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Abstract

Conventional sleep monitoring is time-consuming, ex-
pensive and uncomfortable, requiring a large number of
contact sensors to be attached to the patient. Video data
is commonly recorded as part of a sleep laboratory assess-
ment. If accurate sleep staging could be achieved solely
from video, this would overcome many of the problems of
traditional methods. In this work we use heart rate, breath-
ing rate and activity measures, all derived from a near-
infrared video camera, to perform sleep stage classifica-
tion. We use a deep transfer learning approach to overcome
data scarcity, by using an existing contact-sensor dataset to
learn effective representations from the heart and breathing
rate time series. Using a dataset of 50 healthy volunteers,
we achieve an accuracy of 73.4% and a Cohen’s kappa of
0.61 in four-class sleep stage classification, establishing a
new state-of-the-art for video-based sleep staging.

1. Introduction

The ‘gold-standard’ method for sleep monitoring is
video polysomnography (vPSG, [35]), a test in which a
number of physiological signals are recorded over a night’s
sleep. This typically requires an extensive set of contact
sensors to be attached to the patient, which often leads to
patient discomfort and an unrepresentative night’s sleep [1].
After the recording, a human expert (sleep physiologist)
must review the outputs from these sensors, manually an-
notating the record with sleep stages, leg movements and
other events of interest from throughout the night. This pro-
cess can often take multiple hours to complete. The cost of
the study and the discomfort to the patient mean that longer-
term studies are rare. Easier longitudinal monitoring would
also benefit clinical research, from making trials for sleep-
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disorder treatments easier, to detecting the onset of demen-
tia, by monitoring variations in slow-wave sleep [34].

Sleep stages are commonly annotated at 30-second in-
tervals using the American Academy of Sleep Medicine
(AASM) guidelines. These divide sleep into five discrete
states: Wake, N1, N2, N3 and REM sleep. N1 to N3
account for varying degrees of non-rapid eye movement
(NREM) sleep from near-wakefulness (N1) to deep slow-
wave sleep (N3).

There is well-studied subjectivity between sleep physiol-
ogists in scoring sleep stages, which is often reported using
the Cohen’s kappa statistic (κ, [2]). The work of Danker-
Hopfe et al. [4] showed that pairs of scorers agreed on 82%
of epoch-by-epoch sleep stages (κ = 0.76) across a dataset
of 72 sleep recordings.

A recent review has claimed that deep learning methods
can score PSG records as accurately as a human scorer [26].
The SleepTransformer model [27] achieves a Cohen’s κ
of 0.83 in AASM sleep stage classification on the Sleep
Heart Health Study (SHHS, [30]) dataset from an electroen-
cephalogram (EEG) signal. However, the EEG is typically
measured using electrodes which must be glued to the sub-
ject’s scalp by a sleep physiologist.

To overcome this need, other work has investigated
using cardio-respiratory and activity information obtained
from wearable devices [28, 32, 45, 48]. Wearable sleep
staging is possible from these inputs since they encode
information about the underlying sleep state. For exam-
ple, respiration tends to be more irregular during REM
sleep [12], whilst low frequency power in the heart rate
time series is typically lowest during N3 sleep [34].
Wearable-based methods have commonly simplified sleep
staging into a four-class classification problem, by merging
N1 and N2 into a ‘light sleep’ class. Doing so, Radha et
al. [32] achieve a Cohen’s κ of 0.65 in four-class sleep
staging from wrist-worn photoplethysmography.
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Figure 1. Overview of our approach. We first train a deep learning model on a contact sensor dataset to classify sleep stages from heart
rate and breathing rate time series. We then use this trained model as a feature extractor to produce ‘deep’ features from the video-derived
vital signs of our target dataset. To classify sleep stages from video data, we train a random forest classifier which uses these deep features
in conjunction with motion features derived from optical flow.

Prior work has shown that both cardio-respiratory [38]
and activity information [21] can be derived from video data
during sleep, indicating that video could be used as a sin-
gle source from which to classify sleep stages. As an en-
tirely non-contact solution, this would further simplify and
improve the sleep monitoring process for both patients and
clinicians. Additionally, video remains an important modal-
ity for the diagnosis of conditions including periodic limb
movement disorder, parasomnias and REM behaviour dis-
order [5, 36]. It may not be feasible to identify these con-
ditions using alternative solutions such as wrist-worn wear-
ables.

In this work, we use heart rate, breathing rate and ac-
tivity signals, all derived from near-infrared video, to per-
form sleep stage classification. We use optical flow [11] to
derive continuous measures of activity during sleep, which
are made robust to camera position and bed orientation us-
ing image homography transformations [7].

To overcome data scarcity, we adopt a transfer learn-
ing approach (Fig. 1). We first train a deep neural network
to classify sleep stages from heart rate and breathing rate
time series derived from a substantially larger contact sen-
sor dataset. The trained model is then applied to heart rate
and breathing rate time series derived from near-infrared
video to obtain ‘deep’ features. These deep features are
used in combination with video-derived activity features as
inputs to a classifier which is trained and evaluated on a
video dataset of 50 healthy volunteers using 10-fold cross
validation.

Using our approach, we present improved results over
the existing state-of-the-art [40] for video-based four-class
sleep staging in terms of both accuracy (73.4% vs. 67.9%)
and Cohen’s kappa (0.61 vs. 0.49).

2. Related work

Video actigraphy: Counting pixel differences above a
threshold has proven to be a simple but effective activity
signal for binary sleep–wake classification from both near-
infrared (NIR, [33]) and depth images [17, 42].

Optical flow [3,23] and spatio-temporal recursive search
algorithms [9] have also proved effective at quantifying ac-
tivity. These methods both compute motion vectors from
the video feed and use average magnitudes as activity sig-
nals. The latter method has been used to detect periodic
limb movements during sleep [10].

Using activity features derived from video, Long et
al. [21] achieve an accuracy of 92.0% in sleep–wake de-
tection from video using a dataset of 10 healthy infants.

Video-based sleep staging: To the best of our knowl-
edge, only two prior works have attempted to classify sleep
beyond a binary sleep-wake classification using a video
camera. These works differ greatly in the information
which they extract from the video to classify sleep stages.

Nochino et al. [24] use frame-differencing to derive an
activity signal from the camera. From this signal, the au-
thors derive a number of motion features for each sleep
epoch and train a Support Vector Machine to perform four-
class sleep staging, achieving an average accuracy of 40.5%
and a Cohen’s κ of 0.19 on a dataset of 6 participants.

van Meulen et al. [40] also classify sleep stages into four
classes, but do so using camera-derived inter-pulse intervals
(IPIs). The authors directly apply a deep learning model,
previously trained on heart-rate variability (HRV) features
derived from the electrocardiogram (ECG), to HRV fea-
tures computed from a camera-derived IPI time series. This
achieves an accuracy of 68% and a Cohen’s κ of 0.49 across
46 healthy participants.
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3. Methods
3.1. Data acquisition

In this work, we use video as the input data and
polysomnogram recordings as the source of sleep stage la-
bels collected from 50 healthy adult volunteers (18+) with
no previous diagnoses of sleep disorders. We report age,
weight, sex and Fitzpatrick skin type for the study popula-
tion in Table 1. Fitzpatrick skin type [6] is a measure of skin
pigmentation which classifies skin phototypes into one of
six categories ranging from I (very pale) to VI (very dark).

Table 1. Sleep study population demographics.

Variable Value

Age1 37±15 years
Weight1 70.4±12.9 kg
Sex

Male 22 volunteers
Female 28 volunteers

Fitzpatrick skin type2 I: 13, II: 21, III: 12, IV: 3, VI: 1
1Mean (± std). 2Skin type: No. volunteers.

Each recording took place overnight in one of two ex-
periment rooms. Video data was captured in each room at
20 FPS using a single-channel 850 nm NIR video camera.
Both rooms also contained LED illuminators centred at the
same wavelength and placed adjacent to the cameras. Fig-
ure 2 shows the most common bed orientations and the fixed
camera positions used in each room.

Room 1 Room 2

2.25m

0.75m

4.5m

2.00m

Figure 2. Room and camera layouts used for data acquisition.

Video polysomnography data was acquired using a
SOMNOscreenTM Plus device, which recorded a typi-
cal vPSG montage which included respiratory inductance
plethysmography (RIP), electrooculogram (EOG) and EEG
signals and video data, using a separate camera set-up. Each
recording was manually scored according to AASM guide-

lines in 30-second epochs by an experienced sleep physiol-
ogist.

3.2. Optical flow-based activity measurement

From the video camera, we derive continuous measures
of subject activity using optical flow [11]. This process is
illustrated in Figure 3. First, we apply an image homogra-
phy transformation [7] which provides a consistent, virtual
viewpoint of the bed region for different camera positions.
This technique has previously been used to improve the ro-
bustness of sleep pose detection [22]. We then compute
optical flow between transformed frames using the Dense
Inverse Search algorithm [16]. From the 20 FPS video,
we estimate the optical flow field between every 5th frame,
then average over the previous four estimated fields, giving
a field estimation frequency of 4 Hz.

From the optical flow field time series, we derive two
simple activity signals by averaging the flow field magni-
tude in the upper third and lower two thirds of the recti-
fied view, which correspond to approximate head and lower
body regions. This gives a simple measure of the spatial
scale of movements, since whole-body movements such as
sleep posture changes will result in high activity for both
signals.

3.3. Motion features

From our two video-derived activity signals, we com-
pute a total of 20 time-series features for each epoch, listed
in Table 2. These features broadly fall into two categories:
integral features, which quantify the amount of motion that
occurred within a time window centred on the epoch, and
counter-based features, which quantify the elapsed time
since a movement occurred. Our counter-based features are
inspired by those of Nochino et al. [24].

Table 2. Motion features derived from the 1D optical flow activity
signals for each sleep epoch. Features are computed from the up-
per and lower bed region signals separately.

Count Feature description
14 Integral features

6
30-second Gaussian-weighted sums, time-shifted
by (-30, 0.0, 30.0) seconds.

6
180-second Gaussian-weighted sums, time-shifted
by (-180.0, 0.0, 180.0) seconds.

2 20-minute Gaussian weighted sums.
6 Counter-based features

4
Time elapsed since activity signal was above
a threshold ∈ {0.1, 1.0}.

2
Time elapsed since activity signal was above
a threshold (1.0) for 3 seconds.
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Figure 3. Extracting 1D activity signals from video using optical flow. A homography transformation is applied to each frame followed by
cropping to the bed region, to obtain a consistent, virtual viewpoint. The magnitudes of optical flow vectors calculated between frames are
averaged over the upper and lower bed regions to produce continuous activity signals for each region.

3.4. Video-based vital-sign monitoring

Many prior works have shown that both the heart
rate [18, 29, 43, 47] and breathing rate [19, 23, 46] can be
measured using video cameras. These methods have been
validated in a number of clinical settings e.g. [14, 37, 44].
The recent study of van Gastel et al. [38] has also demon-
strated the feasibility of continuous vital-sign monitoring
during sleep.

In this work, we use components of Oxevision Vital
Signs medical device software [13] to measure the heart rate
and breathing rate from video data. For both vital signs, this
produces 1 Hz estimates and binary Signal Quality Indices
(SQIs, [20]), which indicate the software’s assessment of
the estimate’s quality.

The software estimates both vital signs through a pro-
cess of region of interest (ROI) selection, spatio-temporal
filtering, cardio-respiratory signal extraction and data fu-
sion. First, ROIs are identified by selecting areas in the im-
age containing high variance that is periodic in nature [13].
These ROIs are then spatially smoothed with a median fil-
ter and band-pass filtered using pass-bands of 40–130 BPM
and 8–39 BRPM for the heart and breathing rates respec-
tively. The cardio-respiratory signals are extracted from the
ROIs using principal component analysis as done in Vil-
laroel et al. [44], with the heart and breathing rates identi-
fied from the dominant frequency components. SQIs are de-
rived for each vital sign from heuristics including inter-beat
interval consistency. These SQIs are typically low when the
volunteer is active, e.g. out of bed, or absent from the room.

We define the coverage of each vital sign as the percent-
age of time for which the SQI is high when the volunteer
is in bed. Using this definition, Figure 4 shows the cov-
erage for each vital sign across recordings in the dataset.
Coverage statistics computed across participants are given
in Table 3.

Figure 5 shows an example of heart rate and breathing

rate time-series estimated from near-infrared video over a
night’s recording along with AASM-annotated sleep stages.
In this example, we can observe increased variance in the
breathing rate around REM cycles, indicating how sleep
state information can be encoded in the cardio-respiratory
time series.

Figure 4. Coverage of video-derived vital-sign estimates.

Table 3. Coverage statistics for video-derived vital signs.

Mean ± Std Min Max

BR coverage (%) 91.0±7.5 66.2 98.3
HR coverage (%) 90.0±6.0 64.3 99.3

3.5. Vital-sign representation learning

State-of-the-art EEG-based sleep staging performance
has been achieved using supervised deep learning methods
trained with large datasets, often containing thousands of
PSG recordings [26]. These datasets e.g. SHHS [30], re-
quired multiple years to collect across several data collec-
tion centres.
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Figure 5. Example AASM sleep stages and video-derived heart
rate and breathing estimates for a night’s recording from the video
dataset.

By training a model on a large, source dataset and fine-
tuning on a smaller target dataset it is often possible to
achieve greater performance than training directly on the
target dataset. This approach has successfully been applied
in the context of wearable sleep staging [32]. The authors
first train a model to classify sleep on a large ECG dataset
before fine-tuning it on a much smaller target photoplethys-
mography (PPG) dataset. This is shown to give improved
performance over models trained solely on the target PPG
dataset.

We use the SHHS dataset [30] to learn representations
from heart rate and breathing rate time-series, acquired us-
ing wearable sensors, which can then be applied to sim-
ilar time series obtained from video data. The SHHS
dataset is substantially larger than our target video dataset,
with polysomnogram recordings and accompanying AASM
sleep stage labels from around 6000 participants.

Training inputs. Firstly, heart rate (HR) and breath-
ing rate (BR) time-series for the SHHS dataset were esti-
mated from the ECG and RIP signals respectively. An SQI
was also calculated for each estimate. More information on
our estimation process is given in Appendix A. Figure 6
shows synchronised AASM sleep stage labels and ECG-
derived heart rate estimates for an example recording from
the SHHS dataset. We see that there is a long period of low
signal quality (SQI=0) at the end of the recording after the

Figure 6. Example AASM sleep stages and ECG-derived heart rate
estimates and SQI values from an SHHS polysomnogram record-
ing.

participant has woken up. Periods of low signal quality are
strongly correlated with wakefulness, since they are often
induced by motion artefacts.

SQI Filtering. To improve performance, we set low
quality sections of the time series to zero before passing
them to the model. By zeroing out these sections, we still
allow the model to know which periods are of low quality
whilst preventing the model from overfitting to signal noise.

Model architecture. Figure 7 illustrates our neural net-
work architecture. The model uses two input streams to
classify each epoch: a high-frequency 5-minute HR/BR
window sampled at 1 Hz and a lower frequency 50-minute
window sampled at 0.1 Hz, both centred around the target
epoch for classification. Each window of data is passed to
a 1D ResNet [8] model, which transforms the two-channel
input time series into a feature vector. Our ResNet architec-
ture broadly follows the design of the original paper, except
that 2D convolutions are replaced with their 1D equivalents.
The feature vectors are concatenated and passed to a multi-
layer perceptron (MLP), which mixes short-term and long-
term information from the windows to produce a single fea-
ture vector. Finally, a linear classification layer is applied to
the feature vector output of the MLP to obtain sleep stage
probabilities.

Model training. The network was trained end-to-end
using back-propagation, minimising the cross-entropy loss
function against the annotated AASM (5-class) sleep stages.
Further model implementation and training details are given
in Appendix B. After training, we expect sleep stages to be
linearly separable from the output features of the MLP, thus
making them effective inputs to any alternative classifica-
tion model. We use the trained model as a feature extractor
by taking the outputs from the MLP layer.
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Figure 7. Sleep staging model architecture used to learn vital-sign
representations from the SHHS dataset. When applying the model
to video data, we use the outputs of the MLP (purple box) as input
features to an alternative classifier which also incorporates motion
information.

3.6. Transfer learning

From our video-derived heart rate and breathing rate
time series, we use the trained feature extractor to produce
‘deep’ vital-sign features. These are used in conjunction
with the motion features described in Section 3.3 as in-
puts to a random forest classifier which is trained to classify
sleep stages on an epoch-by-epoch basis. A random forest
classifier was chosen for its combination of low computa-
tional cost and robustness to overfitting.

3.7. Evaluation

The model was trained and evaluated using k-fold cross-
validation, using 10 non-overlapping folds each containing
5 recordings. Performance on each fold was evaluated using
a model trained on the remaining 9 folds. Results were then
aggregated over all folds.

4. Results and Discussion

In this section, we report performance in terms of multi-
class classification accuracy and Cohen’s kappa between
model output classifications and annotated sleep stages. A
comparison with existing video-based four-class sleep stag-
ing algorithms is given in Table 4.

Table 4. Performance comparison between our deep transfer learn-
ing method and prior video-based four-class sleep staging work.

Method N1 Cohen’s κ Accuracy (%)

Nochino et al. [24] 6 0.19±0.04 40.5±2.2
van Meulen et al. [40] 46 0.49±0.13 67.9±8.7
Ours 50 0.61±0.15 73.4±9.6
1Study population size. Mean (± std) across recordings.

Figure 8 shows the total test confusion matrix between
scorer and model labels summed over all recordings.
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Figure 8. Four-class sleep staging confusion matrix across the
dataset using our best performing method. Row-wise percentages
are given in brackets, with values on the diagonal indicating class-
wise sensitivities.

Performance with age. Figure 9 shows the variation in
Cohen’s kappa values with age. Here we observe a clear
negative correlation between age and the Cohen’s kappa
statistic, findings which mirror those from prior ECG-based
sleep staging work [31]. In older adults, common measures
of autonomic function such as HRV are known to decrease
with age [50], making sleep stages more difficult to distin-
guish when using cardio-respiratory inputs.

Figure 9. Scatter plot of Cohen’s kappa values against age and
Fitzpatrick skin type.

Example hypnogram output. Figure 10 shows an ex-
ample four-class sleep hypnogram produced by our model.
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This example corresponds to the median Cohen’s kappa ob-
tained across recordings. There is good visual agreement
in the sleep architecture: the model correctly identifies all
three REM cycles, sleep onsets and offsets, and most brief
arousals during the night. Hypnograms corresponding to
the minimum and maximum Cohen’s kappa are given in
Appendix D.

Figure 10. Model and scorer four-class hypnograms correspond-
ing to the median Cohen’s kappa statistic (0.63).

Performance with classification strategy. Table 5 indi-
cates the performance of our model using alternative sleep
stage classification strategies. The random forest classi-
fier was re-trained for each strategy against the target labels
which are derived from the AASM labels accordingly.

Table 5. Performance comparison across Sleep–Wake (SW),
Wake–NREM–REM (3-class) and Wake–N1/N2–N3–REM (4-
class) classification strategies.

Cohen’s κ Acc. (%) TPR1 (%) TNR2 (%)

SW 0.72±0.24 91.6±6.9 94.2±5.3 81.0±25.0
3-class 0.68±0.18 84.9±7.1 - -
4-class 0.61±0.15 73.4±9.6 - -
1True positive rate i.e. sensitivity. 2True negative rate i.e. specificity.

4.1. Ablation studies

Addition of motion and deep features. In Table 6 we
assess the impact of including motion features and of using
our deep vital-sign features over a simpler baseline of hand-
designed features (see Appendix C). We observe that both
the deep features and motion features are important to the
overall performance.

SQI filtering. Table 7 indicates the performance im-
provement obtained from our SQI filtering approach. By
zeroing out low quality sections of the time series in both

Table 6. Ablation results showing the effect of adding motion fea-
tures (M) and of using deep features (DF) extracted from the vital
signs compared with a simple feature engineering (FE) baseline.

Method Cohen’s κ Accuracy (%)

FE 0.38±0.20 57.6±13.6
FE + M 0.56±0.17 70.2±10.2
DF 0.50±0.16 65.5±10.5
DF + M 0.61±0.15 73.4±9.6

Table 7. Ablation results showing the effect of SQI filtering.

Method Cohen’s κ Accuracy (%)

Raw time-series 0.59±0.16 72.4±10.0
SQI filtering 0.61±0.15 73.4±9.6

training and testing we achieve an appreciable improvement
in our results.

5. Conclusions and Future Work
In this work, we have introduced a novel transfer learn-

ing approach to video-based sleep stage classification which
uses non-contact measurements of the heart rate, breath-
ing rate and activity measured using a near-infrared cam-
era. This approach achieves state-of-the-art performance on
video-based sleep staging on a healthy study population.

Performance is likely to be further improved through the
use of an explicit sequence–sequence architecture such as a
Transformer [41], which has led to superior performance in
PSG-based sleep staging [27]. Using deep motion features,
such as the intermediate outputs of a sleep pose detection
model [22], may also improve classification performance
over the relatively simple measures of activity used in this
work.

In future work, we intend to investigate the performance
of our approach across a broader demographic range and in
a sleep-disordered population.
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A. SHHS vital-sign estimation
Heart rate: We estimated the heart rate from the 128 Hz

ECG signal available from each PSG recording. First, we
applied the Pan-Tompkins algorithm [25] to produce a QRS
detection time series. We then applied an FFT to 9-second
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rolling windows, taking the frequency of the main spectral
peak as our estimate. An SQI was calculated for each heart
rate estimate given by:

SQIECG
t =

{
1 if |HRECG

t − HRPPG
t | ≤ 3 bpm

0, otherwise
(1)

i.e. our SQI is 1 when there is good agreement between
our ECG-derived heart rate, HRECG

t , and a PPG-derived heart
rate, HRPPG

t , which is available from the SHHS dataset.
Breathing rate: We used a peak counting approach to

estimate the breathing rate from both the abdomen and tho-
rax RIP waveforms, using 30-second rolling windows. We
then used the thorax-derived estimate as our breathing rate
and used the disagreement between the two sources to de-
rive a binary SQI:

SQIRIP
t =

{
1 if |BRAbd

t − BRThor
t | ≤ 3 brpm

0, otherwise
(2)

where BRAbd
t and BRThor

t are the time-series estimates de-
rived from the abdomen and thorax respectively.

B. Further model implementation details

Each ResNet model produced a flattened 1D feature vec-
tor of length 2048. Our MLP therefore had an input dimen-
sion of 4096, given by the concatenation of the short- and
long-window feature vectors. The MLP used a single hid-
den layer with a hidden dimension of length 100. The out-
put of the MLP i.e. the ‘deep’ feature vector had length 32.
This was chosen to be small and similar in size to the mo-
tion feature vector, to mitigate overfitting and encourage a
balanced weighting of the two feature sources in the transfer
learning phase.

To improve training stability, we normalised the input
time series passed to the model by dividing by the mean
and standard deviation of the heart and breathing rates
calculated across the entire SHHS dataset. We used the
Adam [15] optimiser with default hyper-parameters and
employed early stopping after three epochs without an im-
provement in validation accuracy.

C. Feature engineering baseline

Our baseline consisted of 6 features extracted from the
heart rate and breathing rate time series for each epoch:
means over 3-minute rolling windows and standard devia-
tions calculated using 3-minute and 10-minute rolling win-
dows. Each time series was normalised by the 90th per-
centile value and filtered using a difference of Gaussians fil-
ter before computing features as done in the wearable sleep
staging work of Walch et al. [45].

D. Additional model hypnograms

Figure 11 shows model and scorer four-class sleep
hypnograms for the recording with the highest agreement
as measured by Cohen’s kappa.

Figure 11. Four-class hypnograms corresponding to the highest
Cohen’s kappa statistic between model and scorer (0.82).

Figure 12 shows the hypnograms obtained for the record-
ing with the lowest agreement. In their report, the sleep
physiologist noted that there was a ‘fuzzy signal on [many
of the EEG channels] throughout, so sleep staging was dif-
ficult and not precise’. Measurement factors such as elec-
trode placement and electrical interference are a common
source of scorer uncertainty in conventional sleep stag-
ing [39].

Figure 12. Four-class hypnograms corresponding to the lowest
Cohen’s kappa statistic between model and scorer (0.17).
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[36] Ambra Stefani and Birgit Högl. Sleep in Parkinson’s disease.
Neuropsychopharmacology, 45(1):121–128, Jan. 2020. 2

[37] Alexander Trumpp, Johannes Lohr, Daniel Wedekind, Mar-
tin Schmidt, Matthias Burghardt, Axel R. Heller, Hagen Mal-
berg, and Sebastian Zaunseder. Camera-based photoplethys-
mography in an intraoperative setting. BioMedical Engineer-
ing OnLine, 17(1):33, Dec. 2018. 4

[38] Mark van Gastel, Sander Stuijk, Sebastiaan Overeem, Jo-
hannes P. van Dijk, Merel M. van Gilst, and Gerard de Haan.
Camera-Based Vital Signs Monitoring During Sleep – A
Proof of Concept Study. IEEE Journal of Biomedical and
Health Informatics, 25(5):1409–1418, May 2021. 2, 4

[39] Hans van Gorp, Iris A M Huijben, Pedro Fonseca, Ruud J G
van Sloun, Sebastiaan Overeem, and Merel M van Gilst. Cer-
tainty about uncertainty in sleep staging: a theoretical frame-
work. Sleep, 45(8):zsac134, Aug. 2022. 8

[40] Fokke B. van Meulen, Angela Grassi, Leonie van den
Heuvel, Sebastiaan Overeem, Merel M. van Gilst, Jo-
hannes P. van Dijk, Henning Maass, Mark J. H. van Gastel,
and Pedro Fonseca. Contactless Camera-Based Sleep Stag-
ing: The HealthBed Study. Bioengineering, 10(1):109, Jan.
2023. 2, 6

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention Is All You Need. arXiv:1706.03762
[cs], Dec. 2017. arXiv: 1706.03762. 7

[42] Christian Veauthier, Juliane Ryczewski, Sebastian Mansow-
Model, Karen Otte, Bastian Kayser, Martin Glos, Christoph
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