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Abstract

In the Intensive Care Unit (ICU), the awakening of pa-
tients from comas is indicative of recovery. This article
investigates the feasibility of using conventional and deep
learning-based methods for eye state estimation based on
videos recorded by a CCTV-camera installed in the ICU.
For handcrafted feature-based methods, geometric, HOG
and RGB features are combined as the input of the SVM
classifier to classify the eye state as open and closed. For
deep learning-based methods, the eye and face images were
used as joint input for classification. The clinical trial
involved 48 critically-ill ICU patients. The results show
that the HOG-RGB based method achieved an accuracy of
91.39%, while the deep learning-based method achieved an
accuracy of 89.35%. These findings highlight the chances
of using CCTV cameras to estimate the eye state of ICU pa-
tients, which can be a useful mean to provide information
regarding the patient consciousness for clinicians to assess
their recovery.

1. Introduction
The Glasgow Coma Scale (GCS) is a commonly used

metric to assess the level of consciousness of a patient in
medical settings [1]. One criterion of GCS is the state of
eye-opening, which reflects a patient’s level of arousal and
information processing by the cerebral cortex. In the con-
text of the Intensive Care Unit (ICU), monitoring the status
of a patient’s eyes can provide valuable information about
their consciousness, which can indicate improvement or de-
terioration in their neurological status. This information is
critical for caregivers to make decisions on patient’s recov-
ery or treatment, i.e. it can help doctors to determine appro-
priate dosages of sedation and analgesia, reducing the risk
of over-treatment or under-treatment.

Recently, CCTV cameras have been used for physiologi-
cal monitoring of patients in an ICU setting [2]. In addition
to physiological measurement, it is also valuable to explore

the functions of an imaging device for semantic measure-
ments, such as the eye state. Vision-based eye state estima-
tion has been explored in a wide range of applications, in-
cluding driver fatigue monitoring [3], human-computer in-
teraction [4] and human biometrics [5]. Vision-based tech-
niques are commonly classified into two categories: hand-
crafted feature-based and deep learning-based, depending
on the employed learning scheme [6]. In the classifica-
tion of eye states based on handcrafted features, the open
and closed eye states provide different appearance features
around the eyes, which can be extracted as descriptors for
binary classification (closed or open). Geometrical and
appearance-based features are two typically used features
in this category. The geometrical methods extract features
such as the shape of the pupil and eyelid, and calculate the
degree of eye opening [6], for example, calculating the pro-
portion of pupil diameter and distance between the eyelids
and thresholding it as binary classification [7]. Soukupova
and Cech [8] proposed to use the eye aspect ratio (EAR),
which is the ratio of height and width of the eye, for clas-
sification. In comparison, appearance-based techniques ex-
ploit more sophisticated textural features in the eye region.
Features like Gabor, local binary patterns and histograms of
oriented gradients (HOG) depict the texture and shape fea-
tures of the eye image. Leveraging the advanced machine
learning algorithms, satisfactory results have been achieved
in the application of eye state estimation [9–12].

In addition to handcrafted feature-based techniques,
deep learning-based methods, relying on convolutional neu-
ral networks (CNNs) for feature extraction [6], are used in
a trainable end-to-end fashion. Kim et al. [13] proposed
a deep residual CNN structure to estimate the eye open
and closed states to cope with the environmental challenges
(e.g. image blurring, illumination changes and image res-
olution differences) that may degrade the quality of eye
images. Compared to other CNN structures, this method
achieved a smaller classification error on the database com-
bined of ZJU-database, DDBD-DB1-database and DDBD-
DB2-database. In [14], Gou et al. developed a cascade
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regression framework for detecting eye and estimating eye
states, which shows significant improvement on top of other
mainstream methods for both the eye localization and eye
state estimation based on BioID and GI4E databases. Next
to the successful applications in non-clinical scenarios, it is
interesting to know if the eye state estimation can create a
new value stream for clinical scenarios such as in ICU, as a
tool for estimating the level of patient consciousness.

In this study, the aim is to develop and evaluate the meth-
ods for eye state estimation in ICU patients, based on hand-
crafted features and deep learning features. Videos were
collected by CCTV cameras installed in a real ICU setting,
and manual annotation under expert-guidance was done to
label the eye states as “open or closed” in the video se-
quences. The methods are developed to exploit geomet-
ric features, texture features and data-driven deep learning
features for classifications. For handcrafted feature-based
methods, the basic shape and texture information such as
EAR, HOG and color were analyzed by resorting to a Sup-
port Vector Machine (SVM) classifier. For deep learning-
based methods, we use eye images and face images as the
input of a CNN model pre-trained on the CEW dataset [11].
The eye image and face image are fed to the CNN model to
extract deep features respectively, and the feature weights
are adaptively assigned to output the prediction results. The
evaluations on ICU image datasets and individual videos
indicate that both the handcrafted feature based SVM and
deep learning-based classifier have reliable performance for
eye state estimation.

To our best knowledge, this is the first work that stud-
ies the feasibility of using cameras to estimate the eye state
of ICU patients and its potential for consciousness indica-
tion. Despite the challenges posed in an ICU environment
(e.g. illumination, shadows, occlusions and unpredictable
patient movements), our system demonstrates the feasibil-
ity of this emerging application. This system could improve
the quality of care for ICU patients, also may improve the
efficiency of clinical decision-making, by enabling timely
detection of the patient’s awakening state.

2. Clinical setup and data collection
The clinical trial was conducted in the ICU of Shen-

zhen Third People’s Hospital, China, which involved 48
critically-ill patients. The study was approved by the hospi-
tal’s Institutional Review Board (IRB) and informed con-
sents were obtained from the patients or their guardians.
The patient was monitored by a CCTV camera (Panasonic
WV-SC384H Fast Ball Network Camera) installed approx-
imately 3 meters and 45 degrees in front of the bed, record-
ing the scene in the RGB format at 25 frames per second
with a resolution of 1080 × 1920 pixels. Fig. 1 shows the
scenario of ICU recordings.

Among the 48 ICU patients, 29 were annotated as asleep

Figure 1. The ICU setup for the clinical study, where a surveillance
CCTV camera is used to record the patient face and upper body.

or unconscious. In this study, each ICU patient was contin-
uously monitored for a short period of 10 minutes. To en-
sure that the experiments could reflect the real conditions in
an ICU environment, its setting was not adjusted nor tuned
for video recording, resulting in a challenging dataset that
included various practical challenges such as poor illumi-
nation, blurring, shadows, occlusions of clinicians during
operation, etc. Typically the challenges like the uneven dis-
tribution of illumination on face, head pose variations, and
the occlusion of the medical tape on the face, are difficult
for analyzing facial attributes. Moreover, due to the needs
of patient monitoring, the focal length of CCTV cameras
were not standardized, which varied in different units.

The created dataset has 1200 open-eye faces and 1450
closed-eye faces, which are further separated into the im-
ages of left-eye and right-eye. Each face image corresponds
to a left-eye image and a right-eye image. Prior to the anal-
ysis, the eye images were resampled to a uniform size of
24 × 24 pixels, while the face images were resampled to
224× 224 pixels with aspect ratio unchanged. Fig. 2 exem-
plifies snapshots of the facial and eye images in our dataset
(the facial images are blurred to protect the privacy).

3. Methodology

The purpose of this study is to evaluate the accuracy of
using different facial features for classifying the eye state
of ICU patients. Specifically, classical handcrafted feature-
based methods and a lightweight deep learning method pre-
trained on a public dataset were used. The model gener-
ated after using five-fold cross-validation during training is
applied to assess the patient’s eye state (open or closed)
in video sequences. In the video, a label is created each
5 seconds, with 1 indicating eye-opening and 0 indicating
eye-closed. The video sequences were annotated under the
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Figure 2. Exemplified images in our ICU dataset: (a) images of patient face and (b) images of patient eyes (with landmark detection and
distance calculation).

guidance of a medical practitioner. The classifier output
was compared with the annotations for quantifying the per-
formance. The ultimate goal is to provide a real-time as-
sessment of ICU patient wakefulness based on the eye state
estimation.

3.1. ROI extraction of eyes

To extract the eye features, the MediaPipe [15], an ad-
vanced deep-learning based facial landmark detector, was
employed to locate the eye keypoints. The first step is to de-
tect the facial region and locate 468 facial landmarks. Once
the landmarks were identified, the positions of the left and
right eyes were determined using six key-points for both
eyes, i.e. the key-points were (387, 373, 384, 381, 362,
263) for the left eye, for right eye were (160, 144, 157, 154,
33, 133). Finally, the leftmost and rightmost landmarks of
both eyes are used to extract the eye patches. These patches
were resampled to 24 × 24 pixels and used for eye state
estimation, as shown in Fig. 3.

3.2. Handcrafted features with SVM

Fig. 3 shows the proposed methodology used for eye
state recognition. The proposed scheme consists of several
steps such as facial landmark detection, handcrafted feature
extraction and eye state estimation.

Geometric features (EAR). EAR is a commonly used
metric used for detecting the state of a patient’s eye (open
or closed). It is calculated as the ratio between the vertical
distance (of four landmarks on the upper and lower eyelids)
and the horizontal distance (of two other landmarks on the

inner corner and outer corner of the eye), expressed as:

EAR =
∥p2 − p6∥+ ∥p3 − p5∥

2 ∥p1 − p4∥
, (1)

where p1 and p4 are landmarks of eye corners, p2, p3, p5, p6
are landmarks of upper and lower eyelids [8], as illustrated
in Fig. 2 (b).

In the EAR+SVM approach, a model was learned to rec-
ognize different EAR values and landmark distances that
can differentiate open eyes and closed eyes. The SVM clas-
sifier is trained on a set of labeled data, with the EAR value
and six distances (vertical and horizontal) between eye land-
marks as the input feature.

Texture features (HOG). The HOG feature extraction is
utilized to construct a histogram that characterizes the tex-
ture pattern of the eye region, by calculating the gradient
orientation of pixel intensities [16]. This histogram is used
as a feature representation for eye state classification. The
texture features of the grayscale images were extracted us-
ing HOG, with a cell size of 10× 10 pixels and a block size
of 2 × 2 cells. Instead of applying HOG to the eye patch,
we extract the HOG features from six landmarks of an eye
and crop a square region with half of the eye’s length as
its side length. Subsequently, we extract a 144-dimensional
histogram from each region. It solves the problem when ap-
plying HOG on the whole patch of the eye. In the ideal case,
the pupil (the anchor) should be positioned at the center of
the eye images, and the corresponding block can extract the
eye features, as open and closed eyes have distinct differ-
ences. However, as shown in Fig. 2 (a), the orientation of a
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Figure 3. The classification model based on handcrafted features, i.e. a hybrid of geometric features (EAR), texture features (HOG) and
color histogram features, for eye state estimation.

patient’s head can cause the pupils to deviate from the eye
centroid, resulting in different HOG features even though
the parameters are the same, i.e. a rotation of HOG features
that may render the misclassification. Our approach tends
to avoid this kind of error by placing HOG features on eye
key-points, enabling more reliable extraction of HOG fea-
tures regardless of their positions in an image.

To capture the eye states that are indicative of conscious-
ness, separate classifiers were trained for the left and right
eyes. We determined the eye state based on the presence of
an open eye, assuming that if either the left eye or right eye
is open, the patient is considered to have eyes open.

Color histogram features. As shown in the feature ex-
traction module of Fig. 3, our proposed method attempts to
fuse different features to determine the eye state. Due to
the difference between eye-tone and skin-tone, color-based
features have also been extensively used for eye state classi-
fication [17,18]. To extract RGB features, we first calculate
a histogram of color distribution of the eye image in each
of RGB channels. To make the histogram more informa-
tive, we divide each channel into a certain number of bins.
Each channel is divided into 5 bins, leading to a total of 125
vectors for histogram representation. We integrated RGB
features and HOG features to provide complementary in-
formation to the classifier.

3.3. Deep learning features with transfer learning

CNN model architecture. Fig. 4 shows the overview of
the designed CNN architecture fusionModel, consisting of
eyeModel, faceModel, adaptive weights layer, and linear
classifier. The inputs to the whole network are images of
the face and both eyes obtained from the Mediapipe, and
the outputs are the predictions of the states of the eyes.

For the eye images of 24× 24 pixels from MediaPipe, it
is not very suitable to extract image features with an overly
complex network model. Therefore, in the eyeModel, we
designed two parallel lightweight 5-layer CNN layers with
the same architecture to extract the image features of the
left eye and right eye, respectively. The obtained features
are then concatenated and fed into the linear classification
layer for eye state estimation. We added a dropout layer to
the linear classification layer to reduce the risk of overfit-
ting. In addition, for facial images with 224 × 224 pixels,
if we directly build a CNN for facial feature extraction, the
network model is prone to overfitting and it is difficult to ob-
tain robust facial features. Therefore, we choose ResNet101
as the backbone for deep feature extraction and initialize the
parameters of the network model using the parameters pre-
trained on ImageNet. The facial feature extraction network
trained on a large public dataset was further fine-tuned us-
ing the images of the ICU dataset.

Finally, we concatenate the features of the left and right
eyes obtained from the eyeModel and the facial features ob-
tained from the faceModel. The neural network was used
to assign weights for the concatenated features through the
adaptive weight assignment layer, and the weighted features
were used as the input of the fully-connected layer for final
decision making.

Transfer learning. In deep learning, the size and diver-
sity of the dataset often affect the recognition accuracy, if
our fusionModel is trained directly on the ICU dataset, it
is prone to overfitting and lack of generalizability. There-
fore, we employ a migration learning scheme to address
such limitations.

We also used an external eye condition dataset, called
CEW [11], to pre-train our eyeModel and faceModel (see

6063



Figure 4. The deep learning model designed for eye state estimation, which fuses eye features and facial features for decision making.

Fig. 4). Although the face model was initialized using Im-
ageNet’s pre-training parameters, we fine-tuned the feature
extraction layer with a smaller learning rate (e.g. 1e-6) to
specialize this generic feature extractor into a face feature
extractor. After the pre-training was completed, we mi-
grated the learning weights of the eyeModel and faceModel
feature extraction parts to fusionModel, respectively, and
then fine-tuned the fusionModel model end-to-end on the
ICU dataset.

4. Results and discussion

We compared the performance of three deep learning
models with and without the pre-training strategy in Table 1.
It is clear that the models that have been pre-trained on the
CEW dataset have an overall better performance than the
models trained on the ICU dataset only. We also observed
that the models without pre-training were prone to the over-
fitting when trained directly on the ICU dataset, which is in
line with our expectation. Therefore, we consider that the
performance of the target model can be improved to some
extent by pre-training it on a preliminary model through an
external dataset and then migrating the pre-trained network
weights to the target scenario (e.g. ICU).

To validate the effectiveness of our fusionModel archi-
tecture, we compared the performance of eyeModel, face-
Model and fusionModel under the same training scheme
with the five-fold cross-validation. From Table 1, we can
see that for eyeModel, the overall performance is poor due
to the limited size of the model, i.e. only the eye region
is exploited for analysis. The faceModel can achieve an
accuracy of 93.30% when pre-trained on the CEW dataset

Method ACC.(%) CR(%) OR(%)
EAR+SVM 82.25 77.28 87.83
HOG+SVM 87.44 94.66 79.32
HOG+RGB+SVM 91.75 90.11 93.58
eyeModel 64.28 78.72 49.93
eyeModelpre 72.20 78.80 64.85
faceModel 74.80 99.80 38.18
faceModelpre 93.30 94.83 87.62
fusionModel 72.95 99.93 34.37
fusionModelpre 94.09 95.27 90.18

Table 1. Evaluation of different architectures. pre denotes the
method pre-trained on the CEW dataset. (Acc. - Accuracy, CR -
Closed-eye correctly rate, OR - Open-eye correctly rate)

and fine-tuned on the ICU dataset. fusionModel achieves
the best performance using the same training strategy. The
main advantage of fusionModel is the fusion of eye features
and facial features using adaptive weight assignment.

Different feature sets are thoroughly compared in Ta-
ble 1 using similar metrics of [12]. The accuracy of ap-
proaches using features of EAR, HOG, HOG-RGB and
deep model are 82.25%, 87.44%, 91.75% and 94.09% re-
spectively. However, it should be noted that the method
using EAR feature may not be effective in the ICU appli-
cation, particularly for the patients with brain injuries or
other issues whose eyes cannot be fully closed. It shows that
the geometric features are not sufficient in such challenging
cases without the learning of eye appearance. Therefore,
features that are capable of measuring local textual infor-
mation (e.g. deep data-driven features) are more suitable
for the ICU condition.
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PATIENT
EAR+SVM HOG+SVM HOG+RGB+SVM Deep Learning: fusionModelpre

ACC.(%) CR(%) OR(%) ACC.(%) CR(%) OR(%) ACC.(%) CR(%) OR(%) ACC.(%) CR(%) OR(%)

1 93.33 100.00 90.00 99.17 97.5 100.00 97.50 97.50 97.50 97.50 100.00 96.25

2 79.17 69.64 87.50 93.33 94.64 92.19 93.33 100.00 87.50 87.50 100.00 76.56

3 100.00 100.00 100.00 85.83 90.91 76.74 100.00 100.00 100.00 99.17 98.70 100.00

4 78.33 100.00 76.36 95.00 70.00 97.27 85.00 90.00 84.55 80.00 30.00 84.55

5 81.67 100.00 73.17 99.17 100.00 98.78 97.50 92.11 100.00 97.50 94.74 98.78

6 91.67 100.00 56.52 90.00 100.00 47.83 92.50 100.00 60.87 95.00 100.00 73.91

7 76.67 100.00 41.67 80.00 70.83 93.75 75.00 95.83 43.75 77.50 100.00 43.75

8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

9 65.00 100.00 43.24 50.00 4.35 78.38 81.67 100.00 70.27 71.67 100.00 54.05

Overall 85.09 96.51 75.72 88.06 83.78 91.57 91.39 98.36 85.67 89.54 97.95 82.63

Table 2. Comparison of benchmarked methods on 9 ICU patients recorded in video sequences. The boldface denotes the best method in
each category of conventional machine learning and deep learning.

Figure 5. The temporal changes of left and right eye states of
patient 4 with brain injury.

In addition to the validation on images of the ICU
dataset, we collected 10-minute videos of nine ICU patients
to perform long-term eye state assessment using bench-
marked methods. Table 2 presents a comparison of classifi-
cation results using four different features. The SVM clas-
sifier with EAR, HOG, and HOG-RGB features achieved an
overall accuracy of 85.09%, 88.06%, and 91.39%, respec-
tively, while the deep learning-based method achieved an
overall accuracy of 89.54%. However, since the closed-eye
and open-eye periods of each patient in videos may vary, a
single accuracy metric is insufficient to evaluate the perfor-
mance. The CR and OR metrics can more intuitively reflect
the detection rate of open eyes and closed eyes. Table 2
shows that the SVM trained on multivariate features (e.g.
HOG and RGB histogram) outperforms the ones trained on
a single feature (e.g. HOG only), which is reasonable as
HOG and RGB histogram are complementary, and their fu-
sion can further rich the description of eye regions.

The deep learning method shows good performance as
compared with the SVM-based methods in video-based
analysis. The single feature based classification is not ef-
fective in handling the challenges of the ICU due to the oc-

cluded faces or changes in patient’s head orientation, which
could lead to persistent incorrect predictions. Overall, de-
tecting open eyes for ICU patients is more challenging. For
example, patient 4 was diagnosed with acute cerebral in-
farction, who is unable to fully close the eyes. Additionally,
the patient with nystagmus symptoms has uncontrolled eye
movements, leading to the changes of eye state even in the
period of unconsciousness (see Fig. 5). Patient 7 experi-
enced eyelid ptosis due to sedative use, making it difficult
to open the eyes. During the certain periods of wakefulness,
the close proximity of the upper and lower eyelids may con-
tribute to misclassifications (see Fig. 7).

To understand the effectiveness of deep networks for
eye-related feature learning, the activation heatmaps ob-
tained by networks trained on different datasets are shown
in Fig. 6, to illustrate which image parts are highlighted for
task-related feature extraction. The heatmap is presented
as a color-coded image, where redder indicates the regions
with higher weights or attentions and bluer means less im-
portant regions. It is clear that the network trained on Ima-
geNet only does not have correct focus of task-related fea-
ture extraction for nine patients. After pre-training on the
CEW dataset, the heatmaps can highlight the eye region
that is closely related to the training label (wake and sleep),
though some patients have slight drift between the eyes and
highlighted areas, i.e. three patients have only a single eye
highlighted. This suggests that the training on the CEW
dataset was functional but not optimal. The fine-tuning on
the ICU dataset leads to further improvement where the eye
areas are more pronounced in the heatmaps. It proves that
the designed network is indeed valid for ICU patients.

Fig. 7 shows the prediction results of each classifier on an
individual basis. The red area denotes the patient’s wake pe-
riod, while the blue area denotes the sleep period. As can be
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Figure 6. Activation heatmaps obtained by networks trained with three different datasets, e.g. ImageNet, ImageNet + CEW, and CEW+ICU.

Figure 7. Continuous classification of wake and sleep states of ICU patients over a period of time in a video.

seen in Fig. 7, some patients have intermittent spontaneous
eye opening (e.g. patients 4, 6, 7 and 9). Intermittent spon-
taneous eye opening refers to the occurrence of short peri-
ods of eye opening during a longer period of continuous eye
closure. It may be due to the patient’s brain function injury
that leads to an inability to control the eyeball movements.
Sedation and analgesia may also influence the patient’s con-
sciousness and thus the controlling of eyeball movements.
In addition, ICU patients are generally faced with sleep dif-
ficulties, which are characterized by sleep fragmentation,
decreased sleep efficiency, and frequent arousal [19]. Based
on eye state estimation, future work can be focused on us-
ing deep learning techniques to further distinguish the sta-
tus between sleep, awake and unconsciousness, following
the medical guidelines that can be interpreted by clinicians
and involving their visions to solve the real needs.

In summary, this study aims to explore the feasibility of
eye state estimation for ICU patients using CCTV cameras.
To this end, we developed different classification models
based on handcrafted features and deep learning features.

The results demonstrated that HOG-RGB features and deep
learning-based features are effective for this assignment,
outperforming other features in terms of classification ac-
curacy, also CR and OR. However, detecting open eyes for
ICU patients is more challenging due to a variety of chal-
lenges such as facial occlusions and different face orien-
tations (e.g. non-frontal face). Additionally, intermittent
spontaneous eye opening was observed for some patients,
making it difficult to distinguish between sleep and wake-
fulness.

As the next step, we may further investigate the opportu-
nity of integrating the functions of eye state estimation and
physiological measurement (e.g. heart-rate, respiration rate,
SpO2) on a single camera sensor, to provide a more com-
prehensive measurement for ICU patients. It is especially
interesting to explore if the hybrid approach including both
the physiological and semantic information can enable more
accurate calculation of early warning scores. This would be
particularly beneficial for critical patients that need inten-
sive monitoring in acute settings like ICU.
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5. Conclusions
We conducted a clinical research in ICU to evaluate

various vision-based methods for eye state estimation, fo-
cused on assessing their performance in the classification of
closed eye and open eye. The experimental results showed
that both the HOG-RGB model and the fusionModel (deep
learning-based) have good detection accuracy in eye state
estimation for ICU patients. Additional efforts are needed
to improve the localization of facial landmarks for non-
frontal faces in specific sleep positions. Real-time monitor-
ing of a patient’s eye state is crucial in the ICU for detecting
changes in alertness and enabling prompt medical interven-
tions. As the videos were acquired by existing CCTV cam-
eras in ICU, integrating the proposed system into the Inter-
net of Medical Things system would not require additional
space or infrastructure in the ward.
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