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Abstract

Hypertension is a serious health risk, and early diagno-
sis is key to start treatment and avoid fatal complications.
We present a stacked ensemble model to predict systolic
blood pressure from remote photoplethysmogramy, which
enables cuffless measurements. To train the stacked ensem-
ble model, a large dataset with facial remote photoplethys-
mogramy signals and ground truth values for blood pres-
sure was collected by trained clinicians. From over 4500
measurements 1410 were selected for training following
quality control. Over 100 different features were derived
from these signals, including statistical features, time do-
main and frequency domain features. Nine of these features
were selected using a forward feature selector. We verified
the accuracy of the model on a separately collected valida-
tion set. Using a multi-layer perceptron regressor, linear
support vector regressor, radial support vector regressor,
and ElasticNet for the base models combined with a sup-
port vector machine classifier in the stacked ensemble and
a RidgeCV model for the final layer, the mean error of the
model is reduced to 1.1 mmHg, mean absolute error to 9.5
mmHg and the standard deviation to 12.3 mmHg. Critically,
79% of the hypertensive patients are correctly identified as
hypertensive with a prediction over 140 mmHg.

1. Introduction

Untreated hypertension increases the risk of heart dis-
ease, strokes and other cardiovascular problems. These
types of cardiovascular disease are one of the leading causes
of death worldwide [22, 29]. Despite these serious health
risks, hypertension often remains undiagnosed as it has no
physical symptoms and is therefore referred to as the silent
killer [22, 33]. In the US, 1 in 3 adults suffer from hyper-
tension, and of those 1 in 6 are not aware of their condition
[26]. Early diagnosis is of major importance to start treat-
ment and avoid fatal complications, however this can only
be achieved by actively and accurately monitoring blood

pressure in the population [27].
Traditionally, blood pressure is measured in clinical set-

tings using a sphygmomanometer or more recently using an
oscillometric device [32]. These measurements are not a
perfect diagnostic tool for hypertension; sphygmomanome-
ters require a skilled clinician to take accurate readings,
who can be subjective with regards to the interpretation of
Korotkoff sounds and may suffer from terminal digit bias
[16, 32]. On top of these observer errors, the accuracy also
depends on the placement of the stethoscope as well as on
the size and placement of the cuff [16]. The accuracy of os-
cillometric devices also relies on correct placement and siz-
ing of the cuff and also reduces over time as the cuff should
be re-calibrated periodically [9, 16, 23, 32]. The accuracy
of both methods can be confounded due to the white coat
effect, which causes a temporary spike in a patient’s blood
pressure. Therefore, after the initial finding of hyperten-
sion, patients are often recommended to follow up with am-
bulatory monitoring or repeated visits to a clinical setting to
prove or disprove their diagnosis. Repeated visits to clinical
settings are costly, and also inconvenience the patient.

To reduce the cost of blood pressure monitoring and
increase the number of people regularly screened for hy-
pertension, research has focused on cuffless blood pres-
sure measurements. One commonly used signal for cuf-
fless blood pressure measurements is photoplethysmogra-
phy (PPG). PPG signals measure the reflected light from liv-
ing tissue, which relates to the blood volume present within
the optical path [8]. Some cuffless blood pressure mea-
suring methods rely on signals from multiple sensors, for
example an electrocardiogram (ECG) and PPG signal [30].
By measuring the time delay between the r-peak in the ECG
and systolic peak in the PPG, the pulse transit time can be
calculated which is one of the features that can be used to
estimate the blood pressure [15]. The pulse transit time can
also be estimated when using PPG signals from two dif-
ferent sites [21, 31]. Although blood pressure measuring
methods based on the pulse transit time may be able to over-
come accuracy errors seen in sphyghmomanometers and os-
cillometric devices, they still rely on specialist equipment
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and likely would only be suited to clinical settings. PPG-
only measurements, and more specifically single remote-
PPG (rPPG) measurements, could open up more accurate
blood pressure estimation in clinical and non-clinical set-
tings, without the need for specialist equipment to diagnose
hypertension [7].

PPG signals are usually captured using specific equip-
ment with inbuilt light sources and dedicated contact-
based sensors, while rPPG signals can be captured with
a consumer-grade camera in ambient light as proposed by
Verkruysse et al. in 2008 [34]. Whilst the ability to use
inexpensive cameras is a major advantage in terms of the
availability of sensors, it comes with the drawback of in-
creased noise levels due to motion and variable external
lighting [21]. Enhanced signal processing algorithms are re-
quired to clean the signal before ensemble averaging can be
utilised to generate a single representative pulsatile wave-
form from the rPPG [35]. Blood pressure prediction from a
PPG signal from a single site (e.g. finger PPG or ear PPG),
cannot rely on pulse transit time, because the single wave-
form does not contain this information. Instead, multiple
features are derived from the full rPPG signal and an aver-
aged single pulse waveform is calculated to aid blood pres-
sure prediction. Features derived from the full signal in-
clude the heart rate and heart rate variability [10], but can
also relate to the average pulse amplitude or symmetry of
the signal. Features derived from the ensemble-averaged
waveform can include features from the time domain, fre-
quency domain and first and second derivatives of the wave-
form [8, 14].

These derived features, combined with patient biomet-
rics, have been used in machine learning models to predict
blood pressure. Some methods focus on deriving cardio-
vascular parameters from (r)PPG features such as cardiac
output and total peripheral resistance to then estimate the
blood pressure [5, 10], while other methods rely purely on
the signal’s shape to detect features and train a model [3,6].
These models specifically look at the symmetry of the pulse
and the height of the pulse in the diastolic and systolic phase
at different percentages of the peak value. Other models de-
rive more complex features from the waveform, its deriva-
tive and second derivative that are directly fed into a ma-
chine learning model to estimate the blood pressure from
the features [15, 21, 30]. In this paper, we use a new dataset
consisting of only rPPG signals specifically collected to
train machine learning models to predict blood pressure.

2. Model preparation

2.1. Dataset overview

There are several public databases with facial videos for
the extraction of rPPG. For example, Bobbia et al. published
UBFC-RPPG which contained videos of 43 individuals in

2017, [1] and Heusch et al. published COHFACE, a differ-
ent public database with 160 videos in total of 40 individ-
uals [13]. These datasets are useful for testing signal pro-
cessing and cleaning techniques but do not contain ground
truth values for blood pressure, or enough measurements to
train a machine learning model. Both are essential to be
able to train and test a model that can predict systolic blood
pressure from an rPPG signal. The dataset should also con-
tain a wide range of ages and skin tones as well as an even
distribution of male and female subjects [14, 19].

Therefore, two datasets were collected specifically for
this study. The first dataset contains 1316 subjects, with
4257 measurements in total. This dataset is referred to
as the training dataset and was collected in collaboration
with hospitals in outpatient appointments [36]. The second
dataset was collected purely for validation and contained 86
subjects with 255 measurements in total, chosen to meet the
ISO-81060-2:2018 criteria to validate the performance of a
blood pressure measuring device compared to an ausculta-
tory reference sphygmomanometer. This dataset is referred
to as the validation set.

In the validation set, the ground truth value for blood
pressure was measured by two independent observers us-
ing an auscultatory sphygmomanometer, while in the train-
ing dataset automated oscillometric devices were used. The
distribution of ground truths of the two sets is different too,
the validation set aims to represent a normal distribution of
hypo-, normo- and hypertensive individuals as would be ex-
pected in the general population and is required to meet the
ISO-81060-2:2018 criteria, while the training set aims to
have a more even distribution to aid accurate model training
across the full range.

Not all signals collected were of sufficient quality for
training and validation. Signals with a signal-to-noise ra-
tio (SNR) below 3.5dB in the frequency domain were ex-
cluded [18], as well as signals which had features outside
of the anatomically plausible range, indicating an unreliable
pulse waveform shape. Following quality control, 1410 sig-
nals remained in the training set belonging to 613 subjects,
and 183 signals remained in the validation set belonging to
69 subjects. In the training set, 27% of measurements have a
ground truth systolic blood pressure below 120 mmHg, 36%
between 120 to 140 mmHg, and 37% above 140 mmHg. Of
the 613 subjects in the training set, 35% were already re-
ceiving treatment for hypertension. No individuals receiv-
ing treatment for hypertension were accepted in the valida-
tion set.

2.1.1 Feature extraction

As shown in Fig. 1, filtering, normalization and baseline
correction are performed before features are extracted from
the rPPG signal. This cleaned signal is used directly to cal-
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Figure 1. Block diagram showing the feature extraction process.

culate statistical features, and further processed using en-
semble averaging to generate a single waveform. This sin-
gle pulse waveform is used to calculate time-domain fea-
tures, frequency-domain features as well as further statisti-
cal features.

2.2. Model types overview

A wide range of model types has been used to predict
blood pressure from features derived from (r)PPG signals.
Popular machine learning models include deep learning ap-
proaches, [3, 28], linear and non-linear regression models
[14, 17, 25] and decision tree based algorithms [17]. Al-
though these models have been shown to find patterns in
the rPPG signals that allows them to predict the blood pres-
sure, they all have their own strengths and weaknesses. De-
cision tree based models are prone to overfitting and may
not generalize well. Deep learning approaches require large
amounts of data, and do not create human interpretable
models. Linear regression methods require features that
have a linear correlation to the target value, which isn’t
always the case for complex physiological features. Non-
linear regression methods may struggle to find the optimum
function in noisier datasets, which usually is the case for re-
mote PPG signals due to the introduction of environmental
and movement disturbances to the signal.

2.2.1 Stacked Ensemble

To combat the weaknesses of individual models, a stacked
ensemble model utilises multiple trained and optimised
base models as input for a second layer model. The sec-
ond layer model can learn the strengths and weaknesses

of the individual base models and achieve better accuracy.
This can be especially helpful in noisy datasets, because the
stacked ensemble can reduce the impact of noisy data by
using diverse models, optimising the combination of base
models, and weighing the models based on performance in
different ranges of the prediction [2, 4, 11].

2.3. Evaluation procedure

Model performance is evaluated on the withheld valida-
tion set, where the mean error (ME) and standard deviation
(SD) are calculated between the ground truth systolic blood
pressure and the systolic pressure predicted by the stacked
ensemble. Of the 255 signals collected in the validation set,
183 were of sufficient quality to generate clustered wave-
forms for feature generation. To enable a fair comparison
of the model performance under the criteria as outlined in
ISO-81060-2:2018 criteria, a randomly selected subset of
the validation set was used that meets the correct normal
distribution, as a result, 139 measurements remained in the
final validation set.

The performance of the feature based stacked ensem-
ble model will be compared against the performance of a
model that is trained using only patient biometrics (includ-
ing weight). A further metric on top of the ME and SD of
each model is the percentage of correctly diagnosed hyper-
tensives. The British Hypertension Society classifies any-
one with a systolic blood pressure above 140 mmHg as hy-
pertensive [24], giving a total of 28 hypertensives in the val-
idation set.

3. Model implementation
3.1. Feature selection

From the feature extraction process more than 100 fea-
tures are extracted, however, some of these features are
highly correlated. Highly correlated features can lead to
overfitting and decrease model interpretability and portabil-
ity [12, 20]. On top of these effects on the performance of
the model, a higher number of features also increases the
computational time needed to train the model [20], so care-
ful feature selection is vital.

On top of the derived features, both the training and val-
idation datasets contain four biometric features which can
be used for model training: age, height, sex, and weight.
Although weight commonly has a strong correlation with
blood pressure, this correlation does not necessarily hold up
in acutely unwell patients. In feature selection and training
for the feature based model, weight was therefore excluded
as it could affect model accuracy when used in clinical set-
tings.

Feature selection was undertaken as the first part of the
process workflow, shown in Fig. 2a. Before the features
were selected, the biometric features (age, height and sex)
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Figure 2. Block diagram showing the process workflow of the stacked ensemble training and optimisation.

were linearly combined into a single combination feature.
After this step, forward feature selection was used to select
the optimal feature set, using feature importance in a ran-
dom forest model as the evaluation metric. Nine features
were selected: the first feature was the linearly combined
biometric feature, four features were time domain features,
three features were statistical symmetry features, and one
feature was a statistical feature derived from the full signal.
These nine best performing features were used across the
base model training and optimising.

3.2. Base model selection and optimisation

Multiple regression models across a range of models
types were trained and validated with default parameters to
identify the most appropriate base models to combine in the
stacked ensemble (Fig. 2b). They were chosen to represent
a range of supervised regression methods, and included lin-
ear models, tree-based methods, support vector machines
and neural networks. The chosen models including param-
eters where different from the default can be seen in Tab. 1.
Base models were evaluated using the mean absolute error
(MAE).

Stacked ensemble models rely on the combination of
diverse base models to reduce bias and generalisation er-
ror [2, 4]. In order to select the combination of base mod-
els that maximise performance without adding additional
unnecessary complexity, the seven best-performing single
base models were optimised individually and then tested in
combination in an iterative process where each iteration in-
cluded between four and seven models, shown in Fig. 2c.

Candidate base model Parameters1

Elastic Net
Gamma
Lasso
Ridge
Random Forest
Extra-Trees
XGBoost
AdaBoost
Bagging
Support Vector Regressor (1) kernel = ’radial’
Support Vector Regressor (2) kernel = ’linear’
K nearest neighbours
Multi-layer perceptron (1) hidden layer sizes = (100,50)
Multi-layer perceptron (2) hidden layer sizes = (200,50)
1 Unless otherwise stated, parameters were the sklearn default parameters.

Table 1. List of candidate models

Previous studies have found that between three and four
base learners are often optimal compared to combining all
possible base learners in the stacked ensemble [2,37]. Here,
seven models were chosen as an acceptable trade-off be-
tween computational testing time required to optimise and
test all possible stacking combinations and the possible ad-
dition of more diverse base models.
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Model MAE ME SD
(mmHg) (mmHg) (mmHg)

MLP (2) 11.1 3.6 13.9
Linear SVR 11.5 1.0 15.1
Radial SVR 11.7 4.4 14.3
Extra-Trees 12.3 4.4 14.5
Lasso 12.4 5.2 14.8
Ridge 12.5 5.4 14.8
ElasticNet 12.5 5.5 14.9
Random Forest 12.7 4.6 14.9
Bagging 12.8 5.2 15.0
MLP (1) 12.8 5.9 14.9
XGB 13.4 4.3 16.2
KNN 13.5 4.7 16.5
AdaBoost 16.1 10.5 15.7
Gamma 19.0 10.2 19.9
SVR: Support Vector Regressor; MLP (1): Multi-layer perceptron where
hidden layer size = (100,50); MLP (2): Multi-layer perceptron where hid-
den layer size = (200,50) XGB: XGBoost; KNN: K nearest neighbours

Table 2. Comparison of individual base models prior to hyperpa-
rameter optimisation. The best-performing seven models by MAE
are listed above the dashed line.

3.3. Stacked ensemble learning framework

The stacking framework consists of a two-layer struc-
ture, shown in Fig. 2d. The first layer contains n base mod-
els and the second layer contains a single meta model. In
order to build the stacking framework, the training data was
split into five folds, and for each base learner the first four
folds were used for training and the remaining folds were
used for predictions for each base model. The out-of-fold
predictions were then passed as new features to the second
layer meta model. The meta model was initially trained on
the combined base model predictions and the original se-
lected features.

Finally, a classifier was used to classify the data
into three classes (⩽120 mmHg, 120-140 mmHg, ⩾140
mmHg). In order to select a classifier, a range of model
types were individually trained and tested, including ran-
dom forest, logistic regression, and support vector machines
(SVM) using both linear and radial kernels. The model with
the highest accuracy was a support vector machine classifier
(SVM) with a linear kernel. The probability scores for each
of the classes from the classifier are used as an input for
the second level model as additional features. The final op-
timised model is then used to generate predictions for the
validation set and to report on the accuracy.

Model MAE ME SD
(mmHg) (mmHg) (mmHg)

Biometric only ensemble 14.7 7.7 16.3
Feature-based ensemble 9.5 1.1 12.3

Table 3. Comparison of MAE, ME and SD of the two different
models.

4. Results
4.1. Individual model performance

All models were trained and validated following feature
selection to allow for direct comparison. MAE, ME and
SD of the individual base models is shown in Tab. 2. The
base models had a ME between 4.0 and 5.8 and SD rang-
ing between 13.8 and 15.5. The neural network algorithm,
a multi-layer perceptron (MLP) had the lowest SD at 13.9
mmHg.

The two support vector regressor (SVR) models were the
next best performing base models by MAE. The SVR with a
linear kernel had the lowest ME (1.0 mmHg) but this was at
the expense of the SD, which is the highest amongst the best
performing base models at 15.1 mmHg. The SVR trained
with a radial kernel had a lower SD (14.3 mmHg), but the
ME remained above 4 mmHg. The two different kernels
applied to the data mean that the algorithms handle the lin-
ear and non-linear data differently, providing a diverse set
of models despite their similarities.

Of the four linear models tested as candidate models,
three were in the best-performing base model selection. All
three models are forms of regularised linear algorithms, as-
signing penalties to coefficients in order to reduce overfit-
ting. However, they all had ME values over 5 mmHg, show-
ing none of them would perform well enough to predict sys-
tolic blood pressure as a single model.

Following iterative testing of stacked ensemble models
containing between four and seven of the best-performing
base models, the model with the best performance was a
combination of four base models: SVR (radial), SVR (lin-
ear), Elastic Net and MLP. Finally, the SVM classifier was
tested and the probabilities for each class were added as fea-
tures. The classifier achieves an accuracy of 64% in the val-
idation data.

4.2. Stacked ensemble

To show the rPPG features provide superior informa-
tion when predicting systolic blood pressure, the results of
a model trained only on the collected biometric features
(height, weight, age and sex) were compared to the results
of the final feature based model (Tab. 3). The rPPG feature-
based model outperformed the biometric model in all eval-
uated metrics, with a reduction in MAE of more than 5
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Figure 3. Bland-Altman plot for stacked ensemble model using
four biometric features (top) and final feature based stacked en-
semble model (bottom).

mmHg, in ME more than 6 mmHg, and 4 mmHg in SD.
The Bland-Altman plots for each model are shown in

Fig. 3. The biometric model has a clear proportional bias,
where samples in the hypertensive range (⩾140 mmHg)
are under-predicted and samples in the hypotensive range
(⩽120 mmHg) are over-predicted. Just over half (54%)
of the hypertensive individuals were correctly provided a
value over 140 mmHg. In comparison, the stacked ensem-
ble model including the rPPG features (Fig. 3) predicted
79% of the samples in the hypertensive range correctly as
hypertensive.

Fig. 4 shows the difference between the predicted values
and the ground truth for both stacked ensemble models. The
R2 value for the biometric only model is significantly lower
than the feature based stacked ensemble at 0.2 compared
to 0.63, showing a closer match to the predicted values in
the feature based model. The biometric only model also has
predictions limited between 116 and 153 mmHg, despite the
systolic blood pressure in the training data ranging between
84 and 219 mmHg. This tendency towards predicting the
mean can be attributed to noisy data, because the error in
the independent variable causes linear regression slopes to
tend towards zero. Although both models show this effect

Figure 4. Regression plot comparing prediction and ground truth
for the model using only biometric features (top) and the feature
based stacked ensemble model (bottom). Red solid line indicates
the R2 between ground truth and prediction, blue dashed line in-
dicates the ideal correlation.

to some extent, it is much less pronounced in the feature
based model, also indicated by the higher R2 value.

The stacked ensemble combination also outperforms the
individual base models, with a reduction in MAE and SD
compared to all four base models. The ME is signifi-
cantly lower compared to three of the four base models, and
not significantly different from the linear SVR. These re-
sults show that the meta-regression model has successfully
learned to take the output of each of the individual models
to create a more accurate prediction.

5. Conclusion
In this paper, we presented a stacked ensemble model

that utilises features extracted from facial rPPG signal to
estimate the systolic blood pressure. The stacked ensem-
ble model was trained on a clinically collected dataset of
videos containing participants with a wide range of blood
pressures. This model was shown to effectively estimate
the systolic blood pressure in the validation set with a mean
error of 1.1 mmHg and standard deviation of 12.3 mmHg
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compared to the ground truth values taken using a sphyg-
momanometer. Using a stacked ensemble model, the ME
reduced significantly (by 2.5 mmHg compared to the MLP
model alone). The SD of the stacked ensemble is 2.6 mmHg
lower compared to the ElasticNet model, which has the
largest SD, and 1.6 mmHg lower compared to the MLP,
which has the smallest SD of all the models in the stacked
ensemble. Overall, combining the different base models
into the stacked ensemble has been shown to improve the
performance of the final prediction.

The stacked ensemble not only performs better than the
individual models in the stacked ensemble, but also outper-
forms a model that relies solely on biometric features as
shown in Tab. 3. The stacked ensemble correctly diagnoses
79% of the hypertensive subjects as hypertensive, while the
biometric only model only achieves 54%. This shows that
the stacked ensemble prediction from a facial rPPG signal
could be a helpful addition for clinicians providing virtual
healthcare services, by adding a more reliable prediction of
the blood pressure than a clinician could plausibly make
based on patient biometrics alone in a remote healthcare
setting.

In our future work, we aim to explore the rPPG signal in
more detail in order to find more independent features and
work on improved methods of signal cleaning to increase
the SNR in the collected signals. An increased SNR will
increase the size of our usable signal database and combined
with novel features this could improve the accuracy of a
trained stacked ensemble even further.
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