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Abstract

Recognizing interactions from sports games broadcast
videos is an application of Interaction Recognition from
Videos (IRV), that offers many challenges due to complex
interactions that are often recorded from a suboptimal view
point. Annotating large scale sports specific datasets is
expensive and time-consuming. Therefore, in this study,
we propose to demonstrate the effectiveness of applying
Self-Supervised Learning (SSL) methods for building use-
ful representations from human skeleton pose data (pose for
short) without requiring costly annotations for a large scale
dataset. Given the numerous well established image-based
SSL methods, we demonstrate how to adapt them for se-
quences of pose through data transformation and a series
of pose-based augmentations. We specifically adapt the Re-
lational Reasoning SSL (Relational-SSL for short) [27] and
achieve 68.18 ± 0% and 76.62 ± 2.7% in linear evaluation
and finetuning protocols, respectively, for the downstream
task of IRV from sports broadcast videos. Lastly, we run
ablation studies on different components of the method, in-
cluding the effect of using estimated pose (versus ground
truth) on the performance of the downstream task.1

1. Introduction

Video understanding is a popular field in computer vi-
sion owing to its diverse applications such as surveillance,
health care, and entertainments. Understanding human ac-
tion and their interactions with the environment (e.g., other
humans and objects) is a crucial component of video un-
derstanding. In recent years, the groundbreaking advance-
ment of Deep Learning (DL) methods marked a new era
in advancement of computer vision applications, including

*These authors contributed equally.
1The use of images from broadcast of NHL games was made pursuant

to Fair Dealing Guidelines for non-commercial research purpose. The use
of this copy may require the permission of copyright owners.

video understanding. The increased usage of social media
platform and advanced broadcast technologies provided the
researchers with enormous amount of data in various se-
tups such as social setups, retail environments, outdoors,
and sports games. Among these applications, sports analyt-
ics gained significant attentions because of challenges and
promises it offers from a scientific and practical point of
view.

The research contributions in sports analytics from a
video understanding point of view, involve recognizing and
distinguishing different sports activities (e.g., running vs
swimming vs basketball) [15, 19], and recognizing indi-
vidual players’ actions and/or group activities from team
sports such as volleyball [29]. The former is often solvable
through using inter-class appearance and/or dynamic differ-
ences (e.g., water vs basketball court). The latter is less
studied due to requiring more sophisticated feature extrac-
tions and sport-specific large scale datasets. These datasets
involve a costly and time-consuming data collection and an-
notation process.

The research community has been consistently seeking
new approaches to reduce or eliminate expensive data an-
notation. The goal of Self-Supervised Learning (SSL) is to
obtain useful representations without depending on a large
annotated dataset. A characteristic of SSL methods is their
reliance on defining and learning a surrogate objective (pre-
text task). The objectives are defined on the unlabeled train-
ing set such that the model disregards the obvious infor-
mation and focuses on fine-grained non-obvious features.
Once the pretext objective is achieved, the trained back-
bone is used for the downstream tasks (e.g., activity clas-
sification). Given the abundance of unlabeled data from the
sports games and the high cost of data collection and anno-
tation, SSL approaches are beneficial for the field of sports
analytics.

Despite the large literature on human action recognition
from videos, many studies focus on single person actions;
however, in reality many scenes consist of multiple persons
and their interactions with the environment [1]. Therefore,
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Figure 1. Frames from the hockey penalty dataset with players’ poses and stick annotations; classes from top to bottom: tripping, slashing,
and no penalty. Reprinted with permission. [1]

in recent years a few datasets focused on human-human and
human-object interactions [31,33,45]; however, most of the
videos include simple interactions (e.g., giving/taking ob-
jects) with inter-class high variance recorded in laboratory
setups. The sports broadcast videos often include complex
interactions, varied camera view point, frequent occlusions,
and blurry scenes due to camera motion. Sports such as
Ice hockey (hockey for short) present even more challenges,
such as fast movements of the players and rapid transitions
between the game events. In addition to the aforementioned
challenges, hockey games involve frequent penalties, which
are complex interactions among the players. The penalties
are inevitable parts of the game due to players’ speed and
density in the small hockey rink (i.e., 1

4 of a soccer field).
The penalties are challenging to recognize and distinguish
due to substantial (self) occlusions, varying and suboptimal
camera view point, and low inter-class variance of penalty
scenes.

Although hockey penalty classification is an interesting
application in the intersection of sports analytics and IRV,
the sports data collection and annotation are expensive and
time-consuming processes. This makes the use of unlabeled
sports data in conjunction with SSL methods appealing.
Even though most SSL approaches use large-scale datasets
to pretrain and report their results [4, 5, 12, 13], Cao et al.
demonstrates the effectiveness of SSL algorithms on small
datasets [3]. Therefore, in this paper, we study the advan-
tage of using SSL pretraining on the unlabeled portion of
a hockey penalty dataset [1]. We then examine the quality

of the learned representations through linear evaluation and
fine-tuning protocols on the labeled portion of the dataset
for the downstream task of two-person hockey penalty clas-
sification from broadcast videos.

The hockey penalty dataset includes ground truth pose
annotations for all the visible players in the scene [1]. The
location of body joints of interacting individuals in a frame
and how they shift over the time has proven to be valuable
yet concise information for the task of IRV [1,6,16,30,40].
In our study, we aim to use the SSL method to capture the
semantics of human skeleton data in a video. Given the
abundance of well established image-based SSL methods,
we propose to convert the temporal pose data to spatio-
temporal image-like inputs. This enables us to take advan-
tage of successful existing SSL algorithms developed for
image data [4, 5, 12, 13, 27]. In this study, we specifically
utilize the Relational-SSL method proposed by Patacchiola
et al. [27] and adapt it for our IRV problem. We evaluate the
effects of the different algorithmic decisions such as choice
of augmentations, dataset partition, aggregation methods,
and so forth on the performance of the downstream task.

Although off-the-shelf pose estimators provide us with
pose annotation for cheap, they often fail to capture poses
from complex scenes such as penalties in hockey games
[1]. The struggle is due to occlusions, camera motions,
unusual poses of the players, and the color of the jerseys
blending with the background (i.e., ice and side boards)
[1]. The ground truth pose annotation is more accurate and
yet expensive. Therefore, we study the effect of obtaining
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poses using an off-the-shelf pose estimator (versus using the
ground truth pose) on the quality of SSL pretrained repre-
sentations and the performance of the downstream task.

To summarize, our contributions are as follows:

• Demonstrating the effectiveness of SSL approaches
on a small-scale dataset for the downstream task of
penalty classification from hockey broadcast videos as
an application of IRV

• Adapting image-based Relational-SSL for temporal
skeleton data by proposing an effective data transfor-
mation method and suitable augmentations relevant to
the downstream task

• Evaluating the robustness of Relational-SSL to esti-
mated poses and the effect of estimated poses on the
performance of the downstream task

• Lastly, elaborating on the adaptivity of the Relational-
SSL to our task through ablation studies

To the best of our knowledge this is the first paper to
study the effectiveness of SSL approaches for the down-
stream task of IRV from sports broadcast videos, specifi-
cally hockey, using sequence of pose data. Our paper is
structured as follows. Sec. 2 reviews the current literature
on the topic. Sec. 3 presents the dataset and different com-
ponents of our methodology in details. Sec. 4 elaborates
on our experimental setup, results, and ablation studies. Fi-
nally, Sec. 5 discusses our findings and concludes our work.

2. Related work
Pose is a popular feature for the task of human interac-

tion recognition, either as the main [16, 30, 40] or compli-
mentary feature [1, 6]. Liu et al. [22] feed the restructured
skeleton data into a gated spatio-temporal LSTM network
to recognize actions and interactions. Their input is restruc-
tured using a tree traversal algorithm. Another study [6]
proposes to use pose as a guide for motion and appearance
features from part patches. These features are input to two
streams of RGB and flow convolutional neural network. A
group of studies models the problem of interaction recogni-
tion as interaction between body joints (or limbs) of the ac-
tors [14, 28, 45]. Perez et al. [28], benefit from the Relation
Network (RN) [32] architecture and proposes to solve inter-
action recognition from videos through reasoning about the
relations between the actors’ joints. They specifically de-
fine two types of relations, namely, intra-person and inter-
person. Intra and inter-person relations capture the interac-
tion between an actors’ joints to his/her own joints and the
other actors’ joints over time, respectively.

The Relational Network (RN) architecture was first in-
troduced by Santoro et al. [32] to explicitly solve problems

that involve relational reasoning using neural networks.
Similar to Convolutional Neural Networks (CNNs) that cap-
ture spatial, translation invariant features from grid like in-
puts; RN can reason about relations. RN has been used in
several applications of computer vision, such as interaction
recognition [28], pose estimation [26], video question an-
swering [20], and SSL [27].

Among available approaches in SSL, contrastive learn-
ing methods gained much attention with the methodol-
ogy being extended to many of the existing applications
[5, 11, 35, 46] including human action recognition from
videos. Gao et al. [11] propose a contrastive SSL method
to learn useful representations from unlabeled pose data for
the task of human action recognition from videos. Follow-
ing the principle of contrastive learning, they generate aug-
mentations of pose data from videos by applying scale and
rotation transformations. The correlated pairs are then used
to train a base encoder network by minimizing a contrastive
loss. The goal of contrastive learning is to maximize the
agreement between an example (i.e., data point) and its aug-
mentations (positive pairs) while maximizing the disagree-
ment between different examples (negative pairs). Once
they achieve the contrastive objective, they use the trained
encoder for a downstream task.

The limitations of contrastive learning, such as sensitiv-
ity to the type of augmentation [38], and its reliance on a
large quantity of negative pairs led the community to dis-
cover other alternatives. A subset of these alternatives at-
tempts to achieve more efficient objectives by eliminating
the reliance on the negative pair [12] or replacing the con-
trastive loss with other objectives [27]. Patacchiola et al.
[27] leverage the RN architecture, which in turn allows op-
timizing the binary cross-entropy loss as a more efficient
objective to learn a pretext task. Their method initiates
by augmenting a mini-batch of images and passing them
through a CNN backbone. They then train a relation head
to discriminate the negative pairs (inter-reasoning) from the
positive pairs (intra-reasoning). After the pretext objective
is achieved, the relation head is discarded, and the backbone
is used for a classification task. We will discuss this method
in more depth in Sec. 3.

Most of the sports analytics studies on hockey focus on
player identification, localization (of player and/or puck),
and tracking [10, 18, 25, 41–44]. Vats et al. [43] proposed a
transformer based approach along with a weakly supervised
learning framework to identify players in hockey broadcast
videos. Ludwig et al [24] demonstrated the effectiveness
of using SSL with unlabeled videos and small set of labeled
images for the task of 2D pose estimation from sports video.

In terms of action and interaction recognition in hockey,
the study by Tora et al. [39] classifies multi-person puck
possession events such as shot, dump in, using a CNN-RNN
architecture. A group of studies propose methods for clas-
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Figure 2. Data transformation pipeline. Pose skeleton sequences of two players for each video (with N keypoints and T frames) are
transformed to spatio-temporal image-like representations with N × T × 4 dimensions.

sification of single-person actions [2, 9] or multi-person in-
teractions [1], using pose and temporal components such
as optical flow and/or recurrent neural networks. There are
several papers [23,34] on using SSL for activity recognition
by using datasets such as UCF [19]; however, they are not
specifically geared toward sports analytics. To the best of
our knowledge, we are the first study applying SSL tech-
niques for the downstream task of interaction recognition
from hockey broadcast videos.

3. Method

Our goal in this paper is to profit from existing SSL ap-
proaches to achieve good performance on the complicated
tasks of IRV from sports broadcast videos. Despite the pop-
ular usage of SSL approaches on large-scale datasets, we
propose to use them on small-scale dataset and demonstrate
their effectiveness. We are hoping leveraging SSL tech-
niques opens a new door to sports analytics research by al-
leviating the need for large-scale sports specific dataset and
eliminating expensive annotations.

Dataset: We use the hockey penalty dataset from the
study by Askari et al. [1]. The dataset includes three classes
of No penalty, Tripping, and Slashing with 98, 80, and 76
videos in each class respectively. The clips in this dataset
are two to six seconds long with 30 fps, that are presented
in either actual speed or slow-motion replays. Each penalty
is completely encapsulated within the duration of the clip,
meaning the clip starts several frames before the start of
the penalty and ends several frames after the end of it.
The dataset offers challenges such as significant view vari-
ation in terms of scale and angle, camera motion, (self) oc-

clusions, blurry frames, and complex interactions. Fig. 1
demonstrates a few examples from the dataset.

The hockey penalty dataset includes ground-truth pose
annotation for all the players in each clip. The annotations
include 14 body key-points as well as two key-point for both
ends of the hockey stick. The dataset marks the two main
interacting players (i.e., P1 and P2) in each frames of each
video. In the penalty scenes the interacting players are the
two players directly involved in the penalty and in terms of
the No penalty class, this assignment depends on the scenes.
For example, for a goal event, the offensive player and the
goaltender are considered as interacting players. Finally,
each player’s ID is unique and tracked for the duration of
video [1].

Data transformation: given that most of the popular
SSL methods (including our candidate) have been devel-
oped for image inputs, our first task is to transform temporal
pose data from the videos into spatio-temporal image-like
inputs. There are studies on different ways of transform-
ing temporal pose data to image-like inputs [7, 8]; however,
most of them are focused on single-person actions. There-
fore, in our study, we propose a novel data transformation
for interaction videos such that first, the transformation out-
put is image-like (grid) data to enable us utilizing CNN
backbones, second, the output preserves the original tem-
poral dynamic and spatial structure of video, and third it
captures information for more than one actor, so that it is
suitable for the task of interaction recognition.

In order to extract spatio-temporal representations from
each video, we define a matrix with four channels, similar to
an RGBA image. Each of the channels is of size T×N with
T and N representing the number of frames and number of
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Figure 3. Conv-4 architecture. The network has four blocks of
8,16,32 and 64 feature maps. The convolutional layers are (3× 3,
stride=1, padding=1). The average pooling are (2 × 2, stride=2).
Last layer has an adaptive average pooling to generate c × 1 × 1
maps (c number of channels).

joints, respectively. For instance, with (i, j) representing
matrix indices, Ri = [x11, x21, ..., xT1] represents the lo-
cation of the x coordinate of the first joint over T frames;
and Rj = [x11, x12..., x1N ] represents the x coordinates of
all the N joints in the first frame (forming the first channel
Rij). The RGBA channels represent the same structure for
x, y coordinates of P1 and, P2 respectively. Fig. 2 elabo-
rates on our data transformation method.

SSL architecture: following the transformation ex-
plained above, our data is now ready to be the input of
an image-based SSL method. Among the available meth-
ods, Relational-SSL approach proposed by Patacchiola et
al. [27] offers great performance through an efficient objec-
tive of minimizing a binary cross entropy loss; in compar-
ison with other computationally expensive methods using
contrastive losses. In order for our work to be self-contained
we briefly elaborate on the Relational-SSL approach; for
more details on the method please refer to the original pa-
per [27].

Relational-SSL follows the idea of many SSL methods
[5, 35, 46], where the surrogate objective is to minimize the
distance between the representations of positive pairs and
maximize it for negative pairs. Relational-SSL combines
this underlying idea with relational reasoning method [32]
and proposes to model the relation between pairs as intra-
reasoning for positive pairs and inter-reasoning for negative
pairs. Employing the RN allows them to train a relation
head through a simple classification task using the efficient
objective of binary cross entropy loss.

Consider an unlabeled dataset that consists of sequences
of poses for two people (P1 and P2) D = {Sm}Mm=1 and
Sm = {{P1{xn, yn}Nn=1, P2{xn, yn}Nn=1}t}Tt=1, where

N,T, and M refers to number of body keypoints, frames,
and data samples in the dataset, respectively. On each
sample, several stochastic data augmentations are applied,
Si
m = A(Sm), resulting in multiple augmented instances

of each sample, K indicates the number of augmentations.
After data transformation c, a CNN backbone, fθ extracts
representations from each instance. The representations are
aggregated by the aggregation function (e.g., concatenation,
summation, maximum) denoted by a to form pairs. These
pairs can include augmented instances of a data point (pos-
itive pairs) or different data points (negative pairs). These
pairs are input to a non-linear function with learnable pa-
rameters, rϕ, which is the building block of relational rea-
soning network. This function takes in each pair and outputs
a relation score 0 or 1, with 1 indicating positive pair (intra-
reasoning) and 0 indicating negative pairs (inter-reasoning).
Finally, the loss is calculated between the relation score
and target (denoted as g). Eq. (1) is the formulation of
Relational-SSL, notations partially used as [27].

argminΘ,Φ

M∑
m=1

K∑
i=1

K∑
j=1

L(rΦ(a(z
(i)
m , z(j)m )), g = 1)

+L(rΦ(a(z
(i)
m , z

(j)
m′ )), g = 0) with zm = fΘ(c(S

(i)
m ))

(1)

Augmentation: although we transformed the data into
image-like inputs, it is important to note that ours are dif-
ferent from regular images (e.g., apples, cats, etc.) found
in image classification datasets (e.g., CIFAR10). Con-
sequently, the popular data augmentations used in image
based SSL, including the ones used in the Relational-SSL
(e.g., random crop-size and color distortion), are not mean-
ingful and relevant in our case. Therefore, we propose to
apply a set of augmentations in the time and skeleton space
that are meaningful for sequence of pose data representing
interactions. Specifically, for each batch augmentation we
generate augmented versions of 2D skeleton data (i.e., pos-
itive pairs for intra-reasoning) through randomly applying
augmentations such as rotation, translation, and shear fol-
lowed by transforming the results to their spatio-temporal
image-like representations. We will elaborate on the addi-
tional details about the augmentation in the Sec. 4.

Pose extraction: As mentioned in Sec. 1, given that pose
annotation is an expensive process, we aim to evaluate the
effect of using estimated poses (versus ground truth anno-
tated poses) on the performance of SSL method and the
downstream task. We chose the HRNet [36] frame-based
top-down pose estimator, which takes bounding boxes for
target people in each frame and output poses. Since our
method is focused on recognizing the interaction between
two main players, we only extract the poses for P1 and P2.

The hockey penalty dataset does not include bound-
ing boxes for players; therefore, we automatically deduce
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Linear Evaluation Finetune

Method/Pose
Random Weights

(lower bound)
Supervised

(upper bound) Relational-SSL
Random Weights

(lower bound)
Supervised

(upper bound) Relational-SSL

GT pose 48.37 ± 0.45 % 89.28 ± 1.37 % 68.18 ± 0.0 % n/a 100 ± 0.0 % 76.62 ± 2.7 %
Estimated pose 37.90 ± 1.845 % 80.125 ± 1.87 % 53.26 ± 2.3 % n/a 84.76 ± 0.94 % 65.25 ± 4.3 %

Table 1. Experiment results of linear evaluation and finetune protocols using ground truth and estimated pose. We report percentage test
set accuracy (mean and standard deviation of two runs) on hockey penalty dataset for the downstream task of penalty classification from
hockey broadcast videos. Random weights and supervised setting represent the lower and upper bounds respectively

Backbone Linear Evaluation
Relational-SSL (Conv-4) 68.18 ± 0.0 %

Relational-SSL (Resnet-8) 51.61 ± 1.37 %
Relational-SSL (Resnet-32) 53.56 ± 1.37 %

Table 2. Comparison of different backbones

bounding boxes from ground truth pose data. The boxes
are extracted to encapsulate all the joints’ annotation, plus a
correction margin to count for approximate location of key
points annotation. The margin is set to twice the distance
between neck and head key points to ensure each player is
fully encapsulated by the box.

Since we use a pretrained model on the COCO dataset
[21], the output includes 17 body keypoints; whereas, the
hockey penalty dataset includes 14 body keypoints and two
key points for the hockey stick. Therefore, we average the
extra head keypoints (from the COCO format annotation)
to one head keypoint and add the neck keypoint by aver-
aging the shoulder keypoints. This process results to 14
estimated body keypoints (with the same format as hockey
penalty dataset); we then add back the ground truth stick an-
notations (from the dataset) to the estimated pose to obtain
the final pose with 16 keypoints. In the cases where HR-
Net completely fails to capture the poses of one or both of
the players, we fill the missing pose with zeros, following
the out-of-frame joint annotation protocol from the hockey
penalty dataset [1]. Fig. 4 demonstrates a few examples of
estimated poses using HRNet [36] (before adding the sticks

Figure 4. Outputs from HRNet [36] top-down pose estimator
pretrained on COCO dataset [21]. Left: correct pose prediction.
Right: failing to capture all the joints in motion-blurred frame.

Aggregation Linear Evaluation
Relational-SSL (concatenation) 68.18 ± 0.0 %

Relational-SSL (summation) 66.66 ± 4.8 %
Relational-SSL (maximum) 64.28 ± 2.7 %

Table 3. Comparison of aggregation functions in the Relational-
SSL

back).

4. Experimental Evaluation

4.1. Experiment setup

We uniformly sample 64 frames from each clip; unless
the video is slow-motion, then we sample every third frame,
given the motion between consecutive frames is negligible.
We augment the dataset to three times its size using scale
and horizontal flip. We utilize 50%, 30%, and 20% of the
dataset as unlabeled set, labeled set for training (i.e., linear
evaluation and finetuning), and test set respectively.

Mini-batch size and number of augmentations per batch
(K) are 64. We use 2D skeleton rotation (0°-180°), trans-
lation (0% to 20% of image dimensions), and shear, with
equal chances. As mentioned in Sec. 3 given our primary
input data is skeleton, we apply augmentations in the skele-
ton space, followed by transforming the results to spatio-
temporal image-like inputs.

The models are optimized using binary cross-entropy
loss with the Adam optimizer and learning rate of 10−3 for
600 epochs for each of the backbone training and evaluation
protocols. We used Conv-4 and Resnet-8 as our backbones.
The Conv-4 backbone consists of four blocks of 8,16,32 and
64 feature maps with kernel size of three, stride and padding
of one. Each block includes BatchNorm, ReLu, and average
pooling with kernel size of two and stride of two. The last
layer includes an adaptive average pooling to generate the
maps with c×1×1 dimensions (c number of channels) [27].
Fig. 3 demonstrates the network architecture. The relation
head is a 256 unit fully connected layer with BatchNorm,
leaky-ReLu and sigmoid output. The output representations
from the relation head are aggregated using a concatenation
function.
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We follow standard evaluation protocols for SSL studies,
meaning linear-evaluation and finetune [17]. The linear-
evaluation includes training the backbone for 600 epochs
on the unlabeled set, followed by training a layer of lin-
ear classifier on top of the backbone with labeled portion of
the dataset for the downstream task of interaction classifi-
cation in our study. In the linear-evaluation setting, during
the classification training, the backbone weights are frozen.
The finetune protocol is similar to linear-evaluation, except
with backpropagation to the backbone weights during the
training. For both protocols, the final metric is the ac-
curacy of the downstream task on the test set portion of
the dataset. It is important to note our data transformation
method does not add significant computational cost; there-
fore, the overall cost is equivalent to the computational cost
of the Relational-SSL model [27].

4.2. Results and ablation studies

In this section, we follow evaluation methods from [27]
and discuss the results of our experiments. Tab. 1 demon-
strates the test set accuracy using linear evaluation and fine-
tuning protocols. In random weight experiments, the back-
bone weights are initialized randomly followed by linear
evaluation, which sets the lower bound with 48.37 ± 0.45%
test set accuracy. The upper bound is defined by the super-
vised setting, where the model has access to all the labels,
which demonstrates 89.28 ± 1.37% and 100 ± 0.0% test
set accuracy for linear evaluation and finetunning, respec-
tively. Despite the small size of the hockey penalty dataset
and using only 30% of labeled data (which is 50% less data
compared to the supervised setting, considering the test set
portion), the Relational-SSL method achieves test accuracy
of 68.18 ± 0.0% for linear evaluation and 76.62 ± 2.7% for
finetunning.

As demonstrated in Tab. 1, the results when using es-
timated pose across all the settings is worse compared to
using ground truth pose. Across all the models, the per-
formance drops by 10 − 15%. This is expected given the
complexity, specially occlusions and motion blur, that chal-
lenge the HRNet pose estimator. In several cases, where
one of the players is majorly occluded by another player, de-
spite the bounding boxes provided, the pose estimator is un-
able to extract any keypoints for the occluded player. Given
that the sequence of pose is the only input modality to the
model, the low quality poses from the pose estimator sig-
nificantly affect the performance of Relational-SSL and the
downstream task.

We perform ablation studies on different components of
the model. for all the ablation studies we present the results
by reporting test set accuracy percentage (mean and stan-
dard deviation of two runs) after running Relational-SSL
pretraining followed by linear evaluation. Among the CNN
backbones we tested, we gained our best performance by

using Conv-4 backbone (see Sec. 3), followed by Resnet-
8 with 51.61 ± 1.37% and Resnet-32 53.56 ± 1.37% (see
Tab. 2). We observe the performance decreases as the num-
ber of backbone parameters increase, which is due to small
size of the dataset and overfitting.

Additionally, we experimented with different aggrega-
tion methods of Relational-SSL. Similar to what several
studies using relational network [27, 28, 37] report, we also
find concatenation the most effective method for aggregat-
ing representations. Tab. 3 shows the maximum yields the
lowest performance with 64.28 ± 2.7% accuracy. More-
over, we study the effect of amount of available labeled data
and augmentations on the performance of the downstream
task. Expectedly, the best performance is achieved when
the Relational-SSL has access to all the labeled data with
74.02 ± 0.91%. Finally, to demonstrate our approach is ap-
plicable to other image-based SSL method, we couple our
data transformation approach (using GT pose) with deepin-
fomax [13] and report 51.64 ± 1.4% for linear evaluation
and 53.26 ± 0.93% for finetunning setups.

5. Discussion and conclusion
In this paper, we demonstrated how to adapt the image-

based Relational-SSL for the task of interaction recognition
from sports broadcast videos. Specifically, we showed by
using an effective data transformation and suitable augmen-
tations, it is possible to adapt existing image-based SSL
methods on sequence of pose data. Askari et al. [1] re-
ports 80.6% accuracy on the interaction recognition from
the hockey penalty dataset using a Recurrent Neural Net-
work method fully supervised on sequence of pose data.
In our method, however, we convert sequences of pose to
image-like representations and use a CNN as backbone,
which is not inherently an architecture to capture the tempo-
ral dynamics. Additionally, we only use 30% of the dataset
as labeled data. Given these, 68.18 ± 0.0% and 76.62 ±
2.7% in linear evaluation and finetuning protocols demon-
strate the effectiveness of our proposal.

Despite the popular approach of using SSL methods
with large-scale dataset, we demonstrate the effectiveness
on small-scale datasets as well; which is supported in an-
other study by Cao et al. [3] as well. In many image-based
SSL studies [27], when using large-scale complex datasets
(such as CIFAR100), there is often 10 − 20% of accuracy
gap (using linear evaluation) between upper bound and SSL
method. This is the case where the methods are specifically
designed for image-based downstream task and trained on
hundred thousand data points. However, in our study with
less than a thousand data points, we achieve the same ac-
curacy gap with the upper bound. Although, the number of
classes in hockey penalty dataset is significantly less, but,
the task is more complex and there is low inter-class vari-
ance.
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Additionally, we observed the effect of using lower qual-
ity estimated poses, compared to ground truth pose, on the
performance of the models. This emphasizes on the im-
portance of the quality of pose data, specially, when it is
used as the primary input form. Our experiments with es-
timated poses also serve as quantitative proofs of the claim
by Askari et al. [1] that current off-the-shelf pose estima-
tors struggle to extract high quality poses from complex
sports scenes. Although, our method leverages the ground
truth annotations of hockey stick, but it is important to note
that, owing to the recent annotation technologies, annotat-
ing stick ends is much cheaper and easier compared to an-
notating the skeleton data. Our ablation studies also demon-
strate that smaller backbones yield better results with small-
scale datasets, and similar to many other studies that use re-
lational reasoning architecture [27, 28, 37] concatenation is
the most successful aggregation function.

In conclusion, using SSL methods is specially benefi-
cial for the field of sports analytics, where there are abun-
dant unlabeled data available through sports broadcast but
creating sports-specific labeled datasets is time-consuming
and expensive. Therefore, by taking advantage of avail-
able SSL approaches we can tackle complex tasks in sports
analytics by leveraging the unlabeled data and requiring
only a fraction of labeled data, bearing a small trade-off
in performance compared to supervised learning. As the
future work, our proposed method can be evaluated on the
other publicly available skeleton-based interaction recogni-
tion datasets. Finally, this study can be further expanded to
include more than two actors/players.
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