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Abstract

Remote Photoplethysmography (rPPG), or the remote
monitoring of a subject’s heart rate using a camera, has
seen a shift from handcrafted techniques to deep learning
models. While current solutions offer substantial perfor-
mance gains, we show that these models tend to learn a
bias to pulse wave features inherent to the training dataset.
We develop augmentations to mitigate this learned bias by
expanding both the range and variability of heart rates that
the model sees while training, resulting in improved model
convergence when training and cross-dataset generaliza-
tion at test time. Through a 3-way cross dataset analysis we
demonstrate a reduction in mean absolute error from over
13 beats per minute to below 3 beats per minute. We com-
pare our method with other recent rPPG systems, finding
similar performance under a variety of evaluation parame-
ters.

1. Introduction
Measuring a subject’s heart rate is an important com-

ponent of physiological monitoring. While methods such
as photoplethysmography (PPG) exist for contact heart rate
monitoring, a push has been made for non-contact remote
photoplethysmography (rPPG). rPPG is cheaper, requiring
a commodity camera rather than a specialized pulse oxime-
ter, and it is contact-free, allowing for applications in new
contexts.

Initial techniques for rPPG employed hand crafted al-
gorithms involving a multi-stage pipeline [3, 20]. While
these techniques can be highly accurate, their performance
is adversely affected by dynamics common in videos such
as motion and illumination changes. More recently, deep
learning methods have been applied to rPPG, many of them
outperforming the hand crafted techniques [2, 6, 7, 13, 18,
21].

While deep learning techniques have benefits, they suf-
fer drawbacks as well in terms of generalization. It has been
shown that the learned priors in deep learning rPPG models
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Figure 1. Overview of proposed temporal augmentations for
rPPG. We interpolate both the training video and the waveform
in order to train over a uniform distribution of heart rates.

are strong enough to predict a periodic signal in situations
where a periodic signal is not present in the input [5] — a
relevant attack scenario. We demonstrate that a deep learn-
ing rPPG model may be biased toward predicting heart rate
features such as the frequency bands and rates of change
that appear in its training data, and therefore struggle to gen-
eralize to new situations. We argue that more emphasis on
cross-dataset generalization, i.e. domain shift, is needed in
rPPG research.

Training of rPPG models incorporates various types of
data augmentations in the spatial domain. In this paper,
we contribute a simple but very effective idea of augment-
ing the data in the temporal domain — injecting synthetic
data representing a wide spectrum of heart rates, thus allow-
ing models to better respond to unknown heart rates. We
evaluate this approach in a challenging cross-dataset setup
comprising significant differences between heart rates in the
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training and test subsets. An overview of our augmentations
targeting the temporal domain is shown in Figure 1.

2. Related Work

There has been broad interest in rPPG, with applications
including detection of heart arrhythmias such as atrial fibril-
lation [17], deepfake detection [11], and affective comput-
ing [12].

Verkruysse et al. is credited with developing the first
rPPG system, which relied on manually defined regions of
interest, extraction of the green color channel, and apply-
ing a bandpass filter [19]. Poh et al. applied blind source
separation and Independent Component Analysis (ICA) to
boost performance [10]. Early techniques were not robust
to motion, so de Haan and Jeanne developed CHROM, a
motion-robust chrominance based rPPG system [3]. Wang
et al. developed an rPPG system which projects color data
to a “plane orthogonal to the skin” (POS), which further
relaxes assumptions made with CHROM regarding subject
skin tone [20]. Hsu et al. developed a support vector re-
gression technique to predict the heart rate directly from
rPPG features derived from Poh’s ICA based method and
CHROM [4].

The emergence of practical deep learning methods has
enabled new methods for rPPG estimation. Chen and Mc-
Duff developed DeepPhys, a CNN model based on VGG
which effectively predicts pulse waveform derivatives based
on adjacent video frames [2]. Yu et al. developed a 3DCNN
based approach for predicting the pulse waveform from
video data [21].

Cross-dataset generalization is a common concern with
deep learning techniques, specifically in that deep learning
rPPG techniques tend to perform suboptimally when work-
ing outside of the heart rate range of the training set [13].
Tsou et al. developed Siamese-rPPG, a Siamese network
utilizing 3D convolutions over two separate regions of in-
terest, showing that this technique generalizes for cross-
dataset analysis [18]. Song et al. developed PulseGAN,
a GAN based technique for generating more realistic PPG
signals from the rPPG signals produced by CHROM, find-
ing that this technique boosts performance even across
datasets [13]. Lu et al. expanded on this technique with
Dual-GAN, which jointly predicts a realistic PPG signal and
its noise distribution, and show improved cross-dataset per-
formance as a result [7]. In this paper, we develop speed
and modulation augmentations for 3DCNN based models,
showing that this consideration mitigates much of the cross
dataset performance loss experienced by this family of mod-
els.

3. Methods
For rPPG analysis, we utilize the RPNet architec-

ture [15], which is a 3DCNN-based approach [21]. In par-
ticular, the network architecture is composed of 3D con-
volutions with max and global pooling layers for dimen-
sion reduction. The network consumes 64× 64 pixel video
over a 136-frame window, outputting an rPPG signal of 136
samples. In this section, we outline our video preprocess-
ing and postprocessing steps, the training augmentations we
employ, and other training parameters.

3.1. Preprocessing and Postprocessing

Our preprocessing pipeline consists of the following
steps:

1. We obtain facial landmarks at each frame in the dataset
using the MediaPipe Face Mesh [8] tool.

2. We crop around the face at the extreme points of the
landmarks, padded by 30% on the top and 5% on the
sides and bottom, and the shortest dimension is ex-
tended to make the crop square.

3. We scale the cropped portion to 64 × 64 pixels using
cubic interpolation.

When we perform a cross-dataset analysis, we reduce the
frame rate of all videos to the lowest common denominator,
i.e. 30 FPS. This only affects the DDPM [14] dataset, which
is recorded at 90 FPS. The conversion takes place before the
cropping step by taking the average pixel value over sets
of three frames. We use this “averaging” technique rather
than skipping frames as in [15] in order to better emulate a
slower camera shutter speed.

RPNet outputs rPPG waves in 136-frame chunks with a
stride of 68 frames. These parameters were selected so that
the model would be small enough to fit on our GPUs. To
reduce edge effects, we apply a Hann window to the over-
lapping segments and add them together, thus producing a
single waveform.

As our evaluation protocol requires inferred heart rates,
we take the Short-Time Fourier Transform (STFT) of the
output waveform with a window size of 10 seconds and a
stride of 1 frame, thus enabling the use of our system in ap-
plication scenarios tolerant of a 10-second latency. We pad
the waveform with zeros such that the bin width in the fre-
quency domain is 0.001 Hz (0.06 beats per minute (BPM))
to reduce quantization effects. We select the highest peak
in the range of .66 and 3 Hz (i.e. 40 and 180 BPM) as the
inferred heart rate.

3.2. Augmentations

We augment the temporal aspect of the training data, af-
fecting alternatively the heart rate or speed, and the change
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Figure 2. Overview of the temporal augmentation method. We apply the augmentations to the preprocessed data, then infer over the
augmented images, and utilize the augmented waveform for calculating the negative Pearson loss.

in heart rate or modulation. An overview of our temporal
augmentation framework showing how it fits into the train-
ing protocol is shown in Figure 2.

To apply the speed augmentation, we first randomly se-
lect a target heart rate between 40 and 180 BPM (i.e. the
desired range of heart rates for which the model will be
sensitive). We set this to be the same range as the peak
selection used in the postprocessing step so that the model
will be trained to predict the same heart rates that the rest of
the system is designed to handle.

Second, we leverage the ground truth heart rate (obtained
using the same STFT technique outlined in Section 3.1),
averaged over the 136 frame clip, as the source heart rate.
We then calculate the length of data centered on the source
clip to be ⌊136×HRtarget/HRsource⌋.

Third, we interpolate the data in the source interval such
that it becomes 136 frames long. This process is applied to
both the video clip and the ground truth waveform.

To apply the modulation augmentation, we randomly se-
lect a modulation factor f based on the ground truth heart
rate such that when the clip speeds up or slows down by a
factor of f , the change in heart rate is no more than 7 BPM
per second. This parameter was selected based on the max-
imum observed change in heart rate in the DDPM dataset.
We furthermore constrain the modulation such that the clip
is modulated linearly by the selected factor over its duration,
i.e. for normalized heart rates s and e at the start and end of
the clip respectively, the normalized heart rate at each frame
x in the n frame clip (set to 136 as in Section 3.1) is:

nHR(x) = s+
x(e− s)

n
(1)

where s = 2
1+f and e = sf . We then integrate nHR

to generate a function yielding the positions P (x) along the
original clip at which to interpolate:

P (x) = xs+
x2(e− s)

2n
+ c (2)

where c = 0 due to indexing starting at 0. Finally, we lin-
early interpolate the n frames from the original clip at every
position P (x) for all x in the range [0..n], thus yielding the
modulated clip.

We additionally employ the horizontal flip, illumination,
and Gaussian noise spatial augmentations from [15].

3.3. Metrics

We use the metrics proposed in [15] for our evaluation.
These metrics utilize either the pulse waveform (provided
as ground truth or inferred by RPNet) or the heart rate (as
derived in Section 3.1). If the lengths of the ground truth
and predicted waves differ (as is the case if the ground truth
wave is not a multiple of 68 frames, i.e. the stride used for
RPNet), then we remove data points from the end of the
ground truth wave such that they have the same length.

Each evaluation metric is calculated over each video in
the dataset independently, the results of which are averaged.
The following sections describe the evaluation metrics used
in our experiments.

3.3.1 Mean Error (ME)

The ME captures the bias of the method in BPM, and is
defined as follows:

ME =
1

N

N∑
i=1

(HR′
i −HRi) (3)

Where HR and HR′ are the ground truth and predicted
heart rates, respectively, where each contained index is the
heart rate obtained from the STFT window as specified in
Section 3.1, and N is the number of STFT windows present.

Many rPPG methods omit an analysis based on ME since
it is often close to zero due to positive and negative errors
canceling each other out. However, we find that it is valu-
able for gauging the bias of a model in a cross-dataset anal-
ysis by explaining how the model is failing, i.e. whether the
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Table 1. Average duration, heart rate (HR) in BPM calculated us-
ing the STFT settings in Section 3.1, and average within-session
standard deviation in HR within a 60 second window and a stride
of 1 frame, for PURE [16], UBFC-rPPG [1], and DDPM [14].
The 95% confidence intervals are calculated across sessions in the
dataset.

Dataset Duration (s) HR Avg HR SD

PURE 68.307 ± 1.502 69.200 ± 6.026 1.638 ± 0.2682
UBFC 64.964 ± 1.516 100.801 ± 5.056 3.016 ± 0.525
DDPM 656.464 ± 22.310 96.982 ± 4.186 4.000 ± 0.286

predictions are simply noisy or if they are shifted relative to
the ground truth.

3.3.2 Mean Absolute Error (MAE)

The MAE captures an aspect of the precision of the method
in BPM, and is defined as follows:

MAE =
1

N

N∑
i=1

|HR′
i −HRi| (4)

3.3.3 Root Mean Squared Error (RMSE)

The RMSE is similar to MAE, but penalizes outlier heart
rates more strongly:

RMSE =

√√√√ 1

N

N∑
i=1

(HR′
i −HRi)2 (5)

3.3.4 Waveform Correlation (rwave)

The waveform correlation, rwave, is the Pearson’s r cor-
relation coefficient between the ground truth and predicted
waves. When performing an inter-dataset analysis, we fur-
ther maximize the rwave value by varying the correlation
lag between ground truth and predicted waves by up to 1
second (30 data points) in order to compensate for differing
synchronization techniques between datasets.

4. Datasets
For cross dataset analysis we utilized three rPPG

datasets, chosen to contain a wide range of heart rates:
PURE [16], UBFC-rPPG [1], and DDPM [14]. Key statis-
tics for these three datasets are summarized in Table 1.

4.1. PURE

The PURE dataset is useful for cross-dataset analysis for
two key reasons. First, it has the lowest average heart rate
of the three datasets, being about 30 BPM lower than the

other two. Second, it has the lowest within-subject heart
rate standard deviation.

4.2. UBFC-rPPG

The UBFC-rPPG dataset (in this paper shortened to
UBFC) features subjects playing a time-sensitive mathe-
matical game which caused a heightened physiological re-
sponse. UBFC has the highest average heart rate of the three
datasets and more heart rate variability than PURE, but less
variability than DDPM.

4.3. DDPM

The DDPM dataset is the largest of the compared
datasets, with recorded sessions lasting nearly 11 minutes
on average. It also features the most heart rate variability
of the three, with a heart rate standard deviation of about 4
BPM. This is due to stress-inducing aspects (mock interro-
gation with forced deceptive answers) in the collection pro-
tocol of DDPM. Due to noise in the ground truth oximeter
waveforms, we mask out all 10 second segments in DDPM
where the heart rate changes by more than 7 BPM per sec-
ond.

5. Training

For each of the three datasets, we randomly partition
the videos into five subject-disjoint sets, three of which are
merged to generate splits for training, validation, and test-
ing at 3/1/1 ratios. We then rotate the splits to generate five
folds for cross-validation. We train for 40 epochs using the
negative Pearson loss function [21] and the Adam optimizer
configured with a 0.0001 learning rate. Models are selected
based on minimum validation loss.

Figure 3 shows training and validation losses when train-
ing RPNet on the three datasets outlined in Section 4 and
applying three augmentation settings: none, speed, and
speed+mod. We observe that utilizing any sort of tem-
poral augmentation causes the validation loss to converge
with tighter confidence intervals. This is especially evi-
dent when training on the PURE dataset where the median
validation loss confidence interval without temporal aug-
mentations (Figure 3a) drops from ±0.174 to ±0.081 and
±0.078 with speed and speed+mod augmentations, respec-
tively (Figures 3d and 3g). Furthermore, while it is apparent
from Figure 3c that training over DDPM without temporal
augmentations can lead to overfitting, both temporal aug-
mentation settings appear to avoid this problem (Figures 3f
and 3i).

Across all combinations of augmentations and datasets,
the validation loss converges to a lower value when tem-
poral augmentations are used than when they are not. We
believe that this is because the models are forced to gener-
alize when the range and variability of heart rates they are
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Figure 3. Training RPNet on PURE, UBFC, and DDPM, utilizing no temporal augmentations, speed, and speed plus modulation augmen-
tations.

exposed to is increased, limiting the effectiveness of sim-
ply memorizing a signal which looks like a heart rate and
replaying it at a frequency common to the dataset.

6. Experimental Results

We trained and tested RPNet on each of the three
datasets discussed in Section 4, both in a within-
dataset analysis (3 training-testing configurations with
PURE-PURE, UBFC-UBFC, and DDPM-DDPM), and
with a cross-dataset analysis (6 training-testing configu-
rations with PURE-UBFC, PURE-DDPM, UBFC-PURE,
UBFC-DDPM, DDPM-PURE, and DDPM-UBFC). Fur-
thermore, we investigated 3 temporal augmentation set-
tings, namely no temporal augmentation (none), speed aug-

mentation (speed), and speed plus modulation augmenta-
tion (speed+mod). The results for the within-dataset analy-
sis are shown in Table 2 and for the cross-dataset analysis
are shown in Table 3.

While the temporal augmentations were intended to im-
prove cross-dataset performance, we did observe a slight
performance boost in the within-dataset case. As shown in
Table 2, all metrics except rwave on UBFC exhibited better
performance when temporal augmentations were employed.
However, in these cases the performance boost is slight, of-
ten falling within the 95% confidence intervals of the results
without augmentation.

Our primary interest is in the cross-dataset case shown
in Table 3. We found that training on a dataset with higher
heart rate variability and testing on a dataset with lower
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Table 2. Results for the 9 within-dataset combinations of dataset and the temporal augmentations used. Heart rate metrics (ME, MAE, and
RMSE) have units of BPM, and rwave is Pearson’s r correlation over pulse waveforms.

Dataset Augmentations ME MAE RMSE rwave

PURE none -0.516 ± 1.814 1.176 ± 1.891 1.872 ± 3.067 0.694 ± 0.253
PURE speed -0.012 ± 0.461 0.694 ± 0.566 1.222 ± 1.456 0.753 ± 0.087
PURE speed+mod 0.006 ± 0.389 0.639 ± 0.482 1.130 ± 1.347 0.752 ± 0.089

UBFC none 0.922 ± 2.215 1.432 ± 2.201 2.238 ± 2.630 0.803 ± 0.024
UBFC speed 0.016 ± 0.384 0.616 ± 0.201 1.346 ± 0.746 0.793 ± 0.020
UBFC speed+mod 0.091 ± 0.139 0.502 ± 0.121 0.993 ± 0.335 0.798 ± 0.024

DDPM none -1.443 ± 5.725 4.167 ± 4.680 6.907 ± 6.504 0.569 ± 0.070
DDPM speed -0.773 ± 2.036 3.230 ± 2.267 5.897 ± 4.671 0.584 ± 0.052
DDPM speed+mod -1.048 ± 1.434 2.981 ± 1.738 5.485 ± 3.412 0.587 ± 0.057

Table 3. Results for the 18 cross-dataset combinations of train dataset, test dataset, and temporal augmentations used. Heart rate metrics
(ME, MAE, and RMSE) have units of BPM, while rwave is Pearson’s r correlation over pulse waveforms.

Train Test Augmentations ME MAE RMSE rwave

PURE UBFC none -13.082 ± 12.972 13.690 ± 12.847 19.320 ± 13.359 0.532 ± 0.136
PURE UBFC speed -3.340 ± 2.998 4.703 ± 3.083 9.219 ± 4.645 0.590 ± 0.102
PURE UBFC speed+mod -1.491 ± 0.583 2.251 ± 0.671 5.191 ± 1.559 0.636 ± 0.053

PURE DDPM none -27.633 ± 8.058 32.360 ± 3.934 38.397 ± 3.052 0.182 ± 0.015
PURE DDPM speed -10.926 ± 11.184 24.343 ± 4.140 33.410 ± 3.694 0.221 ± 0.032
PURE DDPM speed+mod 6.436 ± 4.870 33.620 ± 2.018 42.494 ± 2.829 0.150 ± 0.015

UBFC PURE none 9.657 ± 3.971 11.532 ± 2.710 14.791 ± 2.751 0.619 ± 0.021
UBFC PURE speed 0.864 ± 1.074 2.196 ± 0.921 3.758 ± 1.289 0.671 ± 0.043
UBFC PURE speed+mod 0.938 ± 0.720 2.535 ± 0.920 4.246 ± 1.275 0.625 ± 0.025

UBFC DDPM none -5.569 ± 4.479 14.947 ± 2.231 20.738 ± 2.366 0.264 ± 0.028
UBFC DDPM speed -4.240 ± 6.961 18.574 ± 2.707 28.082 ± 3.056 0.251 ± 0.020
UBFC DDPM speed+mod 11.258 ± 4.904 32.914 ± 0.769 41.698 ± 0.834 0.174 ± 0.010

DDPM PURE none 26.092 ± 14.065 26.660 ± 13.435 30.915 ± 13.164 0.437 ± 0.099
DDPM PURE speed 1.256 ± 1.563 2.208 ± 1.824 3.905 ± 2.996 0.686 ± 0.061
DDPM PURE speed+mod 1.338 ± 1.477 2.509 ± 1.776 4.441 ± 2.991 0.673 ± 0.058

DDPM UBFC none -0.358 ± 0.863 1.963 ± 1.135 3.745 ± 1.931 0.699 ± 0.050
DDPM UBFC speed -0.431 ± 0.177 1.311 ± 0.282 3.140 ± 0.654 0.711 ± 0.028
DDPM UBFC speed+mod -0.563 ± 0.383 1.160 ± 0.393 2.906 ± 1.112 0.734 ± 0.029

heart rate variability tends to produce better results than the
reverse. This is especially evident in cross dataset cases in-
volving DDPM, which has the highest heart rate variability
as measured by heart rate standard deviation in Table 1.

We were particularly interested in the cross-dataset per-
formance between the relatively low heart rate dataset
PURE and the higher heart rate datasets DDPM and UBFC.
As shown in the ME column of Table 3, we observe that
when training and testing between datasets of different heart
rates without temporal augmentations, the bias as reflected
by ME is strong, with UBFC-PURE yielding the ME clos-
est to zero at over 9 BPM. Furthermore, these models are
biased in the direction of the training dataset’s mean heart
rate, i.e. training on PURE which has relatively low heart
rates results in a negative ME on UBFC and DDPM, while
training on UBFC or DDPM results in a positive ME when
testing on PURE. However, applying the speed augmenta-

tion causes ME to be much closer to zero than when no
such augmentation is used. This is because the speed aug-
mentation is intended to mitigate the heart rate bias inherent
in the training dataset, thus causing it to generalize to any
heart rates seen in the augmented training regime rather than
simply those present in the dataset. With the mitigation of
heart rate bias as reflected by improved ME scores, we ob-
serve an improvement in MAE and RMSE in most cases.
We furthermore observe a boost in rwave, indicating that
the models more faithfully reproduce the waveforms with
low noise.

The modulation augmentation is intended to boost per-
formance when training on a dataset with low heart rate
variability such as PURE and testing on a dataset with
high variability such as UBFC and DDPM. We observe that
modulation indeed boosts performance for PURE-UBFC,
though even with modulation PURE-DDPM fails to gener-
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Table 4. Zero-effort errors obtained by predicting the average heart
rate of the dataset for all subjects. In all cases ME is 0.

Dataset MAE RMSE

PURE 15.847 23.054
UBFC 14.085 17.256
DDPM 17.804 22.113

alize. With the possible exception of DDPM-UBFC, we do
not observe the modulation augmentation positively impact-
ing cases when the training dataset already contains high
heart rate variability, as is the case with UBFC and DDPM.

We observe poor results in both cross dataset experi-
ments where DDPM is the test dataset. Of those, we still
observe the same trend in PURE-DDPM as we observe in
other cases, i.e. that models trained with speed augmen-
tations outperform those without, albeit in this case the
performance is still quite poor. In UBFC-DDPM we see
that models trained without speed augmentations achieve
better results than with speed augmentations, which is a
break from the trend observed in all other cases. Further-
more, whereas in other cases high MAE and RMSE errors
are largely explained by bias as reflected in ME, this case
has a relatively low ME relative to MAE and RMSE. We
believe that in this case since the average heart rate be-
tween UBFC and DDPM is relatively close (differing by
less than 4 BPM), overfitting to this band of heart rates is
actually beneficial for the cross dataset analysis. Further-
more, we investigated the “zero-effort” error rates achieved
by a model which simply predicts the average heart rate for
the dataset (97 BPM as in Table 1), finding comparable er-
ror rates to UBFC-DDPM (MAE and RMSE are 17.804 and
22.113 respectively). These zero-effort results for the three
datasets are reported in Table 4.

We summarise the cross dataset results in Table 5. In
this case we calculate the 95% confidence interval across 4
cross dataset combinations (omitting the cases when testing
on DDPM as no models generalized) and 5 training folds.
We find that combining both speed and modulation losses
yields optimal performance on all metrics. The box plots in
Figures 4 and 5 further demonstrate the reason why the tem-
poral augmentations outperform the case without augmen-
tations. In particular, the bias of the model to predict heart
rates similar to its training dataset has been significantly re-
duced, as is most clearly seen in the reduced absolute ME
shown in Figure 4. We further observe an improved MAE
shown in Figure 5.

We compare our method with other methods in the rPPG
literature. Several factors contribute uncertainty to this
analysis:

• The Siamese-rPPG method does not include settings
for calculating the FFT spectrogram for heart rate

Figure 4. Speed augmentations reduce learned bias as reflected
by a reduced |ME| in cross dataset analysis between datasets with
differing heart rate bands.

Figure 5. Speed augmentations can improve the accuracy of the
model, reflected by an improved MAE.

derivation, which as argued in [9] can introduce un-
certainty into the comparison with this method.

• Both GAN based methods use interbeat intervals to
derive the heartrate, which differs from our method
which relies on an STFT specrogram.

• PulseGAN is trained on both PURE and BSIPL-RPPG
(an in-house database), whereas RPNet was trained
without BSIPL-RPPG.

• The GAN techniques solve a somewhat different prob-
lem in that they use CHROM signals as an input in
order to generate a waveform with more realistic PPG
features, whereas the others infer the pulse waveform
from video data.
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Table 5. Summaries of cross dataset performance under speed augmentation settings, omitting PURE-DDPM and UBFC-DDPM where no
models succeed in generalizing. We take the absolute value of ME metrics before averaging.

Augmentations |ME| MAE RMSE rwave

none 12.349 ± 5.546 13.460 ± 5.335 17.192 ± 5.720 0.572 ± 0.056
speed 1.502 ± 0.803 2.604 ± 0.884 5.005 ± 1.536 0.664 ± 0.031

speed+mod 1.373 ± 0.570 2.501 ± 0.784 4.830 ± 1.174 0.677 ± 0.025

Table 6. We compare RPNet to other methods: CHROM [3],
POS [20], Siamese-rPPG [18], PulseGAN [13], and Dual-
GAN [7]. Because postprocessing steps differ between published
methods, we perform our analysis of RPNet with several postpro-
cessing settings.

Train Test Method MAE RMSE

NA PURE CHROM 2.237 4.697
NA PURE POS 2.609 5.532

UBFC PURE Siamese-rPPG 0.63 2.51
UBFC PURE RPNet-w10 2.251 ± 0.671 5.191 ± 1.559
UBFC PURE RPNet-w30 0.741 ± 0.121 1.592 ± 0.207
UBFC PURE RPNet-wfull 0.958 ± 0.073 2.349 ± 0.125

NA UBFC CHROM 3.114 6.136
NA UBFC POS 3.363 7.366

PURE UBFC Siamese-rPPG 1.29 8.73
PURE UBFC PulseGAN 2.09 4.42
PURE UBFC Dual-GAN 0.74 1.02
PURE UBFC RPNet-w10 2.535 ± 0.920 4.246 ± 1.275
PURE UBFC RPNet-w30 1.925 ± 1.163 2.797 ± 1.326
PURE UBFC RPNet-wfull 1.480 ± 0.707 4.939 ± 4.002

To compensate for these differences, we evaluate the RP-
Net models trained using speed and modulation augmenta-
tions under three different postprocessing configurations: 1)
w10 uses the 10-second STFT window as described in 3.1;
2) w30 uses a 30 second STFT window, but otherwise leaves
the evaluation the same; 3) wfull calculates the FFT over
the full waveform, and results across all subjects are con-
catenated before calculating the RMSE metric. The results
are shown in Table 6.

While it is unclear (given the variety of postprocess-
ing steps) how our method ranks compared to other rPPG
techniques, for the more lenient configurations the results
show a MAE within the ±2 BPM or ±2% published accu-
racy bounds of CMS50E series oximeters (used in the col-
lection of the PURE, UBFC-rPPG, and DDPM datasets).
Furthermore, we believe that our recommended augmenta-
tions are generally applicable to deep learning based rPPG
as a whole, as this augmentation strategy may be imple-
mented as a training framework for any model architecture
that trains based on video inputs to produce waveform out-
puts.

7. Conclusions

In this paper, we show the importance of temporal speed-
based augmentations for the cross-dataset generalization of
deep learning rPPG methods. We develop a system for
training deep learning rPPG models using two variants of
this augmentation method, i.e. speed augmentation affect-
ing the heart rate, and modulation affecting the change in
heart rate. We argue that these augmentations may be ap-
plied to any deep learning rPPG system which produces a
pulse waveform from video inputs.

While this paper probed an interesting failure case of
deep learning in rPPG, much room for improvement re-
mains. We were unable to achieve satisfactory performance
training on the relatively simple PURE or UBFC datasets
and testing on the more complex DDPM dataset, likely
due to extreme head pose changes and dynamic facial ex-
pressions spurred by the interrogation collection setting of
DDPM. It is conceivable that a set of augmentations tar-
geting spatial distortion can permit generalization in these
dimensions, which future work should investigate.

We found cross dataset performance to be comparable
to other published work. However, due to differences in
postprocessing steps which have little to no bearing on the
performance of the algorithm itself, we were unable to per-
form a full and comprehensive comparison. We believe that
the effect of postprocessing on rPPG should be studied and
recommendations made for the community to standardize
on common techniques.
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