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1. Additional studies
We include the results of additional experiments in this section.

1.1. Effect of data augmentation and backbone choices

In Table S1 we present perturbation classification accuracy results for different choices of data augmentation methods and
convolutional backbones. We note how shallower networks have worse performance, and how AdaBN boosts accuracy over
the baseline in all scenarios. We also note how using MixUp instead of CutMix augmentation gives better performance for
the baseline but not AdaBN.

Model Baseline AdaBN

Default 75.2 87.1

-cutmix 70.8 80.2
-cutmix +mixup 75.6 83.9

backbone=resnet50 71.7 83.9
backbone=resnet101 71.9 84.6

backbone=densenet121 74.3 85.9

Table S1. Perturbation classification accuracy (%) for various choices of data augmentation methods and convolutional backbones of the
baseline and AdaBN methods.

1.2. Effect of image normalization methods

In Table S1 we show perturbation classification accuracy for different image normalization methods using our AdaBN
method. The preprocessing procedures standardize (i.e., subtract the mean and divide by the standard deviation) each image
with the per-channel statistics calculated from different subsets of the dataset. Similar to Table 4, self-standardization (i.e.,
per-image statistics) offers the best perturbation classification accuracy.

Normalization Accuracy

All images 78.4
Control images per experiment 83.6

All images per experiment 83.7
Control images per plate 81.7

All images per plate 82.6
Self-standardization 87.1

Table S2. Perturbation classification accuracy (%) for different image normalization methods using AdaBN.
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1.3. Effect of channel subsets

In Figure S1 we show perturbation classification accuracy of the baseline method trained on all non-empty subsets of chan-
nels. Interestingly, we observe that the model that uses all 6 channels does not yield the best performance. All channel
subsets containing at least 4 channels without Channel 6 surpass the baseline. Using all but Channel 6 exceeds the baseline
by 2 percentage points.
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Figure S1. Perturbation classification accuracy of baseline method trained on different subsets of channels.

1.4. Training dynamics

In Figure S2, we plot test perturbation classification accuracy means and standard deviations during model training (over 5
runs). Our results show that the model architecture with AdaBN converges faster than the baseline. Moreover, AdaBN has a
much smaller standard deviation than the baseline, i.e., the each run is more consistent with the others for AdaBN.

1.5. Cosine similarity distribution similarity

In Section 5.3, we analyzed the distance between distributions of cosine similarities among image embeddings for both
baseline and AdaBN approaches (Figure 7). In Table S3, we provide these distance measures (Wasserstein distance and
Kolmogorov-Smirnov statistics) for all batch correction methods.
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Figure S2. Test perturbation classification accuracy during model training (mean and standard deviation from 5 runs). AdaBN model
converges faster, and the runs are more consistent with each other.

Method Metric Same perturbation Different perturbation

Baseline KS 0.577 0.255
WD 0.158 0.048

Gradient reversal KS 0.551 0.198
WD 0.147 0.036

Adabn KS 0.210 0.027
WD 0.051 0.004

AdaBN + gradient reversal KS 0.202 0.023
WD 0.052 0.003

Table S3. The Kolmogorov-Smirnov statistic (KS) and Wasserstein distance (WD) between distributions of cosine similarities computed
from image embeddings of the same and different perturbations (see Figure 7).


