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Abstract

In biological image recognition, different species might
look similar resulting in a small margin, which causes er-
rors in labeling images. Pollen grain image classification
heavily suffers from both problems preventing from build-
ing well-calibrated recognition models. In this research,
we aim to filter out aleatoric uncertainty caused by noisy
labeling and similar shape of pollen species. To estimate
aleatoric uncertainty, we propose a new Bayesian Focal
Softmax loss function. It uses the softmax activation, which
is more convenient for a single-label tasks compared to the
original Focal loss based on the logistic function. The pro-
posed loss function better estimates aleatoric uncertainty
increasing the overall model performance. For evalua-
tion, we used two datasets, POLLEN13L-det containing 13
classes of allergic pollen and POLLEN20L-det containing
additional honey plant pollen species. We achieved the
state-of-the-art results for both of them by applying the pro-
posed loss function on RetinaNet. It improved the mAP and
significantly reduced the variance compared to the regular
Focal loss with softmax and provided much better aleatoric
uncertainty estimate compared the Bayesian Focal loss with
sigmoid activation.

1. Introduction

Seed plants produce pollen that consists of tiny grains
looking like a dust. Each plant produces its own pollen re-
sulting in an endless variety of possible pollen species, their
distinguishing is required in agriculture, immunology, ar-
chaeology, and criminology.

Today, almost 30% of people suffer from pollen allergy
that is also known as pollinosis. Without timely measures,
it is likely to turn into asthma, which can have a fatal out-
come without treatment. In immunology, counting of pollen
grains is provided by aeropalinological monitoring [39,48].
Aeropalinological monitoring provides information about

the annual start and duration of the pollen release season
to indicate the start time of treatment to control symptoms.

Honey quality control also uses pollen recognition. To-
day, according to various data, 50 to 80% of the honey mar-
ket is adulterated [15]. The pollen analysis of honey is cur-
rently recognized as the most accurate regarding detecting
counterfeit [46].

Automated pollen recognition can be applied in paleopa-
lynology — the study of fossil pollen grains and spores to
form a view of the flora of the explored period [47]. The ex-
pert can face a difficulty to recognize dried, deformed and
destroyed pollen grains. Criminology can also be a field to
apply pollen recognition as pollen data is actively used in
forensic palynology [28].

All the mentioned fields require automated pollen grain
classification based on microscope images. Within a taxon
pollen grains vary in their appearance, while pollen of dif-
ferent taxa looks the same due to the similar shape, usually
round one. This leads both to labeling errors and a small
margin between classes in the latent space, which hampers
building precise classifiers.

This is a widespread problem in biological images,
where subjects tend to have similar characteristics even
when they belong to different classes. The corresponding
images are called overlapping samples for they are usually
located in overlapping regions in any feature space. They
also cause the class overlapping problem, which is consid-
ered one of the most complicated in machine learning [30].
In computer vision, the problem becomes even trickier as
it causes labeling inaccuracies of the images as the objects
from different classes may look similar to an assessor [38];
this also complicates classification.

This problem is natural in multi-label setting [33] when
classes may even include other classes. In this case, re-
searchers aim to train networks so they can assign high
probability to many classes simultaneously. On contrast,
this is unlikely to help in single-label overlapping class
problem, which is more widespread in biological image
recognition. In this case, overlapping classes increases
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so-called aleatoric uncertainty of the models trained on
the corresponding data. This uncertainty is also increased
by the erroneous labeling caused by the class similarity.
Bayesian deep learning [21] provides tools to estimate
and reduce aleatoric uncertainty. The only work applying
Bayesian deep learning to the pollen grain recognition prob-
lem is [23]. It adopted RetinaNet [31] for a Bayesian frame-
work and proposed the modified loss functions, Bayesian
Focal loss and Bayesian Smooth L1 loss. However, Focal
loss and Bayesian Focal loss use logistic activation function
suitable for multi-label class overlapping problems such as
in COCO dataset [32]. To tackle these problems, we pro-
pose a new Bayesian Focal Softmax loss based on softmax
activation, which is more suitable for the most of computer
vision tasks as they are single-labeled.

More precisely, we aimed to answer the following re-
search questions:

RQ1: Can a loss function designed for single-label over-
lapping classes improve the detection score of pollen in im-
ages compared to a multi-label overlapping class loss func-
tion?

RQ2: Can this loss function effectively scale when the
number of classes increases?

To answer these questions, we propose a novel loss func-
tion to model homoscedastic aleatoric uncertainty for the
detection task (i.e. joint localization and classification) de-
signed for single-label overlapping classes problem. The
paper contributions are the following:

1. A new loss function for the single-label classifica-
tion task with overlapping classes for modeling the
aleatoric uncertainty called Bayesian Focal Softmax
Loss.

2. The state-of-the-art result for the task of pollen detec-
tion on two benchmarks: POLLEN13L-det and its ex-
tended version, POLLEN20L-det.

Figure 1. Example of an image from a light microscope slide taken
from a pollen sampler. The slide contains Urtica pollen and non-
pollen fractions.

2. Related Work
2.1. Pollen Recognition

The problem of automation of pollen recognition was
first identified in 1968 [13] based on processing pollen im-
ages obtained using a microscope. Since then, researchers
have been trying to solve the problem suggesting various
methods. In works [3, 5–8, 41, 42], the task is solved by
extracting of pollen image natural features and applying
classical machine learning methods to them, such as Sup-
port Vector Machine, Linear Discriminant Analysis, Ran-
dom Forest, k-Nearest Neighbors, and others.

Recent papers on the problem are mostly based on deep
learning. In papers [9, 10, 14, 23, 43, 44], authors adapted
the existing state-of-the-art convolutional neural networks
for pollen recognition, such as VGG-16 [45], AlexNet [27],
DenseNet [19] for classification.

The main drawback of most works on this task is the
ignorance of the pollen detection step. This step is the key
for automating recognition in general, since images from a
pollen sampler usually contain several pollen grains as well
as objects that are not pollen. Fig. 1 shows an image of
an pollen sampler obtained using a light microscope. Only
a few authors [14, 23] addressed this problem via adopted
RetinaNet [31] and Faster R-CNN [16] for detection and
achieved superior results.

The lack of open pollen datasets labeled for the detection
task complicates the building of models. The only bench-
marks for the tasks of pollen detection and classification
were presented in paper [23]. The authors collected two
datasets, POLLEN13L-det containing 13 classes of allergic
pollen and POLLEN20L-det containing additional 7 honey
plant pollen species. However, the reported results were
only on POLLEN13L-det, studying of POLLEN20L-det re-
mains topical.

However, these datasets are still quite small, thus,
POLLEN20L-det consists of only 2413 images of 20
classed. This existing lack leads to high epistemic uncer-
tainty of trained models. Moreover, here is a risk of high
aleatoric uncertainty because of the overlapping classes
problem inherent in pollen data and possible labeling er-
rors discussed in Sec. 1, which requires the use of Bayesian
deep learning.

2.2. Bayesian Deep Learning

Different types of uncertainty influencing predictive
models errors in computer vision tasks were first identified
by Gal et al. [20]. Aleatoric uncertainty reflects the noise
level in the training sample and can be used at the prediction
stage. Aleatoric uncertainty is divided into homoscedas-
tic — homogeneous for the entire distribution of data, and
heteroscedastic — heterogeneous for different data objects.
Although the estimation of heteroscedastic uncertainty is
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generally more useful for computer vision problems [20],
its modeling requires changes in the architecture of the neu-
ral network. Also, heteroscedastic uncertainty application
in practice requires the development of methods to postpro-
cess prediction for a specific object.

As studies show [21], modeling of homoscedastic
aleatoric uncertainty can be performed based on the mod-
ification of loss functions only, and not of the whole ar-
chitecture; which is less laborious. Its modeling leads
to increase the accuracy of solving computer vision prob-
lems [21]. Work [21] considers the application of account-
ing for this type of uncertainty for a multitasking architec-
ture that solves the problems of semantic, instance segmen-
tation, and image depth prediction.

Recently, Bayesian deep learning has been widely used
for object detection [4, 17, 26, 35–37, 40]. These works
mostly focus on the other type of uncertainty, epistemic.
Little research is devoted to the evaluation of aleatoric un-
certainty [26, 29]. However, the existing works almost do
not study the modeling of homoscedastic aleatoric uncer-
tainty for the detection problem, although this may help
isolate noise from the data and increase the reliability of
the model.

The only work that studies homoscedastic aleatoric
uncertainty for pollen recognition is [23], described in
Sec. 2.3.

2.3. Bayesian Deep Pollen Recognition

Work [23] is based on [24] adopted RetinaNet [31] for a
Bayesian framework by proposing the modified loss func-
tions, Bayesian Focal loss and Bayesian Smooth L1 loss, to
model homoscedastic aleatoric uncertainty.

First, we describe these loss functions, since they are the
baseline to our work. Let fW (x) denote the output of a neu-
ral network with weights W on input x and ϵ be the norm
of difference between the ground truth value and model pre-
diction, or the model error:

ϵ = ∥y − fW (x)∥.

The following loss function was obtained for the local-
ization task, called Bayesian Smooth L1 loss:

BSmoothL1(ϵ) =

=


ϵ2

2σ2
+ log σ, if ϵ <

1

β2

−β2ϵ log τ + log τ +
1

2σ2β4
+ log σ, otherwise,

(1)

where τ = 1 − erf

(
1

β2
√
2σ2

)
with erf the Gauss error

function [2] and σ2 is the variance that represents the ho-
moscedastic aleatoric uncertainty, 1/β2 is the threshold for
switching from the L1 to L2 function.

Next, the likelihood function was built for the classi-
fication task, which is the Bayesian Focal loss modeling
aleatoric uncertainty defined as:

BFL
(
p(y|fW (x), σ

)
= −

(
1

σ
(1− pt)

σ−2
)γ

×

×
(

1

σ2
log pt − log σ

)
,

(2)

where σ2 is the variance that represents homoscedastic
aleatoric uncertainty, γ is the modulating factor, BFL is

Bayesian Focal loss and pt =

{
p, y = 1,

1− p, otherwise.
The detailed derivation of the loss functions is described

in [24].
In [23], a classification subnetwork is based on a logis-

tic activation as a likelihood function, as suggested in the
original RetinaNet [31], authors of which have chosen it in-
stead of the classical softmax activation function because
classes of COCO dataset [32] are overlapping (e.g. “face”
class is a part of “person” class). However, it is designed
for multi-label setting, while each pollen grain belongs to
one plant species only. Thus, we propose to use the soft-
max activation function in a classification subnetwork for
Focal loss. Furthermore, we propose a new Bayesian Focal
Softmax loss to model homoscedastic aleatoric uncertainty
and combat the small margin issue.

3. Bayesian Focal Softmax Loss
This section presents the derivation of the Bayesian Fo-

cal Softmax loss function for the single-label classification
task, which models aleatoric uncertainty using the softmax
activation function, p = Softmax

(
fW (x)

)
.

The Focal loss function [31] is used for classification and
defined as:

FL(pt) = −α · (1− pt)
γ · log pt, (3)

where

pt =

{
p y = 1

1− p otherwise
,

and α and γ are constants.
The Bayesian version of the Focal Softmax loss function

can be written as:

BFSL (pt)) = −α

(
1

σ2
log pt − log σ

)(
1− 1

σ
p

1
σ2

t

)γ

.

(4)
Let us derive it. As in [21, 23, 24], the softmax activation
function taken as a likelihood function can be interpreted as

4255



the Boltzmann distribution where the input is scaled by σ2:

p(y|fW , σ) = Softmax

(
1

σ2
fW (x)

)
. (5)

Here y is a class label, fW (x) is a class predicted by
the model for given x, σ2 reflects aleatoric uncertainty. Let
fW
c (x) denote the c-th element in vector fW (x).

As we aim to maximise the likelihood, we can use Focal
loss, which it co-directed with the log likelihood. To use it
effectively, we need to release fW (x) in the softmax func-
tion from the scaling factor 1/σ2 and obtain Bayesian Focal
Softmax loss, BFSL:

BFSL(pt) = FL
(
p
(
y = c|fW (x), σ

))
= (6)

= −α
(
1− p(y = c|fW (x), σ)

)γ · log
(
p(y = c|fW (x), σ)

)
.

(7)

Let us derive the first multiplier in Eq. 7:

1− p(y = c|fW (x), σ) =

1−
exp

(
fW
c (x)

1

σ2

)
∑

c′ exp

(
fW
c′ (x)

1

σ2

) =

=

1

σ

(∑
c′ exp

(
fW
c′ (x)

1

σ2

)
− exp

(
fW
c (x)

1

σ2

))
1

σ

∑
c′ exp

(
fW
c′ (x)

1

σ2

) =

=

1

σ

(∑
c′ exp

(
fW
c′ (x)

1

σ2

)
− exp

(
fW
c (x)

1

σ2

))
(∑

c′ exp
(
fW
c′ (x)

)) 1
σ2

=

= 1−

1

σ

(
exp fW

c (x)
) 1

σ2(∑
c′ exp

(
fW
c′ (x)

)) 1
σ2

= 1− 1

σ
p

1
σ2

t

Substitute Eq. 9 and Eq. 10 in Eq. 3:

1− p(y = c|fW (x), σ) = 1− 1

σ
p

1
σ2

t . (8)

Now, let us derive the second multiplier in Eq. 7:

log
(
p(y = c|fW (x), σ)

)
=

=
1

σ2
fW
c (x)− log

(∑
c′

exp

(
1

σ2
· fW

c′ (x)

))
=

=
1

σ2
· fW

c (x)− 1

σ2
· log

(∑
c′

exp
(
fW
c′ (x)

))
−

− log


∑

c′ exp

(
1

σ2
· fW

c′ (x)

)
(∑

c′ exp
(
fW
c′ (x)

)) 1

σ2

 .

Note that the following statements are fulfilled:

1

σ2
· fW

c (x)− 1

σ2
· log

(∑
c′

exp
(
fW
c′ (x)

))
=

1

σ2
· log pt,

(9)

log


∑

c′ exp

(
1

σ2
· fW

c′ (x)

)
(∑

c′ exp
(
fW
c′ (x)

)) 1

σ2

 ≈ log σ. (10)

As a result, we obtain:

log
(
p(y = c|fW (x), σ)

)
=

1

σ2
log pt − log σ. (11)

Let us substitute Eq. 8 and Eq. 11 in Eq. 7 and obtain
Eq. 4. Finally, we replace s = log σ2 to simplify Eq. 4:

BFSL(pt) = −α
(
e−s log pt −

s

2

)(
1− e−0,5spe

−s

t

)γ
.

As a result, we obtain a Bayesian modification of the Focal
loss function for the classification problem with activation
function Softmax. As for the modification of the cross
entropy, the equality is fulfilled for s = 0.

Thus, for the multi-task Bayesian RetinaNet on softmax
with output y1 for a localization task and y2 for a classifica-
tion task, we obtain the following minimization objective:

L
(
fW (x), y1, y2, σ1, σ2

)
=

= BSmoothL1

(
fW (x), y1, σ1

)
+

+BFSL
(
fW (x), y2, σ2

)
,

(12)

where BSmoothL1

(
fW (x), y1, σ1

)
is the

Bayesian Smooth L1 loss for y1 from Sec. 2.3,
BFSL

(
fW (x), y2, σ2

)
is the Bayesian Focal Soft-

max loss for y2. This multi-task loss is optimised with
respect to W as well as σ1 and σ2.

The code implementing the proposed loss is available
at https://github.com/NatalieHanzhina/
bayesian_retinanet_tf2/tree/softmax.

4. Data
For experimental evaluation, we use a public dataset

POLLEN20L-det available at https://www.kaggle.
com/nataliakhanzhina/pollen20ldet. It con-
tains 20 classes of plant species including 13 allergenic
plant species and 8 honey plants with the one being both al-
lergenic and honey. Each image can contain approximately
from 1 to 30 pollen grains. In total, it has 2413 images with
7745 pollen grains. Thus, our research covers two applica-
tions of pollen recognition, aeropalynology and melissopa-
lynology.
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Examples of images are presented in Fig. 2. As seen,
pollen grains vary depending on their view (equatorial, po-
lar), observed layer (exine, intine), focal, and angle of rota-
tion. However, pollen of different taxa looks similar due to
their shape. For example, two species belong to one genus,
Angelica archangelica and Angelica sylvestris with almost
the same shape even to most of experts, which significantly
complicates the recognition. The dataset is also labeled by
one annotator that can potentially lead to labeling errors.
These two factors can cause high homoscedastic aleatoric
uncertainty. In Sec. 5 we describe how to filter out this type
of uncertainty using our proposed loss function.

5. Experiments and Results Discussion

5.1. Evaluation

We base our study on POLLEN20L-det dataset, de-
scribed in Sec. 4. As no results were reported, no direct
comparison is possible with other works besides [23].

To better align the study with the baseline [23], in our
experiments we also use POLLEN13L-det dataset, which
is de-facto a subset of POLLEN20L-det containing its 13
classes of allergenic pollen. Also, we evaluated our models
only on honey plant pollen to examine the generalization
ability of our proposed loss.

We evaluated the proposed loss function, Bayesian Focal
Softmax loss, and RetinaNet trained with the softmax acti-
vation function and the baseline models, the original Reti-
naNet and Bayesian RetinaNet (both based on sigmoid ac-
tivation function) on all three datasets. For bravety, we call
the model with the proposed loss Bayesian RetinaNet on
softmax.

As a backbone for both RetinaNets and both Bayesian
RetinaNets, we used ResNet-50 [18]. We assume that heav-
ier backbones, such as ResNet-101 and ResNet–152, may
lead to overfitting because the datasets we use are small.
The architectures of Bayesian RetinaNets were the same as
the original RetinaNet model and RetinaNet on softmax.
The changes were made only for the losses replaced with
the Bayesian objectives, baseline and the proposed one. For
all the models, we used image scale equal to 800.

Experiments were conducted on two GeForce
TITAN RTX GPU with 24 Gb VRAM. The orig-
inal implementation of the RetinaNet model was
taken from the github repository [12] based on the
tensorflow-keras [1] framework. The implementa-
tion of Bayesian RetinaNet was taken from [22] also based
on the tensorflow-keras [1] framework.

First, we trained the original RetinaNet model apply-
ing the Adam optimizer [25] with an initial learning rate of
0.00001 and early stopping. We applied the standard aug-
mentation techniques such as horizontal flips, shifts, rota-
tions.

Next, following [23], we trained our models, which are
RetinaNet on softmax and Bayesian RetinaNet on softmax,
using the same optimizer and hyperparameters. We ini-
tialized s1 = log σ2

1 for the localization task with 1.0,
s2 = log σ2

2 for the classification task with 0.0.
On the entire dataset, POLLEN20L-det, Bayesian mod-

els training took less than 30 epochs, which is about an hour
and a half in average, while non-Bayesian models training
took more than 30 epochs, about two hours in average. We
trained 5 distinct models with different random seeds for
all the networks to collect statistics on the test set. This
method was preferred to the cross-validation because of the
small dataset size. The dataset train/test split was 75/25,
respectively.

5.2. Quantitative Results

Table 1 compares RetinaNet on softmax, Bayesian Reti-
naNet on softmax, and the same models on sigmoid acti-
vation function on POLLEN20L-det. Table 2 compares the
same four models on POLLEN13L-det. The comparison of
these models performance on honey pollen data can be seen
in Table 3.

5.3. Qualitative Results

Here, we visualize the feature spaces obtained with
Bayesian RetinaNet models trained with Bayesian Focal
loss on sigmoid and the proposed Bayesian Focal Soft-
max loss. Fig. 3 demonstrates the clusters of pollen im-
age embeddings, mapped to 2-dimensional space using
UMAP [34]. The plots show that the proposed loss results
in a more untangled latent space, where the points of one
taxon are clustered more tightly than in the latent space gen-
erated by the sigmoid-based loss. On both plots Angelica
archangelica and Fagopyrum esculentum taxa are closely
located as some of their pollen views looks similar, while on
the Bayesian Focal Softmax loss plot Angelica archangel-
ica and Angelica sylvestris clusters are far from each other.
Angelica sylvestris and Salix are better clustered, the Acer
cluster becomes more convex, which is consistent with the
quantitative results, as their mAP increased. The Corylus
points also better clustered resulting in an increase in mAP
by 5.44%.

One can conclude that the proposed loss function pro-
vides a bigger margin and more separate clusters compared
to Bayesian Focal loss on sigmoid, which leads to higher
performance.

5.4. Result Analysis

The Bayesian models outperformed the non-Bayesian
models in terms of mAP across all three datasets. The
difference between mAPs of sigmoid-based models is 0.2–
2.8%, while the difference between mAPs of softmax-based
models is 0.6–7%. Thus, the impact of modeling aleatoric
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Figure 2. Examples of different pollen classes images from POLLEN20L-det dataset. Names written with italic are species, names written
with regular font are genus.

Table 1. Comparison of RetinaNet trained with original loss functions, RetinaNet trained with the softmax activation of Focal loss, Bayesian
RetinaNet trained with Focal sigmoid-based loss and Bayesian RetinaNet trained with the proposed Focal softmax-based loss functions on
POLLEN20L-det dataset. Focal sigmoid-based and Focal softmax-based losses model homoscedastic aleatoric uncertainty. Here, mAP is
the mean average precision presented for different IoU thresholds and object sizes (small, medium, large). The results are presented with a
standard deviation of 5 distinct models.

Taxa RetinaNet, AP, % Bayesian RetinaNet
on sigmoid, AP, %

RetinaNet on soft-
max (our), AP, %

Bayesian RetinaNet on
softmax (our), AP, %

Acer 94.29±0.98 92.87±1.52 92.44±1.50 94.52±0.86
Alnus 93.77±1.61 93.72±1.54 90.97±3.72 95.33±1.57
Angelica archangelica 98.76±0.10 98.81±0.01 98.76±0.10 98.78±0.03
Angelica sylvestris 98.10±0.64 98.22±0.55 98.06±0.37 98.34±0.37
Artemisia 98.17±1.60 99.12±0.46 94.97±4.64 98.82±2.27
Betula 78.37±3.54 80.37±2.84 77.27±0.88 78.61±2.02
Bunias orientalis 98.40±0.35 98.85±0.36 98.07±0.47 98.37±0.41
Chamaenerion angustifolium 98.56±0.44 98.73±0.36 98.05±0.26 98.49±0.26
Chenopodiaceae 97.53± 0.69 97.68±1.39 96.31±0.78 96.95±2.50
Corylus 75.48 ±3.54 77.17±4.98 72.65±8.80 82.61±3.80
Fagopyrum esculentum 100.00 99.81±0.31 99.93±0.15 100.00
Pinus 97.90±1.02 98.86±0.23 98.53±0.52 98.12±1.00
Plantago 97.50±0.94 97.77±0.36 98.20±0.68 97.29±2.00
Poaceae 99.93±0.12 99.82±0.14 99.78±0.30 99.95±0.08
Rumex 99.70±0.30 96.22±1.96 99.47±0.45 98.03±1.28
Sabatia campestris 100.00 100.00 100.00 100.00
Salix 95.71±0.54 96.47±0.62 94.87±1.48 97.16±0.45
Tilia 99.76±0.30 99.90±0.08 99.55± 0.31 99.49±0.63
Trifolium hybridum 97.54±0.92 98.70±0.52 98.19±0.62 97.84±0.77
Urtica 97.98±0.69 98.44±0.79 97.96±0.74 98.62±0.75
mAP 95.87±0.43 96.08±0.53 95.20±0.99 96.37±0.11
Aleatoric uncertainty - 6.19 · 10−5 - 7.56 · 10−6

uncertainty for softmax-based RetinaNet is much higher,
than for the original RetinaNet.

At the same time, the original RetinaNet based on sig-
moid activation surprisingly superpasses RetinaNet based

on softmax activation on all the datasets. This result re-
quires further investigation.

The proposed Bayesian Focal Softmax loss outperforms
Bayesian Focal loss with sigmoid in most of the cases in
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Table 2. Comparison of RetinaNet trained with original loss functions, RetinaNet trained with softmax activation of Focal loss, Bayesian
RetinaNet trained with Focal sigmoid-based loss and Bayesian RetinaNet trained with the proposed Focal softmax-based loss functions on
POLLEN13L-det dataset. Focal sigmoid-based and Focal softmax-based losses model homoscedastic aleatoric uncertainty. Here, mAP is
the mean average precision presented for different IoU thresholds and object sizes (small, medium, large). The results are presented with a
standard deviation of 5 distinct models.

Taxa RetinaNet, AP, % Bayesian RetinaNet
on sigmoid, AP, %

RetinaNet on soft-
max (our), AP, %

Bayesian RetinaNet on
softmax (our), AP, %

Acer 97.82±0.53 98.32±0.62 97.09±0.55 98.87±0.33
Alnus 85.97±2.74 90.32±1.79 76.72±5.56 92.07±0.95
Artemisia 84.83±1.77 96.01±0.97 67.10±8.47 97.14±1.13
Betula 83.67±1.68 84.64±1.13 84.56±1.19 86.29±1.47
Chenopodiaceae 93.66± 4.74 97.58±1.33 89.38±5.70 97.01±0.85
Corylus 98.36 ±2.02 100.00 90.16±7.73 99.56±0.61
Pinus 97.24±1.31 99.17±0.30 97.89±0.68 98.85±0.46
Plantago 86.48±10.62 97.67±0.65 76.49±10.78 98.36±0.45
Poaceae 100.00 100.00 99.98±0.05 100.00
Rumex 97.46±1.15 97.34±1.46 94.15±1.68 97.58±1.04
Salix 97.57±0.32 97.43±0.56 97.69±0.16 98.04±0.42
Tilia 97.61±0.18 97.51±0.50 96.81±0.30 97.33±0.12
Urtica 95.54±1.19 96.16±1.00 95.59±1.07 95.84±0.82
mAP 93.56±1.45 96.32±0.29 89.51±2.73 96.69±0.15
Aleatoric uncertainty - 0.95 - 0.01

Table 3. Comparison of RetinaNet trained with original loss functions, RetinaNet trained with softmax activation of Focal loss, Bayesian
RetinaNet trained with Focal sigmoid-based loss and Bayesian RetinaNet trained with the proposed Focal softmax-based loss functions on
8 classes of honey plant pollen. Focal sigmoid-based and Focal softmax-based losses model homoscedastic aleatoric uncertainty. Here,
mAP is the mean average precision presented for different IoU thresholds and object sizes (small, medium, large). The results are presented
with a standard deviation of 5 distinct models.

Taxa RetinaNet, AP, % Bayesian RetinaNet
on sigmoid, AP, %

RetinaNet on soft-
max (our), AP, %

Bayesian RetinaNet on
softmax (our), AP, %

Angelica archangelica 98.79±0.034 98.81±0.03 98.64±0.18 98.81±0.02
Angelica sylvestris 98.12±0.27 98.29±0.20 97.73±0.41 98.19±0.43
Bunias orientalis 98.22±0.25 98.59±0.30 97.54±0.60 98.81±0.43
Chamaenerion angustifolium 98.56±0.54 98.62±0.44 97.98±0.41 98.76±0.13
Fagopyrum esculentum 99.90±0.08 99.91±0.20 99.03±1.03 100.00
Sabatia campestris 100.00 100.00 99.76±0.31 100.00
Tilia 99.78±0.12 99.79±0.20 99.50±0.43 99.41±0.45
Trifolium hybridum 99.02±0.60 99.55±0.26 98.47±1.02 99.58±0.13
mAP 99.05±0.11 99.19±0.07 98.58±0.43 99.20±0.06
Aleatoric uncertainty - 0.04 - 0.01

average. Despite it is marginally better than the latter one
on the honey plant dataset of 8 classes, on 6 out of 8 classes
the proposed loss performed at the same level or better, than
the baseline loss.

With the dataset growth the impact of Bayesian Focal
Softmax loss is more explicit compared to Bayesian Focal
loss with sigmoid: while on honey plant pollen the dif-
ference between results is 0.1%, on POLLEN13L-det and
POLLEN20L-det the difference is 0.37% and 0.29% respec-
tively.

The following effect can be seen on POLLEN20L-det
dataset: while in average the proposed loss is better than the
sigmoid one, the latter majorizes on a half of the classes.
However, Bayesian Focal Softmax loss leads due to the
great boost in the average precision on Corylus class: more
than 5% better, than Bayesian Focal loss with sigmoid and
10% better, than non-Bayesian models.

Bayesian models provide much smaller deviation than
non-Bayesian ones. Furthermore, the Bayesian Focal Soft-
max loss decreases the deviation much better than the
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Figure 3. (A) UMAP visualization of embeddings obtained using Bayesian RetinaNet trained with Bayesian Focal loss on sigmoid (base-
line); (B) UMAP visualization of embeddings obtained from Bayesian RetinaNet trained with Bayesian Focal Softmax loss (proposed).

Bayesian Focal loss with sigmoid, 7–18 times compared to
2–5 times. Thus, we can conclude, that the proposed loss
function better calibrates the model.

Finally, the estimates of aleatoric uncertainty obtained
with the proposed loss function are 4–95 times smaller than
with the baseline function.

Based on these conclusions, we can answer both RQ1
and RQ2 positively.

6. Conclusion
In this work, we have proposed the novel loss function

for the pollen detection task, Bayesian Focal Softmax loss.
The proposed loss function fits single-label tasks, models
homoscedastic aleatoric uncertainty while model training,
filters out this uncertainty and increases the model perfor-
mance.

The proposed loss was studied based on open bench-
marks POLLEN20L-det and POLLEN13L-det. Pollen
classes are highly overlapping, which causes aleatoric un-
certainty and the small margin. Using this function, we
achieved the new state-of-the-art on POLLEN13L-det de-
tection task, 96.69% of mAP. Furthermore, we first ob-
tained the result in another pollen detection benchmark
POLLEN20L-det, achieving 96.37% of mAP on 20 classes.

The proposed loss increases mAP on different pollen
datasets compared to the Bayesian Focal loss with sigmoid
activation. It also significantly increases mAP and improves
model calibration compared to both original RetinaNet and
RetinaNet on softmax. More importantly, it reduces model

variance and improves aleatoric uncertainty estimate result-
ing in a bigger margin between classes.

The proposed loss function can be generalized to any
other object detection task and applied to other mod-
els based on the RetinaNet architecture, for example,
SpineNet [11], ATSS [49]. The developed loss function
can be interesting to apply for modeling heteroscedastic
aleatoric uncertainty to increase the interpretability of de-
tection per object.
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