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Abstract

In recent years, dominant multi-object tracking (MOT)
and segmentation (MOTS) methods mainly follow the
tracking-by-detection paradigm. Transformer-based end-
to-end (E2E) solutions bring some ideas to MOT and
MOTS, but they can not achieve a new state-of-the-art
(SOTA) performance in major MOT and MOTS bench-
marks. Detection and association are two main modules
of the tracking-by-detection paradigm. Association tech-
niques mainly depend on the combination of motion and
appearance information. As deep learning has been re-
cently developed, the performance of the detection and ap-
pearance model is rapidly improved. These trends made
us consider whether we can achieve SOTA based on only
high-performance detection and appearance model. Our
paper mainly focuses on exploring this direction based on
CBNetV2 with Swin-B as a detection model and MoCo-v2
as a self-supervised appearance model. Motion informa-
tion and IoU mapping were removed during the associa-
tion. Our method achieves SOTA results on 2 mainstream
MOT datasets and 1 MOTS dataset which is BDD100K
MOT, WAYMO 2D Tracking, BDD100K MOTS. Our method
yielded a significant improvement of +10.7% and +33.7%,
respectively on BDD 100K MOT and MOTS benchmark.
The proposed method won first place in BDD100K Multiple
Object Tracking (MOT) challenges at CVPR 2022 Work-
shop on Autonomous Driving. Our method also won first
place in BDD100K Multiple Object Tracking (MOT) and
Multiple Object Tracking and Segmentation (MOTS) chal-
lenges at ECCV 2022 Self-supervised Learning for Next-
Generation Industry-level Autonomous Driving (SSLAD)
Workshop. We hope our simple and effective method can
give some insights to the MOT and MOTS research com-
munity. Source code will be released under this git reposi-
tory https://github.com/CarlHuangNuc/MOT_

Figure 1. MOT/MOTS overall architecture

MOTS_without_motion.

1. Introduction

Multiple Object Tracking (MOT) is one of the fun-
damental tasks in computer vision, which used to build
instance-level correspondence between frames and output
trajectories with boxes or masks [1]. MOT task aims to
simultaneously process detecting and tracking object in-
stances in a given video [2]. The only difference between
MOT and MOTS is the latter adds a segmentation branch.
Therefore, this paper regards MOT and MOTS as one tech-
nical direction. It can be used in video surveillance, au-
tonomous driving, video understanding, etc.

Current mainstream MOT/MOTS methods follow the
tracking-by-detection paradigm [3–6]. Until recent years,
Transformer-based E2E solutions brought new ideas to
MOT and MOTS research areas [7–10], but their perfor-
mance could not reach SOTA in major MOT and MOTS
benchmarks. Detection and association are two main mod-
ules of the tracking-by-detection paradigm. Association
techniques mainly depend on the combination of motion
and appearance information [11, 12]. As deep learning de-
velops, appearance and detection models get rapid improve-
ment in performance. At the same time, the unique diffi-
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Figure 2. Detail MOT/MOTS framework

culty of the autonomous vehicle dataset includes low video
frame rate, fast movement, and large displacement make
traditional association methods based on IoU and motion
do not perform well in this kind of situations.

The challenge of association based on motion infor-
mation in the autonomous driving dataset, made us con-
sider whether we can achieve SOTA only based on high-
performance detection and appearance model. Our paper
tried to explore this direction. We use CBNetV2 Swin-
B [13] as the detection model and self-supervised learning
MoCo-v2 [14] as a high-quality appearance model. We re-
moved all motion information, including the Kalman filter
and IoU mapping. We also introduce ByteTrack [15] in-
novation to associate the low-score detection boxes and the
high-score ones.

Our method remains simple, online, and significantly
improves robustness over fast movement and large displace-
ment. Our contributions are summarized as the following:

(1) We propose multi-object tracking and segmentation
framework based on high-quality detection plus appearance
features which can be applied in the supervised and self-
supervised MOT/MOTS dataset;

(2) We perform an ablation test on an extension of
the proposed framework on different detectors, appearance
models, and association methods;

(3) we add a weighted score to tracklet in order to keep
the tracklet representation more smoothly since the detec-
tion score tends to get lower when the occluded part gets
bigger;

(4) We acquire the state-of-the-art MOT and MOTS in
BBD100K dataset on both supervised and self-supervised
tasks. At the same time, we also extended our methods to
other datasets (WAYMO 2D Tracking), and also achieved
good results. We won first place in BDD100K Multiple
Object Tracking (MOT) challenges at CVPR 2022 Work-
shop on Autonomous Driving. we also won first place in
BDD100K Multiple Object Tracking (MOT) and Multiple
Object Tracking and Segmentation (MOTS) challenges at
ECCV 2022 Self-supervised Learning for Next-Generation

Industry-level Autonomous Driving (SSLAD) Workshop.

2. Related Work
Multi Object Tracking (MOT) is a very general al-

gorithm and has been studied for many years. The main-
stream methods follow the tracking-by-detection paradigm
[3–6]. With the development of deep learning in recent
years, the performance of the detection model is improved
rapidly. Currently, most of the latest public work relies on
YOLOX [1,15–17]. Our method selected a stronger perfor-
mance network CBNetV2 [13] which is used to verify the
potential of the detector in our hypothesis. Another impor-
tant component of MOT is an association strategy. Popular
association methods include motion-based (IoU matching,
Kalman filter) [15,18,19], appearance-based (ReID embed-
ding) [1,20], transformer-based [5,8,16,21,22], or the com-
bination of them [11, 12, 19]. Our methods remove all mo-
tion information and use only a high-performance appear-
ance model which is got by supervised or self-supervised
learning.

Multi Object Tracking and Segmentation (MOTS) is
highly related to MOT by changing the form of boxes to
fine-grained mask representation [1]. The only metrics dif-
ference between MOT and MOTS lies in the computation of
distance matrices. In MOT, it is computed using box IoU,
while for MOTS the mask IoU is used. Many MOTS meth-
ods are developed upon MOT trackers [6, 21, 23–25]. Our
ideas are similar to theirs. A mask header was added on the
basis of MOT network in our MOTS solution.

Self-Supervised Learning has made significant
progress in representation learning in recent years. Con-
trastive learning, one of the self-supervised learning
methods such as MoCo [14], SimCLR [26], BYOL [27],
SwAV [28], etc, has amazing performance which is get-
ting closer to results of supervised learning methods in
ImageNet dataset. We leveraged Momentum Contrastive
Learning (MoCo-v2) [14] to train a new appearance
embedding model without using tracking annotations.
The technique not only meets the requirements of self-
supervised tracking but also improves the performance of
the appearance model.

3. Method
In this section, we present detail of the multi-object

tracking framework including detection and segmentation
(Sec. 3.2), appearance model (Sec. 3.3), and data associa-
tion (Sec. 3.4).

3.1. Overall Architecture

As shown in Figure 3, the proposed method is quite sim-
ple and it mainly contains three parts: detection and seg-
mentation, appearance model(ReID model), and data as-
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Figure 3. The overall architecture of MOT/MOTS

sociation(Tracker). The detection and segmentation part
is mainly responsible for providing high-quality instance
bbox and mask information. The appearance model part
is mainly responsible for providing high-quality embedding
features. Data association(Tracker) part leverage detection
output and appearance model to output stable trajectories.

3.2. Detection and Segmentation

Due to the high performance of the transformer, we
adopt swin based transformer [29] backbone with Compos-
ite Backbone Network V2 (CBNetV2) [13] architecture to
predict object bounding box. The CBNetV2 integrates high
and low-level features of multiple backbones which con-
nected in parallel. The Feature Pyramid Network (FPN)
[30] neck and Hybrid Task Cascade (HTC) [31] detector
are attached and trained in each backbone as a main branch
and an assistant branch. Only the main branch is used in the
inference process.

We use more weight to bound box regression than clas-
sification in Loss Function for a more compact detection
bound box which will benefit to appearance model perfor-
mance.

For segmentation, a mask header was added to the detec-
tion network. Since a tracking dataset with the segmented
mask is rare and has some data distribution shift with MOT
dataset, we utilize a model trained on the tracking dataset
with bounding box and fine-tuned the mask head with the
dataset with the mask.

3.3. Appearance Model

Our appearance model for this framework is MoCo-v2
[14] with ResNet50 backbone. The model extracts fea-
ture representations from detected boxes. MoCo-v2 model
training by imagenet 1K dataset and then fine-tuning on
BDD100K MOT dataset. We also compare with model
training by other contrastive learning methods (SimCLR
[26], SimCLRv2 [26], MoCo-v2 [14], etc). We also
make a comparison between supervised learning and self-
supervised learning. Finally, we draw the conclusion that
MoCo-v2 [14] has better generalization capacity in the au-
tomatic driving dataset.

3.4. Data Association

We adopt Bytetrack [15] concept which is a simple but
strong method for matching object id across frames. The
detected boxes in each frame are grouped based on their de-
tection score into the high score and low score. Firstly, the
method finds the association between the high score box and
the tracklet. Then, the rest of the high score and low score
boxes are used to find the association from the remained
tracklet. The association method can be different in each
association step.

Since autonomous dataset usually includes low frame
rate and large displacement from object and camera motion,
IoU and motion-based tracking are not effective, especially
in complex scene with a lot of occlusions. Our method uses
only the appearance feature to associate both high and low
score boxes with tracklet. In addition, we add a weighted
score to tracklet in order to keep the tracklet representation
from the higher detection score since the detection score
tends to get lower when the occluded part gets bigger.

The tracklet features are weighted by the detection score
and combined within τ frames to maintain the object repre-
sentation during occlusion. The weighted feature êj com-
bined tracklet feature ej which is weighted by the detection
score sj from the previous τ frames.

êj =

∑τ
t=1 e

t
j × stj∑τ

t=1 s
t
j

(1)

êj is further used for finding the matched box in the
data association. We apply the same association method
with [20]. A ReId similarity matrix between tracklet and
detection box is computed and used to find matching pairs
by the Hungarian algorithm [32].

4. Experiments
4.1. Dataset and Metrics

BDD100K [33] is a large-scale autonomous driving
video dataset with 100K driving videos. The dataset
includes multiple object tracking (MOT) and segmenta-
tion (MOTS) datasets. The BDD100K MOT and MOTS
datasets provide diverse driving scenarios with high-quality
instance segmentation masks under complicated occlusions
and reappearing patterns, which serves as a great testbed
for the reliability of the developed tracking and segmen-
tation algorithms in real scenes. MOT dataset contains
1400 videos for training, 200 videos for validation, and 400
videos for testing. MOTS dataset contains 154 videos for
training, 32 videos for validation, and 37 videos for testing.
In addition, the BDD100K also provides object bounding
boxes and masks from the detection and instance segmen-
tation sets but does not have tracking annotations for self-
supervised learning tracks.
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The dataset contains 8 types of objects: pedestrians, rid-
ers, cars, buses, trucks, trains, motorcycles, and bicycles.
the evaluation metrics employ mean Multiple Object Track-
ing Accuracy (mMOTA) of MOTA of the 8 categories as a
primary evaluation metric for ranking. It also employs the
mean ID F1 score (mIDF1) to highlight the performance of
tracking consistency which is crucial for object tracking.

ECCV2022 BDD100K MOT and MOTS competitions
employ mean Higher Order Tracking Accuracy (HOTA,
mean of HOTA of the 8 categories) as a primary evalua-
tion metric for ranking. It also employs mean Multiple Ob-
ject Tracking Accuracy (mMOTA) and mean ID F1 score
(mIDF1), which are previously used as the main metrics.
For MOTS, it uses the same metrics set as MOT. The only
difference lies in the computation of distance matrices. In
MOT, it is computed using box IoU, while for MOTS the
mask IoU is used.

Waymo Open dataset [34] has scenes selected from
both suburban and urban areas, at different times of the day.
In addition to the urban/suburban and time-of-day diver-
sity, scenes in the dataset are selected from many different
parts of the cities. the dataset covers an area of 40km2 in
Phoenix, and 36km2 combined in San Francisco and Moun-
tain View. The dataset has around 12M labeled 3D LiDAR
objects, around 113k unique LiDAR tracking IDs, around
12M labeled 2D image objects, and around 254k unique im-
age tracking IDs.

It contains images from 5 cameras associated with 5 dif-
ferent directions: front, front left, front right, side left, and
side right. There are 3,990 videos (790k images) for train-
ing, 1,010 videos (200k images) for validation, and 750
videos (148k images) for testing. It annotates 3 classes for
evaluation. The videos are annotated at 10 FPS.

It use the multiple object tracking (MOT) metric [34,35].
This metric aims to consolidate detect, localize, and track
the identities of objects over time into a single metric to
aid in a direct comparison of method quality: MOTA and
MOTP.

It computes a MOTA for each difficulty level (L1 and
L2). We pick the highest MOTA among all the score cutoffs
as the final metric.

4.2. Implementation Details

Detector. The Swin-B backbone [29] was initiated by a
model pre-trained on ImageNet-22K [36]. CBNetV2 [13]
was trained on both BDD100K object detection and MOT
dataset. We applied multi-scale augmentation to scale the
shortest side of images to between 640 and 1280 pixels and
applied random flip augmentation during training. AdamW
optimizer was set with an initial learning rate of 1e-6 and
weight decay of 0.05. We trained the model on 4 A100
GPUs with 1 image per GPU for 10 epochs. During in-
ference, we resize an image to 2880x1920 to better detect

the small objects. We applied multi-class NMS thresholds
0.6, 0.1, 0.5, 0.4, 0.01, 0.01, 0.01, and 0.4 for pedestrian,
rider, car, truck, bus, train, motorcycle, and bicycle classes,
respectively. For the detection task, we use a combination
of classification Cross-Entropy loss and the generalized IoU
regression loss [37]. Loss weights λ1 and λ2 are set to 1.0
and 10.0 by default, which drives the model output more
compact bound box.

L = λ1Lcls + λ2Lbox (2)

Segmentation Head. The backbone, neck, and detection
head were initiated by MOT detector. Then, we fine-tuned
the MOTS detector with BDD100K instance segmentation
and MOTS dataset. The AdamW optimizer set the initial
learning rate of 5e-7 and weight decay of 0.05. We trained
the model on 4 A100 GPUs with 1 image per GPU for 20
epochs.

Appearance Model. The backbone of the appearance
model is pre-trained on ImageNet-1K. Then, we fine-tuned
the backbone by using MoCo-v2 [14] on BDD100K dataset.
The training dataset contains cropped object images accord-
ing to bounding box labels from MOT dataset. The opti-
mizer is SGD with a weight decay of 1e-4, momentum fac-
tor of 0.9, and an initial learning rate of 0.12. We trained
the model on 4 A100 GPUs with 256 images per GPU.

Tracker. Our method is generally similar to ByteTrack
[15], but we used ReID to match high and low detection
boxes. We set the high detection score threshold to 0.84
and the low detection score threshold to 0.3.

SSMOT and SSMOTS. We do not rely on the tracking
annotations when training our system, thus our method can
be applied to SSMOT and SSMOTS task in BBD100K.

4.3. State of the art Comparison on BDD100K

We evaluated the performance of our method on
BDD100K MOT & MOTS validation set and test set. We
achieve 44.4 mMOTA and 39.6 mMOTSA in BDD100K
MOT test set and MOTS validation set which outperform
the next place by 10.7% and 33.7%, respectively, as shown
in Table 2 and 3. Since we do not use the tracking annota-
tions when training the detector and appearance model, our
method can be applied to SSMOT & SSMOTS tasks and
achieve the same results as shown in Table 2 and Table 3.

4.4. State of the art Comparison on Waymo 2D
tracking

We summit our result to Waymo Open dataset 2D Track-
ing testset benchmark. We achieve 52.37 MOTA/L1 and
46.57 MOTA/L2 which outperform the second place by
1.1%, as shown in Table 4.
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Table 1. Results on BDD100K MOT validation set

Method mMOTA↑ mIDF1↑
Yu et al. [38] 25.9 44.5
TETer [39] 39.1 53.3

QDTrack [12] 36.6 50.8
Unicorn [1] 41.2 54.0
MOTR [17] 32.3 44.8

MOTRv2 [16] 43.6 56.5
ByteTrack [15] 45.5 54.8

Our 45.9 60.5

Table 2. Results on BDD100K MOT test set

Method mMOTA↑ mIDF1↑
Yu et al. [38] 26.3 44.7
DeepBlueAI 31.6 38.7

QDTrack [12] 35.5 52.3
Unicorn [1] 39.5 55.4

ByteTrack [15] 40.1 55.8
Our 44.4 57.4

Table 3. Results on BDD100K MOTS val set

Method mMOTSA↑ mIDF1↑
SortIoU 10.3 21.8

MaskTrackRCNN [40] 12.3 26.2
STEm-Seg [25] 12.2 25.4

QDTrack-mots [12] 22.5 40.8
QDTrack-mots-fix [12] 23.5 44.5

PCAN [23] 27.4 45.1
Unicorn [1] 29.6 44.2

Our 39.6 46.2

Table 4. Results on Waymo 2D Tracking test set

Method MOTA/L1↑ MOTA/L2↑
Trackor 34.8 28.29

CascadeRCNN-SORTv2 50.22 44.15
HorizonMOT 51.01 45.13
QDTrack [12] 51.18 45.09

LeapMotor-Track 51.79 46.45
Our 52.37 46.57

4.5. Ablation Study

We performed ablation experiments to study the ef-
fect of each module on BDD100K MOT validation set
and reported the results in Table 5. We used the origi-
nal ByteTrack [15] codebase as our strong baseline. Be-
cause the original ByteTrack codebase does not public the
ReID model code, So we re-implement the ReID model
as Unitrack [20]. The framework contains CBNetv2 [13]
with Swin-B backbone [29] and a ReID model from Uni-

track [20]. The baseline achieves 48.8 mHOTA and 44.5
mMOTA with a high detection rate. However, there are a lot
of id switching and lost tracking especially when occlusion
occurs. We added weighted on ReID features to give pri-
ority to the high detection score features during the occlu-
sion and got 0.4 higher scores on mHOTA and mMOTA. In
addition, we trained the ReID model with Resnet-50 back-
bone on BDD100K by using momentum contrastive learn-
ing method [14] on cropped images by class. The fine-
tuned model extracts appearance features that can differ-
entiate each object from the same class and improve data
association by 0.8 mHOTA and 0.5 mMOTA. Finally, we
fine-tuned matching thresholds in ByteTrack and achieved
50.0 mHOTA and 45.9 mMOTA.

Table 5. Ablation study of each module on BDD100K MOT vali-
dation set

Method mHOTA mMOTA
ByteTrack(IOU) - 39.4
ByteTrack(ReID) - 45.0

YOLOX to CBNetV2 48.8 44.5
+ Temporally Weighted smooth 49.2 (+0.4) 45.3 (+0.4)
+ Contrastive Learning Model 50.0 (+0.8) 45.8 (+0.5)

+ Parameters Fine Tuning 50.0 45.9 (+0.1)

Table 6. Ablation study of on BDD100K MOT test set

Method mHOTA mMOTA
ByteTrack(ReID) - 40.1

Our 49 44.4

5. Conclusions
In this paper, we propose a simple yet effective tracking-

by-detection framework and achieve state-of-the-art results
in BDD100K MOT and MOTS dataset. We discard the mo-
tion information and only use the appearance embedding to
associate the objects. The training of detection and appear-
ance models does not rely on tracking annotations which
can be costly to obtain. Our method achieves the first place
in CVPR2022 WAD BDD100K MOT Challenge with 45.6
mMOTA on the validation set and 44.0 mMOTA on the
test set. We also achieve first place in ECCV2022 SSLAD
all 4 BDD100K challenges of MOT, MOTS, SSMOT, and
SSMOTS. We hope the simplicity and effectiveness of our
method can benefit future research on MOT and MOTS.

6. Limitations
Although mHOTA is more reasonable than mMOTA

for MOT Metrics, historical MOT papers do not publish
data about HOTA, so we can’t compare more fairly under
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mHOTA. Another limitation is the computational overhead
introduced by the CBnetV2 detector, which may hinder our
solution for the deployment on edge devices.
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