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Abstract

Here we provide the supplementary material for the pa-
per “Learning to Correct Sloppy Annotations in Electron
Microscopy Volumes.” In the paper we propose a new
method for the seeded segmentation problem and demon-
strate its effectiveness on challenging tasks in electron mi-
croscopy connectomics. Our algorithm, EMProof, is based
on a neural network which simultaneously expands all
seeds, skeletons or imperfect segmented objects within the
image, and produces an improved instance segmentation.
We provide more details on the experiments conducted in
this work and display additional image results. We also pro-
vide additional experiments which show that EMProof can
be used to learn to track and densely segment objects across
sections which demonstrates its ability to learn features of
neurons morphology.

1. Overview
Our paper presents an end-to-end pipeline, EMProof,

for seeded image segmentation. Unlike previous methods
which combine affinity map computation with graph opti-
mization, EMProof operates in one step. Our method lever-
ages the idea of Cross Classification Clustering (3C) [6],
which solves an instance segmentation problem with tra-
ditional classifications. EMProof build on the logarithmic
running time of 3C to provide a scalable solution for seeded
instance segmentation which is demonstrated on difficult
segmentation problems from connectomics.

In section 2, we provide details on the usage of 3C in
EMProof. In section 3, we provide the effectiveness of EM-
Proof in its ability to track objects across sections of the
dataset (not shown in the main paper). In section 4, we
demonstrate the effectiveness of EMProof on the seeded
segmentation problem by presenting few examples on the
challenging CREMI dataset [1], corroborating the results
from the main paper. We compare our pipeline to highly
accurate methods such as Learned Random Walker [2] and
Learned Watershed [8]. In section 5, we present further ex-
amples on the AC3 dataset to display the super-resolution

capability of EMProof. In section 6, We demonstrate scala-
bility of EMProof and its performance on a large-scale so-
matosensory dataset [4] which contains ∼ 80 GB of raw
images.

2. Cross-Classification Clustering (3C)
The highlight of Cross-Classification-Clustering (3C) is

its effective and simple extension of previous single-object
classification methods for connectomics, like FFN [3] and
MaskExtend [5]. This strategy largely reduces run-time
from linear time of the original solutions to logarithmic time
in the number of objects. This is a non-trivial task for a
neural network as there is quite little semantic meaning in
neuronal cross-sections. In effect, as we explain below, se-
quences of labels given for each object are required to pro-
vide sufficient guidance and supervision for the the network
to “know” how to map the labels of objects from the source
image to their similar and respective neurons in the target
image.

As shown in fig. 1, we use k different colors to label
different neuron skeletons. This is done arbitrarily and
uniquely at random. We repeat this procedure l times,
where l is not larger than the logarithm of the number of
skeletons in the input image (determined per image in dur-
ing inference). We then have l different skeleton images,
for each of the l iterations. This can be thought of as a re-
peated colorization procedure. The collection of l images
defines the neurons in a unique way, in exact correspon-
dence to their original IDs (which are realized as sequences
of labels). Then the skeleton images are fed to the neural
network with their respective EM images. The iterated calls
to the network will generate a collection of expanded skele-
ton images, for each of the l images. Each expanded image
will use k colors, but together those images define as a se-
quence (per pixel) the original IDs. This is the aggregation
step as defined in fig. 1. We set k=4 for our experiments.
If we consider n to be the number of distinct neuron IDs
in the stack, then we only need to call the network log4(n)
times to get the final instance segmentation. Therefore, this
strategy largely reduces the time when compared to single
object classification methods, like FFN [3] and MaskExtend



Figure 1. Overview of the internal workings of 3C [7] within EMProof.

Figure 2. Tracking capability of EMProof. An instance segmen-
tation of the source image (z=1) is propagated to subsequent sec-
tions and the Variation of Information is computed. EMProof can
be used to propagate segmentation across three adjacent sections
with marginal loss in accuracy, offering additional 4x speedup in
reconstruction time.

[5], while preserving their accuracy [6]. In turn, as we show
in this paper, 3C allows also to improve the state of the art
of the seeded segmentation problem.

3. Tracking Experiments

In this section we test the tracking capabilities of EM-
Proof. Tracking capability refers to the ability of a pipeline
to track objects from one part of the dataset to a differ-
ent part of the dataset that is farther away from it in the
image stack. A capacity of the network to track objects
would result in improvements in reconstruction time as it

Figure 3. Comparison between the accuracy (VI) of EMProof
and the previous state-of-the-art seeded segmentation algorithms
Learned Random Walker [2] and Learned Watershed [8].

allows users skip some sections during the annotation pro-
cess. Moreover, an ability to segment an image based on
skeletons of another image requires the network to learn se-
mantic and morphological features of the neuronal objects.
In this experiment, Tracking is always performed from the
first image and is not done recursively.

As demonstrated by fig. 2, the Variation of Information
of reconstructed images increases proportionally with the
distance from the source image. Fig 4 shows a few of the
results obtained by our tracking experiment. We see that
the predictions deteriorate after section 4. We observe that
qualitatively plausible results are obtained for three consec-
utive images. The skipping of three images would yield a
speedup of 4x in reconstruction time. Combined with the 8x
improvement in running time of EMProof compared with
a human annotator (without tracking), we anticipate that a
sloppy annotator can produce reconstructions that are com-



parable to an accurate annotator but up to 30x faster.

4. Seeded segmentation comparisons
In this section we present some further examples of the

seeded segmentation capabilities of EMProof. Fig. 3 com-
pares the Variation of Information scores between EMProof
and current state of the art techniques. We also present few
examples of EMProof in action in fig. 5 where we show
some results of EMProof on the CREMI [1] dataset both on
the easier section (section A) as well as the much harder
section (section C) of the dataset. The examples shown
and comparisons use round seeds as shown in figs.5 and
6 to ensure fair and equal comparisons between techniques.
The performance of our pipeline on the harder image set of
the dataset (Section C) in fig. 6 demonstrates the robustness
of our pipeline. EM Images from section C are consider-
ably more blurry and are often comprised of thin objects as
demonstrated in the paper’s main text.

5. Result on Super-resolution
We provide more results for the super-resolution exper-

iment used on the public electron microscopy volume AC3
of [4]. Traditional SR tasks often deals with predicting a
higher resolution version of an image, utilizing a model
which captures both global and local image features. Our
SR is defined by the requirement to enhance the resolution
of an instance segmentation. We learn to map the pair of
EM image (a raw image) and its instance segmentation, to a
higher quality segmentation. We test the capability of EM-
Proof on SR, by artificially downsampling true instance seg-
mentation images, computing their skeletons, and then re-
quiring EMProof to reverse those skeletons and produce the
the high quality objects. This is a useful approach for con-
nectomics because in many cases computing the high accu-
racy segmentation is delayed due to costs associated with
running at high resolution. In those cases, EMProof can
learn to improve the geometry of the existing results with-
out needing to re-invoke the original pipeline, which could
be highly expensive. Furthermore, this demonstrates that a
human annotator can segment the image at low resolution
and EMProof will take care of the task of “snapping” the
human segmentation to the high resolution images.

Fig. 7 depicts the results of the super-resolved images on
AC3. The results are nearly indistinguishable from the GT,
where in many cases the network produces neater bound-
aries compared with the manual segmentation.

6. Skeletons to Volumes: EMProof perfor-
mance tests using S1 dataset of [4]

EMProof was tested on the Somatosensory cortex
dataset of [4] (S1) which consists of 1840 images each being

16,000 × 16,000 pixels. The first experiment was described
in the main text where EMProof was required to improve
the resolution of a single object mask given as binary image-
stack (MIP-level 4, i.e. downsampled by a factor of 24=16
in each X,Y dimension). EMProof was trained to improve
the resolution by using respective raw images and object’s
2-D skeletons. The prediction for this task took around 20
minutes. We now report on a second experiment on that
dataset in which EMProof was required to reverse the skele-
tonization of all the objects in the dataset. Fig. 8 depicts
the results of the reconstruction of intricate objects from the
dataset, showing dendrites and their spines. It takes around
8 hours to predict the whole dataset. EMProof was able to
recover the morphology of the objects in 3-D by accurately
expanding skeletons, even in cases where objects branch are
extremely thin.
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Figure 4. Examples of the tracking ability of EMProof. The source image is represented in the first column. The subsequent columns
are predicted segmentation of images Z={2, 4, 10} away from the source image in the image stack. We observe that for Z=4, the
segmentation results are qualitatively acceptable (VI are provided in fig. 2.

Figure 5. Example result on the CREMI dataset A. Left column shows EM images with super-imposed round seeds. EMProof expands the
small seeds to meet the true neuronal boundaries, qualitatively matching the ground truth.



Figure 6. Example result on the challenging CREMI dataset C. Left column shows EM images with super-imposed round seeds. EMProof
provides a qualitatively good seeded segmentation of the image, while producing a small number of errors near to the image boundaries
(where image context is limited) as well as on one sub-cellular element (mitochondrion) at the bottom left of the electron microscopy
image.

Figure 7. Super-resolution task. The first and fourth columns represent the low-resolution input by nearest-neighbor up-sampling of the
AC3 dataset at MIP level 4 (downsampling of 24). Our EMProof method takes the low-resolution labeled images and skeletonize them
first. Then, EMProof predicts the high-accuracy and high-resolution version image (third and sixth columns). The second and fifth columns
show ground truth. Other examples and accuracy measurements (VI) are provided in the main paper.



Figure 8. Skeletons to Volumes. The time performance and the quality of EMProof was tested on a large scale dataset [4]. EMProof was
required to simultaneously reverse the skeletonization of all the objects in the dataset (one image at a time). EMProof was able to recover
the morphology of the objects in 3-D by accurately expanding the skeletons, even in cases where objects branch and/or are extremely thin.
Qualitatively, EMProof is able to effectively reverse the 2-D skeletons and reproduce the correct 3-D shapes of the neurons in the dataset.
It takes around 8 hours to predict the whole dataset.


