

3.3. Self Attention

The self attention mechanism has been shown to be suc-

cessful in various machine learning tasks, such as machine

translation, image analysis, video classification and ques-

tion answering [37,69,82]. This is due to the fact that self at-

tention helps the network to learn long-range dependencies

and non-local features. Generally, an attention function is

a mapping between the query, key-value pairs and outputs,

which together inform the network where to “attend” when

facing different queries. In EMProof, We modified the suc-

cessful U-Net architecture using a self-attention module as

shown in Fig. 3, in an attempt to force the network to focus

on the input seeds and their topographic association to the

far away boundaries.

4. Experiments

We evaluate the efficacy of EMProof in multiple ways.

In the first experiment, we tested the usefulness of EM-

Proof in correcting sloppy annotations made by experts on

large-scale datasets. We present both the running time of

EMProof and also an empirical study of a real annotator.

Altogether, we present an 8-fold improvement in the nearly

error-free reconstruction time, compared to the workload of

experts.

While EMProof is used to perform 3-D instance correc-

tions, it solves the problem of seeded segmentation along

the way in 2-D. We aim to benchmark the performance

of this core aspect of EMProof in order to demonstrate the

accuracy and generality of the pipeline, compared to alter-

natives, and to aid other biomedical problems with a new

effective technique for seeded segmentation. We test the

expansion capabilities of EMProof both on small rounded

seeds and on skeleton-like objects, which are the inputs to

EMProof. We use the challenging CREMI benchmark and

datasets for connectomics [2] to compare our solution to
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Figure 3. General network architecture of EMProof. An input of weak annotation is encoded with a UNET with self-attention and hyper-

column feature melting. A second branch encourages the network to produce crisp borders for k-class instance segmentation. A general

view of the self-attention block is at the bottom left. The input (encoded features) is convolved with 1 × 1 kernels to produce key, query

and value representations. The aggregated representation is concatenated with the input to form the attention’s output.

existing methods. Our solution offers an improvement to

existing highly accurate methods [17, 79] while being an

end-to-end trainable without a dependency on affinity maps,

hence defining a new state-of-the-art.

We also demonstrate the ability of EMProof to correct

erroneous segmentation by using it to refine coarse segmen-

tation in a super resolution settings. EMProof when used on

low resolution images can accelerate manual reconstruction

efforts in labs which lack computational power required to

work with large datasets. We thus evaluate the predictive

power of EMProof on the widely studied AC3 mouse cortex

dataset (a large saturated human-made reconstruction) [41].

We show that EMProof can finely resolve the errors made

by a low resolution reconstruction. EMProof accelerates the

reconstruction from [41] by several folds while operating on

coarse segmentations, down-sampled by a factor of 16x in

each dimension (as shown in Fig. 5). EMProof manages to

achieve an average 2-D VI score of 0.04.

We used standard metrics such as Variation of Informa-

tion (VI) [50] and ARAND, which is the complement of

Adjusted Rand index [68], for the experiments.

4.1. Implementation Details

Loss. As shown in Fig. 3, the network consists of

two branches. The first branch predicts the multi class

mask and the second predicts the boundary map. Cross-

Entropy loss was used for the segmentation branch. For

the boundary detection branch, several loss functions such

as dice [53], lovsaz [8] and binary cross entropy loss were

explored and evaluated. From our experiments we con-

clude that weighted sum of dice and cross entropy losses

yields the best segmentation results. The weights set for

dice and binary cross entropy losses were 0.25 and 0.75,

respectively. The total loss for the network was defined

as the weighted loss of the individual branches: ltotal =
λl segmentation + (1 − λ)l border, where λ is a hyperparame-

ter used to balance the two branches outputs, lsegmentation and

lborder are the losses determined from the segmentation and

boundary prediction branches, respectively.

Training Strategy. The networks were trained with

the Stochastic Gradient Descent (SGD) algorithm with mo-

mentum of 0.9. The learning rate was set at 0.01 and was

reduced in half every 7 epochs. The training batch size

was 12. The networks were trained for 40 epochs on each

dataset. For the first 10 epochs, the hyperparameter λ was
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Figure 4. Overview of the internal workings of 3C within EM-

Proof. First we colorize the labels by k different colors l= log(n)
times where n is the number of objects in the image. This yields l

different skeleton images, where each image now only has k col-

ors. Each skeleton and EM image are then fed into the network.

The model will then produce an expanded version of the skeleton

images. All expanded skeleton images form together the final re-

sult (instance segmentation).

set to 0.4 and was subsequently reduced to 0.2, which was

done in order to allow better gradient flow towards the seg-

mentation arm at the start of training. Experiments were

carried out on a Tesla V100 GPU with 32 GB of VRAM.

The total training time was 4 hours per dataset.

4.2. Large-scale Reconstruction

We used two large-scale datasets to evaluate the scala-

bility and speed of our technique: Octopus vulgaris Brain

[11] and Somatosensory Cortex [41]. We demonstrate the

ability of EMProof to correct sloppy annotations on both

datasets. We assess the performance and speedup of EM-

Proof on the octopus dataset by timing the reconstruction

time of a sloppy versus meticulous annotation work. We

also quantify the ability of EMProof to solve the super res-

olution task and produce a qualitatively meaningful recon-

struction of complicated 3-D objects on the Somatosensory

Cortex dataset.

Somatosensory Cortex. This dataset served in a pio-

neering connectomics study of the mouse somatosensory

cortex [41]. EMProof improved the resolution of a seg-

mentation that was down sampled by a factor of 24=16 in

each dimension. EMProof performed a difficult task since

the EM images were also given at low resolution, making

border detection highly challenging. The algorithm yet is

able to give a fast and accurate overview of the shape of the

complicated object as in Fig. 5. Reconstruction time took

20 minutes.

Figure 5. EMProof reconstructs dendrites from mouse cortex [41].

EMProof corrected annotations that were distorted by a 16x down-

sampling in each dimension.

Octopus vulgaris. The Octopus dataset is a 13K×7K

pixels × 117 sections image-stack, 4 nm per pixel and 30

nm thick sections, collected from the vertical lobe of an

adult Octopus vulgaris, shared with us for the purpose of

this study by two leading labs which used our tool for con-

nectomics reconstruction. For ground truth, high-quality

and sloppy annotations were prepared in 8 hours and 1 hour,

respectively. The training accuracy reached 96% and was

qualitatively similar to the predictions on the test set.

4.3. Seeded Segmentation

EMProof relies on highly descriptive input of 2-D skele-

tons. To assess its predictive power, we trained EMProof

on the more difficult task of expanding small round seeds.

This allowed us to directly compare our technique to other

works dealing with seeded segmentation. We use the chal-

lenging CREMI dataset [29] to evaluate our performance

and benchmark it against standard pipelines mentioned be-

low. CREMI is a dataset from MICCAI Challenge on

Circuit Reconstruction from Electron Microscopy Images

which is split into three datasets, each containing one im-

age stack of 125 sections each from an adult Drosophila

melanogaster brain tissue with the same EM image dimen-

sions of 1250×1250. In order to ensure unbiased and fair

benchmarking, we verify that our learning setup is identical

to the ones previously published. Fig. 6 demonstrates the

ability of EMProof to handle out-of-focus images and chal-

lenging geometries while managing to produce crisp and

consistent boundary maps.

The following pipelines, which are also seeded ap-

proaches, are compared to our work. Random Walker.

We slightly modified our network to directly predict bor-

4278



Figure 6. EMProof: Precise seeded segmentation of a blurry im-

age and an image with thin objects from the CREMI dataset.

VI WS RW Ours

CREMI A 0.053 0.142 0.031

CREMI B 0.189 0.283 0.161

CREMI C 0.211 0.433 0.207

Total 0.151 0.286 0.133

ARAND WS RW Ours

CREMI A 0.013 0.033 0.008

CREMI B 0.043 0.149 0.015

CREMI C 0.045 0.228 0.025

Total 0.033 0.137 0.016

Table 1. Comparison between EMProof and the common baselines

Watershed and Random Walker on the CREMI dataset. Metrics

used are ARAND and VI.

der probability maps by removing the classification branch.

After border prediction, we computed the instance segmen-

tation result using the standard Random Walker algorithm

given in [32]. Watershed: For the Watershed algorithm,

we used the same predicted boundary probability and subse-

quently, we applied seeded watershed algorithm. Learned

Watershed: We directly compared our results with the

numbers published in [79]. Learned Random Walker:

We compare our results with the numbers published in [17]

while ensuring that same dataset and processing were used.

All experiments take round seeds as input for bench-

marks in order to ensure as fair a comparison as possible.

As shown in table 1, on all three dataset of CREMI, we

largely exceed the result of watershed and random walker

which used affinity graphs. This indicates that an end-to-

end trained deep learning technique can outperform stan-

dard baselines for seeded segmentation.

We compare EMProof to the state-of-the-art in seeded

segmentation in connectomics in the context of two ex-

VI LRW LWS Our: Our: boundary

boundary + segmentation

CREMI A 0.0620 - - 0.068

CREMI B 0.193 - - 0.171

CREMI C 0.232 - 0.214 0.210

Total 0.162 0.376 0.168 0.150

ARAND LRW LWS Our: Our: boundary

boundary + segmentation

CREMI A 0.011 - 0.010 0.007

CREMI B 0.045 - 0.030 0.025

CREMI C 0.061 - 0.037 0.033

Total 0.039 0.082 0.026 0.021

Table 2. Comparison of Learned Random Walker, Learned Water-

shed, and EMProof on the seeded segmentation task on the public

CREMI dataset. Metrics are adapted to those used in the previous

state of the art. EMProof: In “Boundary,” watershed is computed

using the predicted boundaries; In “Boundary+segmentation,” the

3C [51] results of EMProof are aggregated.

periments. In the first experiment, one path, we train our

model to detect borders and then proceed with seeded wa-

tershed. We do not ablate any component of our architec-

ture (squeeze-excitation, self-attention, hypervolume etc.).

Our improved border predictions combined with standard

region-growing algorithms outperforms strong baselines in

connectomics (table 2). This suggests that seed-aware bor-

der prediction is key to the success of EMProof.

In the second experiment, we evaluate EMProof us-

ing both the border and segmentation outputs. Compared

to the borders-only experiment above, EMProof indeed

achieves further improvements in accuracy, although only

marginally. This suggests that much of the success of EM-

Proof is due to the seed-aware learning setup.

From table 1, we show quantitatively that EMProof out-

performed all standard baselines when skeletons are taken

as input, offering improvements across all three datasets.

We also show from table 2 that EMProof is able to adapt to

seeds that are not skeletons, while outperforming the state-

of-the-art on two out of the three volumes.

4.4. Ablation Study

To further study the effectiveness of the EMProof archi-

tecture and the contribution of each of our design choices,

we conducted extensive ablation experiments on the val-

idation set of CREMI. Notably, as shown in table 3, a

two-branch setting is essential for achieving top scores for

seeded segmentation. Furthermore, the self-attention block

helps to improve accuracy across the board, demonstrating

its importance for EMProof.
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VI CREMI A CREMI B CREMI C

U-Net 0.113 0.679 0.558

U-Net + SCse [37] 0.104 0.559 0.428

U-Net + self-attention 0.068 0.419 0.347

U-Net + hypercolumn [34] 0.103 0.537 0.199

U-Net + two branch 0.041 0.316 0.198

U-Net + all (proposed) 0.031 0.161 0.207

ARAND CREMI A CREMI B CREMI C

U-Net 0.033 0.057 0.658

U-Net + SCse 0.020 0.259 0.427

U-Net + self-attention 0.015 0.023 0.034

U-Net + hypercolumn 0.031 0.053 0.629

U-Net + two branch 0.013 0.021 0.032

U-Net + all(proposed) 0.008 0.015 0.025

Table 3. Comparison of different architectures by ablating EM-

Proof. Metrics are computed on skeletal inputs and 3-pixel wide

borders as in table 1.

4.5. Super Resolution

We assessed the robustness of EMProof by testing its

ability to correct coarse segmentation that was produced

on a low resolution image. To the best of our knowledge

we are first to present a technique that allows annotators to

work on low resolution images using machine learning to

enhance the results of their segmentation. In this setting,

a low resolution electron microscopy image is fed to EM-

Proof alongside a coarse segmentation in order to correct

the errors evident in the coarse segmentation. As with the

other scenarios described in the paper, the coarse segmenta-

tion is skeletonized prior to the correction by EMProof.

We demonstrate this use case on the AC3 dataset which

is an image stack used for benchmarking machine learning

algorithms [41]. The AC3 dataset consists of 256 densely

annotated images cropped from the larger 100,000 cubic

microns mouse cortex volume by (∼80GB on disk) which

was used in our large-scale experiments. Fig. 7 depicts pre-

dictions of high resolution segmentation from low resolu-

tion segmentation with a 16-folds improvement factor (in

X and Y). The ability of our technique to super-resolve a

segmentation from low resolution microscopy images, with

negligible errors compared to ground truth, demonstrates

resilience to poor image quality.

We quantified performance in this experiment by com-

paring the improvement in the segmentation quality before

and after EMProof (Fig. 8). The improvement factor is de-

fined as the ratio between VI score after correction to the VI

score before correction. We observe that significant portion

of the dataset obtain an improvement factor of 4-8x, with

the majority achieving a VI under 0.04.

5. Conclusion

In this work, we demonstrate a simple end-to-end learn-

ing framework that outperforms the state-of-the-art of 2-D

Figure 7. First two rows show examples of images from the AC3

dataset [41]. The last row magnifies a small region for better clar-

ity. Columns show coarse segmentation inputs to EMProof, the

super-resolved predictions of EMProof and ground truth.

Figure 8. Comparative study of the impact of EMProof on

“sloppy” annotations. The left figure is Histogram of Improve-

ment Factor and the right is a comparison of VI before and after

correction

seeded segmentation of electron microscopy images, elim-

inating the dependency on affinity maps. We use this tech-

nique to accelerate the manual reconstruction of neurons

from electron microscopy datasets. We believe our ap-

proach may apply to other reconstruction tasks in which

an annotator provides a less accurate initial representation

of an subject matter while relying on machine learning to

improve and complete the task.
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Berger, Dan Cireşan, Alessandro Giusti, Luca M Gam-

bardella, Jürgen Schmidhuber, Dmitry Laptev, Sarvesh

Dwivedi, Joachim M Buhmann, et al. Crowdsourcing

the creation of image segmentation algorithms for connec-

tomics. Frontiers in neuroanatomy, 9:142, 2015. 4
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