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Abstract

We present frequency tracking for extracting heart rate
trace from blood volume pulse (BVP) signal that can be
used as an alternative for commonly used approach based
on the mode of the BVP signal power spectral density. Our
approach is based on particle filtering framework which
provides smooth heart rate estimate, it is robust to motion-
induced artifacts and noise. The method could be easily
tuned and can be coupled with unsupervised BVP extraction
approaches without the need for training. We evaluate our
method on publicly available part of LGI dataset. Proposed
algorithm shows competitive results comparing to argmax
approach.

1. Introduction
Remote photopletysmography (rPPG) is a technique for

assessing blood volume changes in tissues by measuring
small variations in reflected light that are detected with cam-
era sensor. The rPPG signal itself can be useful for measur-
ing vital signs like heart rate variability [12] or blood pres-
sure [34] and, alongside with other bio-signals, can help in
detecting various diseases [40]. In this paper we focus on
heart rate estimation system pipeline.

Quality of PPG signal extracted from video depends on
many factors like lighting conditions, camera parameters
[24], body temperature, skin type and thickness of vari-
ous skin tissue layers, subject movements and mimics [9].
The number and variability of that factors make it harder
to gather representative dataset that takes them all into ac-
count.

Both deep learning based and traditional pipelines for
assessing heart rate by video consist of multiple blocks,
though the former tend to accumulate some of them in a
single neural network which requires careful architectural
as well as training procedure design. Performance of such
multi-component system depends on the quality of each
block in the pipeline, so it is important to analyze how
separate component affects the results. Most of the recent
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Figure 1. Heart rate prediction on david_gym video with different
heart rate extraction approaches: (a) argmax estimator (black) (b)
particle filter (50 realizations shown in black); spectrograms are
obtained for BVP by LGI, ground truth is shown in red

papers devoted to blood volume pulse (BVP) prediction
block [6, 7, 11, 22, 37–39, 41, 42], but some of them cover
other components as well. To name a few, in [43] the im-
pact of face detector and tracking on performance of heart
rate prediction is analyzed; face landmark detection and se-
mantic segmentation have been investigated in [30]; [3],
among other improvements, includes analysis of filtering
and power spectral density blocks, [13] provides an anal-
ysis of different facial ROIs; more detailed stratification of
advances in components of heart rate prediction system can
be found in [35]. In this paper we investigate the effect of
frequency tracking on performance of heart rate prediction
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pipelines.
The remainder of the paper is organized as follows. In

Sec. 2, we provide an overview of the existing methods
for remote video heart rate estimation and frequency track-
ing. Section 3 provides detailed description of the proposed
solution. Section 4 describes implementation details. In
Sec. 5, we present results of evaluation of the pipeline. Sec-
tion 6 contains concluding remarks.

2. Related work
From the perspective of our research, solution pipelines

for the task of remote video heart rate estimation can
roughly be separated into two parts: the first one predicts
BVP signal based on a sequence of face images; the sec-
ond extracts heart rate frequency directly from the predicted
BVP signal.

2.1. BVP signal prediction

A lot of methods for BVP signal prediction were pro-
posed recently. Some classical, non deep learning based
approaches try to estimate BVP by use of various matrix
decomposition techniques like PCA [18] or ICA [31]. Re-
cently Casado and Lopez proposed QR factorization based
method called OMIT [3]. The derivation of another group
of classical methods is based on dichromatic reflectance
model, so they are called model-based. PBV [7], POS [39]
and CHROM [6] are among the well-known representa-
tives of this group. In POS intensity variations are firstly
cancelled out and then pulsatile component is extracted by
combining channel signals, while CHROM eliminates spec-
ular component assuming standardized skin-tone vector is
known. PBV, instead, uses known blood volume pulse color
direction to extract pulsatile component which is found by
least squares fit. DIS [38] adds motion information to the
signal matrix and searches for the projection vector which
jointly minimizes motion-induced artifacts and maximizes
pulsatile signal strength.

With a raising success of deep learning, neural network
based solutions for BVP prediction gained a lot of attention.
Physnet [41] proposed a family of rPPG prediction net-
works which includes separable spatio-temporal (2DCNN),
3D convolutions (3DCNN) and recurrent modules (LSTM,
BiLSTM, ConvLSTM). DeepPhys [4] introduced 2D con-
volutional attention network (CAN) architecture which has
two branches: motion branch predicts BVP signal, while
relevant facial areas are extracted with appearance branch
and injected to the motion branch by attention modules.
Later, in [22] the family of CAN networks has been ex-
tended with 3D-CAN, Hybrid 2D-/3D-CAN and, eventu-
ally, TS-CAN, which exploits temporal shift modules in-
stead of 3D convolutions in order to reduce computational
burden. Physformer [42] utilizes transformer architecture
that is able to catch much longer spatio-temporal interac-

tions for BVP signal modeling but the resulting network is
not suitable for operating on mobile device.

Lack of labeled data for training deep learning methods
can be mitigated by use of self-supervised learning. Gideon
and Stent [11] resample video with random factor that re-
sults in changing the perceived heart rate. Modified ver-
sion of 3DCNN-based PhysNet was trained with supervised
cross-correlation loss along with triplet loss where BVP
predicted for temporally up-/downsampled videos consti-
tute pool of negative samples and the BVP signals resam-
pled back to original sampling frequency are used as posi-
tive examples. In contrast-phys [37] 3DCNN-based Phys-
Net was trained with contrastive loss only, making the
model completely unsupervised. BVP signals for the same
video but for different facial areas are being pulled together
while signals corresponding to different videos are being re-
pelled from each other. Such kind of training is sufficient to
achieve the results comparable to supervised solutions on
some rPPG benchmarks.

2.2. Heart rate extraction

Since all the methods mentioned above in the section are
targeted to predict BVP signal some additional post pro-
cessing step is required to get the heart rate. Straightfor-
ward way would be to transform the signal to frequency
domain with short-time Fourier transform (STFT) and an-
alyze the spectrogram. Spectral peak or argmax estima-
tor, is the most popular approach for heart rate extraction
[3, 4, 6, 7, 11, 13, 22, 38, 42]. Sun and Li [37] additionally
check spectrum for the presence of second harmonic and
correct final prediction if needed. Another approach to com-
pute heart rate is based on the inverse of average inter-beat
interval of BVP signal [12, 18, 31, 41], but this method is
more demanding to the quality of the signal.

Hsu et al. [15] take spectral representation of unsuper-
vised signal, concatenate spectral features from neighbour-
hood windows and train SVR for heart rate prediction. In
[14] 512-point BVP signal was transformed to frequency
domain with STFT, spectrogram image was rescaled to the
size of 128x128 and feeded to 15-layered VGG network
which predicts one of 200 classes of feasible heart rate val-
ues. Zhu et al. [45] design two-step procedure for heart
rate prediction from spectrogram image. They first bina-
rize spectrogram per 95th percentile at each moment, use
morphological operations to connect broken traces and se-
lect the largest connected component as the most probable
frequency strap. Next, they compute weighted average fre-
quency, where the weight of each component is proportional
to its relative power.

Spetlik et al. [36] proposed CNN-based heart rate esti-
mator operating in temporal domain. The BVP extraction
net has been freezed while heart rate estimator was fine-
tuned for each benchmark dataset separately. Comparing
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MAE_pf MAE_wa PCC_pf PCC_wa RMSE_pf RMSE_wa SNR

ICA 15.22 18.43 0.07 0.06 17.26 29.63 -0.22
PBV 14.93 14.27 0.26 0.21 16.66 22.55 0.21
PCA 12.30 10.99 0.24 0.38 14.72 15.46 2.13
CHROM 11.81 10.34 0.28 0.35 13.81 15.86 2.61
OMIT 11.31 8.98 0.32 0.38 13.03 14.10 3.05
LGI 5.39 9.02 0.44 0.39 7.49 14.13 3.06
POS 4.03 5.26 0.47 0.46 5.79 9.43 4.54

Table 1. Average performance of particle filter(pf) and welch argmax(wa) estimators on LGI dataset

to argmax estimator authors claim CNN-based approach is
more robust to non-stationary and noisy heart rate traces.
They compare the network pulse predictions to some clas-
sical methods, but do not train CNN-based estimator with
the output of that algorithms. RhythmNet [27] takes into
account succeeding predictions by adding GRU-layer on
top of the predicted convolutional features and imposing
smoothness constraints on final heart rate trace. Niu et
al. [28] proposed two separate convolutional heads for BVP
and average heart rate prediction that exploit common inter-
mediate feature map.

Since argmax estimator is very sensitive to presence of
outliers, performance of the pipeline which uses such esti-
mator depends on the quality of BVP signal. One way to
mitigate the affect of temporary disturbance in BVP signal
is to increase the width of sliding window in STFT, that
would suppress spurious frequency components but lower
temporal resolution in predictions. In more complex sce-
narios, when BVP signal contains parasitic frequency com-
ponents, that, for instance, correspond to periodic move-
ments during fitness training, argmax estimator could pro-
duce multiple abrupt unnatural jumps from one frequency
track to another as shown in Fig. 1a. Movement harmonic
cancellation might going to help but there are few studies
investigating such cases.

Supervised methods could potentially provide smooth
heart rate trace, but require training dataset. We instead
propose classical signal processing algorithm which can be
easily tuned and used together with unsupervised rPPG al-
gorithm.

2.3. Frequency tracking

Various frequency tracking methods were developed for
the task of speech and music signal analysis. Dubois et al.
[8] use jump Markov system to model arbitrary number of
frequency components in acoustic signal and STFT-based
observation model in particle filtering framework. Fujimoto
et al. [10] have developed pitch and harmonic frequencies
tracking solution based on particle filter. Ng et al. [26] ana-
lyzed the effect of different dynamic models on the qual-
ity of single-tone frequency prediction. Kim et al. [17]

use sigma-point Kalman smoother for multi-harmonic fre-
quency tracking. Recently Das et al. [5] proposed Extended
Kalman Filter with complex-valued state vector for mono-
phonic pitch tracking. In [16] authors designed convolu-
tional tracker that operates on time-domain waveform.

Numerous solutions in other fields have also benefited
from frequency tracking. Nagappa and Hopgood [25] pro-
posed single-tone frequency tracker for bat echolocation
signal analysis. In [21] Rao-Blackwellized particle filtering
approach was applied for the tasks of wheel vibration esti-
mation and car engine sound frequency tracking. Sandberg
et al. [33] developed HMM-based tracking algorithm for
atrial fibrillation diagnostics. Zhu et al. [44] proposed dy-
namic programming based approach called Adaptive Multi-
Trace Carving and validated the method on electric network
and rPPG signal frequency estimation tasks. To the best
of our knowledge, this is the only work which applies fre-
quency tracking to the task of heart rate estimation. Differ-
ent from the latter, our research have several distinctions: (i)
our method is based on particle filtering algorithm from [25]
and targeted to track only single frequency, (ii) the tracker
in [44] needs the full frequency representation of BVP sig-
nal in range of interest, our, instead, requires to compute
only one coefficient corresponding to the current frequency
estimate, (iii) they validate on simulated and private real-
world fitness exercise dataset, where the BVP is extracted
with CHROM [6] and do not test any other methods.

3. Proposed Approach

3.1. Particle Filter for heart rate tracking

Particle filtering is a well-known approach for estimating
the state of dynamical system that can cope with non-linear
dependencies in the models and non-Gaussian noise. For
the task of heart rate estimation, such system tries to predict
heart rate (state variable) based on noisy rPPG measure-
ments (observations) derived from video. We use simple
random-walk model for process dynamics:

ft = ft−1 + vt−1, (1)
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MAE_pf MAE_wa PCC_pf PCC_wa RMSE_pf RMSE_wa SNR # of predictions

gym 8.54 19.62 0.74 0.38 12.49 29.95 -2.16 1967
talk 8.85 11.08 0.17 0.16 10.99 16.59 -0.02 428
rotation 2.71 3.94 0.39 0.28 4.20 7.43 4.90 369
resting 1.46 1.44 0.47 0.72 2.26 2.55 9.53 362
average 5.39 9.02 0.44 0.39 7.49 14.13 3.06

Table 2. Performance of particle filter (pf) and welch argmax (wa) estimators per each type of activity in LGI dataset; BVP signal is
obtained with LGI method

MAE_pf MAE_wa PCC_pf PCC_wa RMSE_pf RMSE_wa SNR # of predictions

gym 2.42 8.50 0.96 0.66 4.50 16.08 2.04 1967
talk 9.80 7.36 0.02 0.12 12.89 12.00 0.61 428
rotation 2.31 3.32 0.41 0.36 3.46 6.44 5.87 369
resting 1.58 1.85 0.49 0.70 2.32 3.18 9.63 362
average 4.03 5.26 0.47 0.46 5.79 9.43 4.54

Table 3. Performance of particle filter (pf) and welch argmax (wa) estimators per each type of activity in LGI dataset; BVP signal is
obtained with POS method

where ft is a heart rate frequency at the moment t, vt−1

is an additive noise component at the moment t − 1. The
observation equation

zt = h(ft) + ut, (2)

where zt ∈ Rn is a BVP signal window of n samples at
moment t, h : R → Rn is a non-linear function, ut ∼
N (0, σ2

u) is an additive noise component at the moment t.
To simplify the notation, let introduce the following dis-

crete cosine and sine signals of frequency ft sampled with
the video frame rate fs:

c = cos

(
2π

ft
fs

k

)
, k ∈ N (3)

s = sin

(
2π

ft
fs

k

)
, k ∈ N. (4)

Then we could denote the windows of the same length
and location as zt, but which are taken from these cosine
and sine curves as ct and st respectively. Using this notation
the likelihood can be determined by the formula [25]:

p(zt|ft) ∝ σ−n+2
u exp

(
−zTt zt − 2C

2σ2
u

)
, (5)

where C is Schuster periodogram coefficient at the fre-
quency ft defined as

C =
(zTt ct)

2 + (zTt st)
2

n
. (6)

In particle filtering framework the distribution of state-
space variable is modeled with weighted samples generated

from some initial distribution and propagated according to
Eq. (1). The weights are updated with the likelihood:

wi
t = wi

t−1p(zt|ft), (7)

where wi
t is the i-th sample weight at the moment t. We

normalize the weights to represent probability distribution.
In order to prevent samples degeneracy problem we re-

sample the particles on the following condition:

1∑n
i=1(w

i
t)

2
< Nthresh, (8)

where Nthresh is threshold on effective number of particles.
The final estimate is weighted sum of the samples

f̂t =

m∑
i=1

wi
tf

i
t , (9)

where m is the number of particles.

3.2. Initialization

The straightforward way to initialize state of the particle
filter would be the mode of power spectral density (PSD)
obtained for the first window of BVP signal. This requires
the person to be still and whole setup is not changing during
this period of time, which does not hold true in some cases.
For such videos we could fit Gaussian Mixture Model to
normalized PSD of the first window BVP signal and use
these statistics to initialize L particle filters. Such curve fit-
ting based solution would be sensitive to proper initializa-
tion and argument bounds, so we instead propose the fol-
lowing algorithm for initialization.
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Figure 2. Mean and standard deviation of RMSE for frequency tracker predictions on LGI dataset
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Figure 3. SNR of BVP signal for each video in LGI dataset

At first step, we find the peak power in the spectrum of
the initial half-length window of BVP signal and set all the
components that are less than 5% of that value to zero. Next,
the peak finding algorithm is applied to the spectrum in or-
der to extract L local maxima that are subsequently used
for initialization of particle filters. We track posterior tra-
jectories for some period of time T and compute cumula-
tive relative power along each one. Finally, the filter with
the maximum cumulative power survives while all others
are dropped. If T is equal to the length of the video we get
offline mode, while fixing T to some reasonable value can
be used as a calibration step in online mode.

4. Experiments

4.1. Dataset

Publicly available part of LGI dataset [29] has been used
for model evaluation, it consists of 24 videos of 6 partici-
pants performing 4 different types of activities. Each video
has duration not less than one minute, for gym type of ac-

tivity videos are about five times longer than for other ses-
sions. Ground truth heart rate estimates were obtained with
CMS50E pulseoximeter.

4.2. Implementation details

Our implementation is based on pyVHR framework
[1, 2]. For face area and landmark detection we choose
default setting that is based on Mediapipe face mesh [23].
Whole face area excluding eyes and mouth regions is used
for extracting colored signal (which is also named as holis-
tic in the framework). Various classical methods like POS
or CHROM were used for BVP signal computation subse-
quently. Sixth order Butterworth bandpass filter with 0.65
to 4 Hz passband is used for post-processing. We follow [3]
and traverse predicted and ground truth BVP signals with
the same window (both are centered and have equal length,
we do not pad the signal) in order not to introduce additional
time shift between the signals.

We test the pipeline with the window length of 10 sec-
onds. Nthresh was set to 20 and m to 100 particles. Pro-
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Figure 4. Periodogram of BVP signal for alex_gym video with heart rate predictions on it (black - 50 realizations of particle filter, red -
ground truth)

cess noise was sampled from normal distribution N (0, σ2
v),

where σv was set to 0.5 bpm; standard deviation of mea-
surement noise σu was set to 1.0, these values were found
to produce appropriate smooth heart rate trajectory on
alex_gym video, we have not precisely tuned the parame-
ters. First samples within half-length window is used for
filter initialization, so power spectral density is computed
on first 5 seconds of the signal and then peak detection al-
gorithm is applied to find proposal frequencies. We limit
only the horizontal distance between the peaks to be not less
that 10 bpm. We scale each windowed signal zt with Han-
ning window function coefficients in order to reduce spec-
tral leakage and normalize it after to have constant power.

4.3. Evaluation

Recent challenges on remote heart rate estimation [19,
20, 32] encourage to use heart rate level metrics, but the so-
lutions mostly try to reduce the error by developing BVP
prediction block coupled with standard argmax estimator.
Earlier benchmarks [19] popularized average heart rate pre-
diction task (only one value for single video is being pre-
dicted). They usually randomly cut longer video into short
segments that are considered independently. Without ac-
cess to original longer videos, such protocol seems to be not
so inspiring for the solutions that utilizes temporal correla-
tion in their predictions. Later challenges proposed contin-
uous, e.g. frame-level heart rate prediction metric [32]. We
adopt continuous metrics from pyVHR framework, where
predicted and ground truth heart rates are compared once
each second of time. We propagate process and observa-
tion models of particle filter for each frame and downsample
predictions later with the factor equal to fps, when compute
the metrics.

In order to investigate capabilities of classical methods
combined with particle filter we start with offline operat-
ing mode by setting T to the length of the video. Due to
stochastic nature of particle filtering we repeat each trial 50
times varying only random seed used for particles propa-
gation according to Eq. (1) and compute error statistics of

this ensemble predictions for each video. We obtain worst
metric values across the ensemble for each video and then
average them over all the videos according to the next for-
mula:

1

AP

A∑
i=1

P∑
j=1

max
r

(M
t
(f̂r

ijt − fgt
ijt)), (10)

where M is the metric we would like to be minimal (e.g.
RMSE or MAE), A is the number of activities performed by
P participants in the dataset, f̂r

ijt is the heart rate prediction
for j-th participant performing i-th type of activity at the
moment t by r-th realization; for PCC we substitute max
with min in the formula.

5. Results and Discussion
We compare proposed frequency tracker with argmax

method on Welch’s spectrogram. Results for different BVP
extraction methods are presented in Tab. 1. We get substan-
tial improvements of RMSE for ICA, PBV, LGI and POS,
while for PCA, CHROM and OMIT the RMSE difference
for the two heart rate extraction approaches is not so drastic.
MAE achieves lower values for ICA, LGI and POS only. In
general, with increasing SNR, prediction error goes down
for both welch argmax and particle filter.

Next, we analyze the errors with regard to each type of
activity for the two BVP methods that have shown best ac-
curacy on the dataset, that are LGI and POS. It can be no-
ticed from Tab. 2 and Tab. 3 that the main improvement is
achieved for gym session videos, while for talk we even
sometimes get worse results than welch argmax.

To estimate stability of particle filter predictions we draw
mean and standard deviation of RMSE across different re-
alizations in Fig. 2. For POS (Fig. 2b) heart rate traces are
relatively stable for rotation and resting scenarios, while for
other types of activities the method shows increased vari-
ance, especially on those videos that have negative SNR
as shown in Fig. 3b. We also consider extreme values of
mean RMSE in each activity group separately, check the
corresponding videos and find that (i) angelo_gym and fe-
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Figure 5. Evaluation results (Eq. (10)) depending on the duration of power accumulation step

lix_talk videos have errors in reference BVP signal, which
is also noticed in [3]; (ii) felix_resting video contains tem-
porally varying illumination pattern and (iii) cpi_talk have
exaustive facial area intensity variations caused by camera
autotuning algorithms during head movements. For LGI
an increased error variance for alex_gym video (Fig. 2a) is
caused by trace switching phenomenon as seen in Fig. 4a.
Here overall low SNR facilitates the switching to pedal ro-
tation frequency trace, POS instead provides BVP signal
with dominating heart frequency and the cost of switch-
ing in terms of accumulated power loss is higher as seen
in Fig. 4b.

The algorithm performance depends on the type of noise,
not only SNR. Though we obtain the worst SNR levels of
BVP signal during gym session (Fig. 3), our algorithm is
able to predict the right trace, since the heart rate track is
preserved on the spectrogram and is separated from pedal
rotation trace. Instead, for talk scenarios heart rate trace is
not pronounced and the parasitic traces are located closely
to it. Though the errors of particle filter predictions for
talk videos with POS are higher than the argmax method
(Tab. 3), our predictions do not contain spurious values and
overall trajectories are smooth.

Having presented the results in offline mode, we now
analyze the effect of different values of power accumula-
tion period T on predictions. Since heart rate trace could

be less pronounced for some period of time, reducing the
T results in error increase (Fig. 5). As expected, for rest-
ing type of activity there is no drop in accuracy, while for
others the errors grow due to confusion of heart rate with
temporally dominating parasitic frequency traces preserved
in BVP signal. In Fig. 6, it can be clearly seen how reduc-
tion of power accumulation period from 40 to 20 seconds
results in switching to pedal rotation frequency trace. Mo-
tion frequency notching could potentially mitigate the effect
in such cases.

Finally, if T = 0 we do not use power accumulation
scheme and select only one particle filter initialized with
argmax frequency on the first 5 seconds of the video. Still,
for POS restricting T to 40 seconds does not result in
any noticeable deterioration comparing to the case when
the trace is selected by power accumulation along the full
length of the video.

6. Conclusion
In this paper we propose single-tone frequency tracking

approach based on particle filtering framework for remote
heart rate estimation. Our results demonstrate that the pre-
diction accuracy can be substantially improved if we utilize
temporal correlation between the neighboring heart rate es-
timates. Our initialization algorithm provides proper heart
trace selection in challenging gym scenarios and results in
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Figure 6. Effect of power accumulation threshold (shown as yel-
low dashed vertical line) on heart rate predictions for harun_gym
video (black - particle filter realizations, red - ground truth), BVP
siganl is obtained with POS

reduced error variance.
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