
Integrated Perception and Planning for Autonomous Vehicle Navigation:
An Optimization-based Approach

Shubham Kedia
University of Illinois
Urbana Champaign

skedia4@illinois.edu

Yu Zhou
University of Illinois
Urbana Champaign

yuzhou7@illinois.edu

Sambhu H. Karumanchi
University of Illinois
Urbana Champaign
shk9@illinois.edu

Abstract

We propose an optimization-based integrated perception
and planning framework for autonomous vehicle navigation
that achieves real-time state estimation and path planning
with high accuracy and robustness. Our Simultaneous Lo-
calization And Mapping (SLAM) module is based on Error-
State Extended Kalman Filter (ES-EKF) for LiDAR-Inertial
sensor fusion. The SLAM system generates a cost map using
Euclidean Distance Transform (EDT) that directly encodes
environmental constraints as a cost map. A non-linear tra-
jectory optimization problem is formulated with the cost
function and solved in real-time using the direct collocation
approach. Our results on the KITTI dataset demonstrate the
effectiveness of our framework.

1. Introduction

One of the key challenges in autonomous vehicle nav-
igation is to find collision-free trajectories in unstructured
or cluttered environments in real-time while respecting the
constraints on the dynamics of the vehicle. Though there
exist efficient algorithms for machine perception [1–4] and
motion planning [5–7] individually, there is still lack of
navigation solutions that can deal with both vehicle non-
holonomic [8] constraints and environmental constraints si-
multaneously and efficiently. The present work addresses
this shortcoming by implementing the whole navigation
pipeline as an optimization-based integrated perception and
planning solution for autonomous vehicles.

In this work, we implement the localization and map-
ping module using the Light Detection And Ranging (Li-
DAR) sensor, which is a fast and accurate sensor that can
operate under a wide range of environmental conditions
[9–12]. When the LiDAR SLAM incorporates Inertial Mea-
suring Unit (IMU) measurements, it is called a LiDAR-
Inertial SLAM system. Our LiDAR inertial fusion is imple-
mented using the Error-State Extended Kalman Filter (ES-

EKF) [13], which relies on linear error state dynamics for
optimal state prediction. Robust localization and state es-
timation can be achieved using ES-EKF [14, 15]. In addi-
tion, we incorporate a loop closure module based on a non-
histogram-based global descriptor for LiDARs, called scan
context [16]. Scan context exhibited superior loop-detection
capabilities across multiple datasets [16]. The fused odom-
etry and loop closure constraints are optimized in the back-
end by performing the global pose graph optimization us-
ing miniSAM [17] library. Our LiDAR-Inertial SLAM di-
rectly encodes the obstacles or environmental constraints in
a cost map using the Euclidean Distance Transform (EDT)
technique. The EDT represents the distance to the nearest
obstacle and has been an efficient tool to represent envi-
ronmental constraints for optimization-based planning tech-
niques [18, 19].

The planning module solves a non-linear trajectory opti-
mization problem to minimize the overall cost arising from
dynamics constraint, environment cost map, and terminal
cost or tracking error. The optimizer generates dynamics-
compliant and obstacle-free feasible trajectories and the
necessary control inputs for the autonomous vehicle.

The complete pipeline of the integrated perception and
planning system is shown in Figure 1 and described in Sec-
tion 3. Experimental results on the performance of the pro-
posed approach on the KITTI odometry benchmark [20] are
presented in Section 4.

2. Background and Related Work
We review below the literature related to individual mod-

ules used in our integrated perception and planning ap-
proach.

2.1. Mapping and Localization

SLAM is broadly divided into two categories: LiDAR-
based and visual-based. Research in both directions is still
active, primarily focusing on developing a real-time, high-
fidelity environmental representation and accurate odome-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3206

try. ORB-SLAM [2], RTABMap [21], Kimera [22], LSD-
SLAM [1] are some of the well-known open-source tech-
niques that can deliver real-time performance, and have
been successfully deployed in many mobile robotics ap-
plications. However, visual SLAM inherits the limitations
of visual sensors. Its accuracy is affected by poor lighting
conditions, lack of optical texture in the environment, and
inaccurate depth estimation via indirect methods. On the
contrary, LiDAR SLAM offers more robust localization and
mapping by leveraging the directly captured 3D spatial data
as point clouds. Some well-known works based on LiDAR
odometry include: LOAM [10], LeGO-LOAM [11], and
HectorSLAM [23]. However, these techniques do not pro-
vide a loop closure module and are susceptible to localiza-
tion drifts due to compounding errors. While LiDAR pro-
vides robust localization in a wide range of environments,
it fails in scenarios lacking structural information such as
tunnels, open-fields, etc. This is addressed by introducing
multi-modal sensor fusion techniques such as point cloud
registration with integrated state estimation from IMU. Au-
thors Tang et al. [24] investigated a loosely coupled Ex-
tended Kalman-Filter-based IMU-ICP-fusion. Similarly,
authors Ye et al. [25] introduced a tightly coupled LiDAR-
IMU fusion method by jointly minimizing the cost derived
from LiDAR and IMU measurements. There are also deep
learning-based sensor fusion techniques such as DEEPLIO
[26] where a neural network learns an appropriate fusion
function by considering different modalities of its input la-
tent feature vectors.

2.2. Trajectory Optimization

Optimization-based trajectory planning is widely used
for local planning in applications ranging from unmanned
aerial vehicles to autonomous cars. One fundamental chal-
lenge in optimization-based trajectory planning is the ap-
propriate formulation of collision avoidance constraints,
which are generally non-convex and computationally de-
manding. There are two ways to integrate perception data
as collision avoidance constraints in trajectory optimization:
hard or soft constraints.

There are multiple ways to formulate obstacles as hard
constraints. Work in [27] convexifies the free space and
solves a Sequential Quadratic Programming (SQP) prob-
lem. [28] builds a piece-wise flight corridor (PFC) that de-
scribes a piece-wise convex feasible flight zone for drone
applications. The FaSTrack [29] method computes an upper
bound with which to inflate the obstacles. These approaches
can be over-conservative in practice. In general, while hard
constraints guarantee safety, they treat the entirety of the
free space equally, making the solution space more sensitive
to noise in perception and state estimation. In comparison,
soft constraints consider distance to obstacles and formu-
late collision cost via an EDT of the map [30–32]. In our

application, we follow the soft constraint-based approach
for ease of implementation and its intuitive appeal.

2.3. Integrated Perception and Planning

There are two primary approaches to integrated percep-
tion and planning in autonomous vehicles: the modular ap-
proach and the end-to-end deep learning approach [33]. An
example of the latter is the ALVINN [34] model which
uses a three-layer fully connected network to predict the
steering wheel angle using a camera and radar images. [35]
shows a large-scale convolutional neural network that is ca-
pable of steering a commercial vehicle along a highway
or a smaller residential road. Although the above Imita-
tion Learning (IL) approach performs well for simpler tasks
such as lane-following, it falls short in handling complex
and infrequently occurring long-tail traffic scenarios due to
the distribution shift problem. Various methods such as data
augmentation and diversification [36, 37] have been imple-
mented to address this issue.

While IL frequently suffers from limited exposure to di-
verse driving scenarios, Reinforcement Learning (RL) is
less prone to this issue. An RL agent learns from its inter-
actions with the environment to find out a sequence of ac-
tions that will maximize the total reward received from the
environment without actually requiring expert ground truth
actions upfront [38]. RL is applied in challenging scenarios
using deep Q-learning [39], Deep Deterministic Policy Gra-
dients [40], and Proximal Policy Optimization [41]. How-
ever, RL is more data-intensive than IL and presents diffi-
culties when applied to real-world scenarios. Exploration of
driving policies may result in expensive damages to either
the vehicle or the environment. There is an increase in re-
search on sim-to-real transfer techniques [42], but general-
ization may still be problematic due to challenges in realis-
tic simulation and domain adaptation. Proposed solutions to
address sim-to-real transfer issues include supervised fine-
tuning [43] and unsupervised learning [44].

Although the end-to-end approach has to deal with only
fewer components, it is plagued by two major issues: the
absence of hard-coded safety measures and interpretability.
In contrast, the modular approach uses self-contained and
inter-connected modules like perception, planning, and con-
trol, and relies on explicitly defined intermediary represen-
tations and deterministic rules, which ensure predictability
within their established capabilities [45].

3. The Proposed System
Figure 1 gives an overview of our proposed system. The

inputs to the system are LiDAR and IMU data frames. We
follow the multi-sensor fusion approach to state estimation,
where the measurements from LiDAR and IMU are fused
together using the Error State Extended Kalman Filter for
the LiDAR-Inertial Odometry (LIO). The IMU data gives

3207

Figure 1. Pipeline of our proposed approach. Multi-sensor fusion is in blue, mapping is in red, and trajectory optimization is in green.

the prior for the filter-based odometry and also provides ve-
hicle localization at the IMU frame rate. The LiDAR mea-
surements, on the other hand, are used for state correction
and loop closure detection. The estimated poses from filter-
based odometry and the constraints from loop closure are
optimized in the back-end using pose graph optimization.
The drift-corrected poses are then fed to the mapping mod-
ule to generate the EDT cost map. The optimization frame-
work uses both the EDT cost map and localization as inputs
to generate vehicle control outputs that are feasible and can
account for vehicle dynamic constraints, while also avoid-
ing collisions with environmental obstacles. The following
subsections give the necessary details.

3.1. Multi-sensor Fusion for Vehicle State Estima-
tion

The high-rate noisy measurements from IMU are given
as inputs to the motion model which is integrated over time
to predict the state at the next time instant. These pre-
dictions are updated whenever a new IMU measurement
flows into the system. In parallel, LiDAR generates more
accurate position measurements but at a slower rate than
IMU. Both the model-based predicted state and LiDAR ob-
servations are fed into Error-State Extended Kalman Fil-
ter (ES-EKF) [13] to obtain the corrected predicted state.
This prediction-correction mechanism for state estimation
is repeated whenever a new LiDAR measurement becomes
available. The trajectory of the LiDAR (and hence, the po-
sition of the vehicle at each instant) is estimated by associ-
ating scan points across the point clouds of multiple scans
using the ICP algorithm that finds the correct translation and
rotation matrices such that the current point cloud matches
best with a reference cloud. For loop closure, we use the
structural information-based scan context [16] to recognize
places accurately and apply miniSAM [17] to solve the un-
derlying graph optimization. Each step is described in detail
below.

3.1.1 ICP

Matching between any two LiDAR scans is done through
the Iterative Closest Point algorithm. We consider the point-
to-plane ICP, with the sum of squared distances between the
source point and the tangent plane at its corresponding tar-
get point, as the error metric for minimization. That is, in
the point-to-plane ICP, the problem is to find the transfor-
mation matrix M∗ such that

M∗ = argmin
M

∑
i

((Rpi + t− qi) · ni)
2 (1)

where pi ∈ R3 and qi ∈ R3 are the i-th source and its
corresponding target respectively. ni ∈ R3 is the normal
at the target. In terms of rotation matrix R and translation
vector t, M can be written as M = [R|t].

R(α, β, γ) = Rz(γ).Ry(β).Rx(α)

R(α, β, γ) ≈

 1 −γ β
γ 1 −α
−β α 1

 = R̂

Assuming small values for α, β, γ, the trigonometric func-
tions involved in Rx(α),Ry(β),Rz(γ) are simplified in
R̂ above to convert problem (1) into a linear least squares
problem of minimizing the error in the N correspondence
pairs. The error function E is approximated by:

E ≈
∑
i

[(pi − qi).ni + t.ni + α(pi,yni,z − pi,zni,y)

+β(pi,zni,x − pi,xni,z) + γ(pi,xni,y − pi,yni,z)]
2

∼ Σi[(pi − qi).ni + t.ni + r.(pi × ni)]
2

where r = [α, β, γ]T . Then, solving (1) reduces to solving

x∗ = argmin
x

||Ax− b||2 (2)

The solution is computed using singular value decompo-
sition method. Thus, x∗ = (α∗, β∗, γ∗, t∗x, t

∗
y, t

∗
z). Since

R̂(α∗, β∗, γ∗) is not a valid rotation matrix, R(α∗, β∗, γ∗)
is used instead.

3208

3.1.2 Error-State Extended Kalman Filter for State
Prediction

The state of the vehicle (x) is assumed to be composed of
a large Nominal state (x̂) and a small Error state (δx). The
nominal state is updated by integrating the motion model
and the error state is estimated using the Kalman filter,
which is subsequently used to correct the nominal state. We
briefly introduce the methodology here without delving into
details. A detailed treatment on error state extended Kalman
filter can be found in [14]. Considering the following state
and control vectors,

xk =

pk

vk

qk

 and uk =

[
fk

ωk

]
(3)

the motion model can be written as follows:

pk = pk−1 +∆tvk +
∆t2

2
(Cnsfk − g) (4)

vk = vk−1 +∆t((Cnsfk − g) (5)
qk = Ω(q(ωk−1∆t))qk−1 (6)

where,

Cns = Cns(qk−1)

= Ω

([
qω
qv

])
= qωI +

[
0 −qv

T

qv −[qv]X

]
q(θ) =

[
sin |θ|

2
θ
|θ| cos

θ
2

]

where qω represents the scalar part of quaternion and qv
represents the vector or imaginary part. [qv]X above is the
skew-symmetric operator of qv . In ES-EKF, the nominal
state is predicted by Equations 4, 5, and 6 using the IMU
inputs. It is the best guess about what the true state could
be based on knowledge about the vehicle’s motion model.
However, the predicted state xk := [pk,vk, qk] fails to ac-
count for noise and perturbations in the motion. The errors
build up over time as the motion model is integrated to es-
timate the state. The motion model needs to be augmented
with the error-state dynamics model to facilitate correction.
Denote the error state at time k by δxk = [δpk, δvk, δqk].
The non-linear dynamics are linearized using the first-order
approximation given by Taylor’s series. The linearized
error-state dynamics can thus be written as:

δxk = F k−1δxk−1 +Lk−1nk−1 (7)

where F k−1 is the Jacobian of the motion model, Lk−1

is the Jacobian of the motion model noise in the Taylor’s

series expansion, and nk ∼ N (0,Qk) is the IMU mea-
surement noise with covariance Qk. The uncertainty grows
with time and is corrected using the measurements obtained
either concurrently or intermittently. The measurement pro-
cess is modeled as:

yk = pk + νk

= Hkxk + νk

where νk ∼ N (0,Rk) is the LiDAR noise with covariance
Rk. The LiDAR measurement yk helps obtain the Kalman
gain needed to correct the prediction. The corrected state
and state covariance are used recursively over time to carry
out the state estimation.

3.1.3 Scan Context for Place Recognition

Recognizing a previously visited place is essential for the
loop closure step to correct any drift errors while building
a consistent map of the environment. For effective place
recognition, we apply the scan context [16] method that
extracts structural information present in 3D point clouds.
Scan context is an egocentric place descriptor built by split-
ting the whole set of points in 3D scan into mutually exclu-
sive bins formed using Nr and Ns equally spaced rings and
sectors in the sensor coordinates. Let Pij denote the num-
ber of points in the bin formed by ring i and sector j. Then,
an encoding function ϕ associates a real value to each bin
so that each scan can be given a compact matrix represen-
tation. In our case, the value is set to the maximum height
of the points to effectively summarize the vertical shape of
surrounding structures. That is,

ϕ(Pij) = maxp∈Pij
z(p) (8)

where z(p) is the z coordinate of point p. The similarity
between any two places q and c is measured using the aver-
age cosine distance between the associated scan context ma-
trices Iq and Ic, respectively. The similarity metric helps
identify the previously visited locations on the map.

3.1.4 Pose Graph Optimization

In SLAM, a back-end is required to refine the map and the
poses constructed in its front end. This is posed as a graph
optimization problem where the nodes in the graph repre-
sent key-frames or landmark points, and edges represent the
geometric relationships between the nodes. The optimiza-
tion aims to find an optimal estimation of the values of the
nodes which minimizes the errors determined by the con-
straints. We used miniSAM library [17] to solve the under-
lying non-linear least squares graph optimization efficiently
by using the factor graph representation for pose graphs;
each pose graph can be viewed as the product of a prior
factor, odometry factors, and a loop closure factor.

3209

3.2. Mapping

Recall that xk is the state vector of the autonomous ve-
hicle at time k representing its location and orientation. Let
x1:k denote the states at times 1 to k. The state estima-
tion at time k gives the pose matrix T k ∈ SE(3) in the
global world coordinates. Given a sequence of 3D LiDAR
point cloud scans P1,P2, ..Pk in LiDAR coordinate frame
and a sequence of vehicle poses T 1,T 2, ..T k, the mapping
problem pertains to estimating a globally consistent map
M1,M2, ..Mk in the world coordinate frame. We imple-
ment this by registering the LiDAR scans Pk incrementally
in the world coordinate frame using the odometry pose T k

at that timestamp. Mathematically, we define:

Mk = Mk−1 ∪ {T kPk} (9)

Since the above formulation is memory intensive and
autonomous vehicle trajectory planning is a 2D navigation
problem, we project the 3D map onto a 2D probabilistic oc-
cupancy grid map representation. This allows us to account
for uncertainty and noise in the LiDAR point cloud scans
and to store and process the environmental representation
in a memory and computationally efficient format.

Formally, we define p(m,n)
k as a probabilistic occupancy

grid with each cell index represented by the tuple (m,n)
where m ∈ M and n ∈ N . M,N denote grid cells seg-
mentation of the 3D point cloud. We compute p̃(m,n)

k =
1[|Mk ↓ W| > δ] where W ∈ R2 denotes the grid co-
ordinates (m,n), δ denotes the minimum threshold count
required to consider a cell as occupied. By adjusting δ, it
is possible to filter the noise and ghost points in the LiDAR
scans which can create false positives in the obstacle cost
map. p̃(m,n)

k ∈ {0, 1} represents occupancy of a cell based
on the evidence from current LiDAR scan. ↓ denotes the
projection for a range [zinitial, zfinal] along the Z- axis in
the world coordinate frame, which represents a subset of
the configuration space C of the vehicle relevant to the 2D
navigation problem. Tuning the parameters zinitial, zfinal
allows building the occupancy map without the roads, street
lights, trees, etc. which are generally not an obstacle in the
C-SPACE of the vehicle.

Finally, we update the occupancy map using a proba-
bilistic recursive update Equation 10.

p
(m,n)
k = p

(m,n)
k−1 + α(p̃

(m,n)
k − p

(m,n)
k−1) (10)

Where α ∈ (0, 1] is a constant hyper-parameter which con-
trols the exponential decay of history or previous observa-
tions. This formulation is especially useful for handling dy-
namic obstacles.

The probabilistic occupancy map is transformed into
an obstacle cost map with Euclidean Distance Transform
(EDT). For computing the EDT, the probabilistic occupancy

map is converted into the binary image: Ii = 1[p
(m,n)
k >

0.5], where i ∈ R2 shows the image coordinate. The EDT
for the binary image is defined as: minj{||i−j||2; Ij = 1}.
This computation can be implemented with O(n) complex-
ity with two passes on the image (top left to bottom right
and back) [46].

3.3. Trajectory Optimization-Based Planning

We introduce collision avoidance into a trajectory opti-
mization framework by means of a soft environmental con-
straint. We choose trajectory optimization for its ease of
integrating costs, dynamics, and constraints.

The problem formulation includes an environmental cost
fc, in addition to penalizing controls and deviation from the
goal configuration xg in planning horizon time-steps N :

min
x[·],u[·]

λN,afa(xN) + λcfc(xN)

+

N−1∑
k=0

λafa(xk) + λcfc(xk) + λefe(uk)

s.t. ∀k ∈ {0, . . . , N − 1},
xk+1 = f (xk, uk) ,

xk ∈ X , uk ∈ U

(11)

where fa(xk) = (xk − xg)
TQk(xk − xg) is the attraction

potential (Qk := Q for k ∈ {0, . . . , N − 1}), fe(uk) =
uTkR uk the stage energy cost and fc(xk) is stage collision
repulsive potential, defined as:

fc(xk) =

{
(d (xk)− dc)

2
d (xk) ≤ dc

0 d (xk) > dc
, (12)

where d(xk) is the distance between the state xk and the
nearest obstacle, dc is the minimum path clearance, i.e., the
minimum distance for the car to stay away from obstacles.
Note that we offset d(xk) by a constant value with the as-
sumption that the car is inflated by a certain radius and bi-
linear interpolation is applied on the EDT map to extract
the continuous values. One example of the collision cost
function is shown in Figure 2.

The direct collocation method is chosen here, which dis-
cretizes the trajectory optimization problem itself, convert-
ing the original trajectory optimization problem into a non-
linear program. There are mainly two benefits of the direct
collocation approach. The first is that having xk as explicit
decision variable makes it easy to add additional state con-
straints. The solver effectively reuses the computation of
each constraint. The second is that, for larger problems,
evaluating the constraints can have a substantial computa-
tion cost. In direct transcription, one can evaluate these
constraints in parallel.

An example of solving the trajectory optimization with
and without considering environmental constraints is shown
in Figure 3.

3210

Figure 2. Collision cost function.

(a) Plan without collision cost (b) Plan with collision cost

Figure 3. Comparison between solving the trajectory optimization
problem without and with the environmental cost. The starting
point is shown in orange and the goal is shown in green. The
planned trajectory is shown as the blue curve. On the left, we
observe that the path would end up going into the obstacle if it
does not consider environmental constraints, while on the right
the planned path is able to avoid obstacles along its way to the
goal point and stop at a nearby point close to the target.

4. Experiments
We evaluated our perception and planning pipeline on

KITTI benchmark dataset. [20]. This dataset contains 3D
point clouds coming from a Velodyne 64E installed on the
top of the car. It also provides acceleration and angular rates
of the vehicle from an OXTS RT3003 inertial and GPS nav-
igation system. To reduce the computational load we have
down-sampled the points with a voxel down-sampling of
size 0.07. As the odometry ground truth is available for
only the first 11 sequences, we carried out odometry evalu-
ation and mapping on Sequences 03, 05, and 07, and tested
the planning on sub-sections of sequence 05.

4.1. Localization

Figure 4 depicts the estimated trajectory against the
ground-truth trajectory for the KITTI sequence 05 which

Figure 4. Qualitative odometry result on kitti dataset sequence 05
using evo [47]

is used to test the performance of the planning algorithm
subsequently. The trajectories can be seen to agree well but
for some drifts in a few locations which may be attributed
to the IMU measurement bias and approximations used in
the ICP algorithm.

In order to obtain trajectory level accuracy, we use the
estimated trajectory pose matrices T e

i ∈ SE(3) and the
ground truth trajectory pose matrices T g

i ∈ SE(3) at time
instant i, i = 1, . . . , n, where n is the total length of the
time sequence. For evaluation, we consider the Relative
Pose Error (RPE) which measures the local accuracy of the
trajectory over a fixed time interval ∆ and considers both
rotational and translational errors. Defining the error matrix
at instant i by

F∆
i := (T i

g−1T g
i+∆)

−1(T e
i
−1T e

i+∆),

we obtainm = n−∆ individual relative pose error matrices
from a sequence of n poses. The RPE matrices when split
into translation (trel) and rotational (rrel) components, the
respective average errors are given by:

trel(∆) = (
1

m

m∑
i=1

||trans(Fi)||2)

rrel(∆) =
1

m

m∑
i=1

∠(rot(Fi))

In our experiment, matching is done between every two suc-
cessive frames, and hence, the time interval ∆ is set equal to
1. The values of trel(as % of the total sequence length) and
rrel(in deg/100m) for the KITTI sequences 03, 05, and 07
are given in Table 1. Overall, the ES-EKF and ICP-based
method with loop closure is found to perform well with low
vehicle state estimation errors.

3211

Table 1. Relative Pose Error in %

Sequence 03 05 07

trel 1.05 1.213 1.019
rrel 2.2 3.1 4.00

4.2. Mapping

Figure 5, 7 shows the occupancy mapping for sequences
3, 5, and 7. The black pixels represent the obstacles that
need to be avoided by the planner. The generated maps
are able to represent the traversable regions in roads and
also street sidewalks, other cars, etc. as obstacles. Figure 6
shows a zoomed-in sub-section of sequence 5. The imple-
mented mapping approach is able to define the cars parked
at the sideways and road boundaries as obstacles. Also,
the trees’ canopy and road surface, visible in the bird’s-eye
view is correctly not marked as obstacles.

Figure 5. Occupancy grid mapping on KITTI dataset sequence 05

4.3. Planning

We use Dubins’ car model to model the dynamics. The
state is defined as: x = [xc yc ψ]T , and the control is
defined as u = [v ψ̇]T , where xc and yc are coordinates
of the car, ψ is the heading, v is the velocity and ψ̇ is the
heading change. The dynamics are:

ẋ =

 ẋc
ẏc
ψ̇

 =

 v cosψ
v sinψ

ψ̇

 . (13)

The state and control spaces are set as X = R2 ×
[−100, 100] and U = [−5, 5] × [−3, 3]. The cost matri-
ces are R = I2 for controls and Q = QN = diag([1 1 0.1])

(a) point cloud map (b) occupancy grid map

Figure 6. A zoomed sub-section of KITTI sequence 5

(a) Occupancy map on sequence 03 (b) Occupancy map on sequence 07

Figure 7. Qualitative Mapping results on other KITTI sequences

for state deviation. The weighting coefficients are λN,a =
10, λa = 0.001, λe = 0.01 and λc = 100. The optimization
time step is h = 0.2s and horizon N = 30.

We follow the direct collocation approach to solve
the optimization problem and apply the Euler integration
method between each collocation point. The trajectory
guess was initialized with a straight line in state-space be-
tween the initial and final states. The optimization model is
solved via CasADi [48] with the open-source solver Ipopt
[49]. We used the “limited-memory” option to perform the
quasi-Newton method for Hessian approximation for com-
putational speed. The planning results for multiple targets
in subsections of KITTI sequence 5 are shown in Fig. 8 and
Fig. 9. In both figures, the map on the left side is the occu-
pancy grid map, and on the right is its corresponding EDT
map. The starting point is shown in blue, and the targets
are shown as circles with different colors. The planned tra-
jectories are shown in yellow. The arrows represent the car
with the arrowhead indicating the front side.

3212

(a) Occupancy map

(b) EDT map

Figure 8. Planning for goal1 with initial state: [12, 26,−π/4] and
goal state: [30, 37, π/4]. The offset of height and width in the map
is [60, 530].

Table 2. Cost terms along the trajectory

Target fa fc fN fu Total

goal1 2.995 1.660 0.891 2.145 7.691
goal2 1.276 0.004 0.001 1.911 3.192

The result shows that the planned paths reach the goal if
there are no obstacles along the path. Further, the plans can
avoid obstacles along the way to the goal and stop at nearby
points with lower objective values. The cost terms along
each trajectory are shown in Table. 2. In general, paths near
obstacles have larger costs.

(a) Occupancy map

(b) EDT map

Figure 9. Planning for goal2 with initial state: [17, 15, π/2] and
goal state: [20, 28, 0]. The offset of height and width in the map
is [350, 330].

5. Conclusion

In this work, we developed an integrated perception and
planning pipeline for autonomous vehicles. We have im-
plemented a loosely coupled LiDAR-Inertial SLAM with
loop closure based on Error-State Extended Kalman Filter
state estimation. Later, we mapped the 3D spatial infor-
mation of the environment to an obstacle cost map using
an occupancy grid and EDT. Our evaluation studies on Se-
quences 3, 5, and 7 of KITTI dataset demonstrate that our
proposed planner can successfully offer navigation along
obstacle-free trajectories for a non-holonomic system. In
our future work, we will include uncertainty quantification
of the perception system as a constraint to trajectory opti-
mization and study its implications. We also plan to com-
pare our optimization-based planner with sampling-based
planners, potential fields, and learning-based techniques.

3213

References
[1] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D

Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5):1147–1163,
2015. 1, 2

[2] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In European con-
ference on computer vision, pages 834–849. Springer, 2014.
1, 2

[3] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evalua-
tion of rgb-d slam systems. In 2012 IEEE/RSJ international
conference on intelligent robots and systems, pages 573–580.
IEEE, 2012. 1

[4] Tim Bailey and Hugh Durrant-Whyte. Simultaneous local-
ization and mapping (slam): Part ii. IEEE robotics & au-
tomation magazine, 13(3):108–117, 2006. 1

[5] James J Kuffner and Steven M LaValle. Rrt-connect: An
efficient approach to single-query path planning. In Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), volume 2, pages 995–
1001. IEEE, 2000. 1

[6] Eduardo F Camacho and Carlos Bordons Alba. Model pre-
dictive control. Springer science & business media, 2013.
1

[7] Robert Bohlin and Lydia E Kavraki. Path planning using lazy
prm. In Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), volume 1,
pages 521–528. IEEE, 2000. 1

[8] Steven M LaValle. Planning algorithms. Cambridge univer-
sity press, 2006. 1

[9] Pinliang Dong and Qi Chen. LiDAR remote sensing and ap-
plications. CRC Press, 2017. 1

[10] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and map-
ping in real-time. In Robotics: Science and Systems, vol-
ume 2, pages 1–9. Berkeley, CA, 2014. 1, 2

[11] Tixiao Shan and Brendan Englot. Lego-loam: Lightweight
and ground-optimized lidar odometry and mapping on vari-
able terrain. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4758–4765.
IEEE, 2018. 1, 2

[12] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang,
Carlo Ratti, and Daniela Rus. Lio-sam: Tightly-coupled li-
dar inertial odometry via smoothing and mapping. In 2020
IEEE/RSJ international conference on intelligent robots and
systems (IROS), pages 5135–5142. IEEE, 2020. 1

[13] Stergios I Roumeliotis, Gaurav S Sukhatme, and George A
Bekey. Circumventing dynamic modeling: Evaluation of
the error-state kalman filter applied to mobile robot localiza-
tion. In Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No. 99CH36288C), vol-
ume 2, pages 1656–1663. IEEE, 1999. 1, 3

[14] Kovac M. Milijas R. Car M. Bogdan S. Markovic, L.
Error state extended kalman filter multi-sensor fusion for
unmanned aerial vehicle localization in gps and magne-
tometer denied indoor environments. In arXiv preprint
arXiv:2109.04908 (2021). 1, 4

[15] Venkatesh Madyastha, Vishal Ravindra, Srinath Mallikarju-
nan, and Anup Goyal. Extended kalman filter vs. error state
kalman filter for aircraft attitude estimation. In AIAA Guid-
ance, Navigation, and Control Conference, page 6615, 2011.
1

[16] Giseop Kim and Ayoung Kim. Scan context: Egocentric
spatial descriptor for place recognition within 3d point cloud
map. In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 4802–4809. IEEE,
2018. 1, 3, 4

[17] Jing Dong and Zhaoyang Lv. miniSAM: A flexible fac-
tor graph non-linear least squares optimization framework.
CoRR, abs/1909.00903, 2019. 1, 3, 4

[18] Frank Y Shih and Yi-Ta Wu. Three-dimensional euclidean
distance transformation and its application to shortest path
planning. Pattern Recognition, 37(1):79–92, 2004. 1

[19] Mohammadreza Radmanesh, Manish Kumar, Paul H
Guentert, and Mohammad Sarim. Overview of path-
planning and obstacle avoidance algorithms for uavs: A
comparative study. Unmanned systems, 6(02):95–118, 2018.
1

[20] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 1, 6

[21] Mathieu Labbé and François Michaud. Rtab-map as an open-
source lidar and visual simultaneous localization and map-
ping library for large-scale and long-term online operation.
Journal of Field Robotics, 36(2):416–446, 2019. 2

[22] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Car-
lone. Kimera: an open-source library for real-time metric-
semantic localization and mapping. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 1689–1696. IEEE, 2020. 2

[23] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and
Uwe Klingauf. A flexible and scalable slam system with full
3d motion estimation. In 2011 IEEE international sympo-
sium on safety, security, and rescue robotics, pages 155–160.
IEEE, 2011. 2

[24] Jian Tang, Yuwei Chen, Xiaoji Niu, Li Wang, Liang Chen,
Jingbin Liu, Chuang Shi, and Juha Hyyppä. Lidar scan
matching aided inertial navigation system in gnss-denied en-
vironments. Sensors, 15(7):16710–16728, 2015. 2

[25] Haoyang Ye, Yuying Chen, and Ming Liu. Tightly cou-
pled 3d lidar inertial odometry and mapping. In 2019 In-
ternational Conference on Robotics and Automation (ICRA),
pages 3144–3150. IEEE, 2019. 2

[26] Arash Javanmard-Gh, Dorota Iwaszczuk, and Stefan Roth.
Deeplio: Deep lidar inertial sensor fusion for odometry esti-
mation. ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, 1:47–54, 2021. 2

3214

[27] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim
Awwal, Henry Bradlow, Jia Pan, Sachin Patil, Ken Gold-
berg, and Pieter Abbeel. Motion planning with sequential
convex optimization and convex collision checking. The In-
ternational Journal of Robotics Research, 33(9):1251–1270,
2014. 2

[28] Hyungjoo Ahn, Junwoo Park, Hyochoong Bang, and Yoon-
soo Kim. Model predictive control-based multirotor three-
dimensional motion planning with point cloud obstacle.
Journal of Aerospace Information Systems, pages 1–15,
2021. 2

[29] Mo Chen, Sylvia Herbert, Haimin Hu, Ye Pu, Jaime Fernan-
dez Fisac, Somil Bansal, SooJean Han, and Claire J Tomlin.
Fastrack: a modular framework for real-time motion plan-
ning and guaranteed safe tracking. IEEE Transactions on
Automatic Control, 2021. 2

[30] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Piv-
toraiko, Matthew Klingensmith, Christopher M Dellin, J An-
drew Bagnell, and Siddhartha S Srinivasa. Chomp: Covari-
ant hamiltonian optimization for motion planning. The Inter-
national Journal of Robotics Research, 32(9-10):1164–1193,
2013. 2

[31] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou,
Peter Pastor, and Stefan Schaal. Stomp: Stochastic trajectory
optimization for motion planning. In 2011 IEEE interna-
tional conference on robotics and automation, pages 4569–
4574. IEEE, 2011. 2

[32] Vladyslav Usenko, Lukas Von Stumberg, Andrej Panger-
cic, and Daniel Cremers. Real-time trajectory replanning
for mavs using uniform b-splines and a 3d circular buffer.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 215–222. IEEE, 2017. 2

[33] Ardi Tampuu, Tambet Matiisen, Maksym Semikin, Dmytro
Fishman, and Naveed Muhammad. A survey of end-to-
end driving: Architectures and training methods. IEEE
Transactions on Neural Networks and Learning Systems,
33(4):1364–1384, 2020. 2

[34] Dean A Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. Advances in neural information processing
systems, 1, 1988. 2

[35] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 2

[36] Connor Shorten and Taghi M Khoshgoftaar. A survey on
image data augmentation for deep learning. Journal of big
data, 6(1):1–48, 2019. 2

[37] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. Does
computer vision matter for action? Science Robotics,
4(30):eaaw6661, 2019. 2

[38] Richard S Sutton, Andrew G Barto, et al. Introduction to
reinforcement learning, volume 135. MIT press Cambridge,
1998. 2

[39] Peter Wolf, Christian Hubschneider, Michael Weber, André
Bauer, Jonathan Härtl, Fabian Dürr, and J Marius Zöllner.
Learning how to drive in a real world simulation with deep
q-networks. In 2017 IEEE Intelligent Vehicles Symposium
(IV), pages 244–250. IEEE, 2017. 2

[40] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw
Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu Lam,
Alex Bewley, and Amar Shah. Learning to drive in a day.
In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 8248–8254. IEEE, 2019. 2

[41] Błażej Osiński, Adam Jakubowski, Paweł Ziecina, Piotr
Miłoś, Christopher Galias, Silviu Homoceanu, and Henryk
Michalewski. Simulation-based reinforcement learning for
real-world autonomous driving. In 2020 IEEE international
conference on robotics and automation (ICRA), pages 6411–
6418. IEEE, 2020. 2

[42] Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, and
Vladlen Koltun. Driving policy transfer via modularity and
abstraction. arXiv preprint arXiv:1804.09364, 2018. 2

[43] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? Ad-
vances in neural information processing systems, 27, 2014.
2

[44] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 7167–7176, 2017. 2

[45] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and
Kazuya Takeda. A survey of autonomous driving: Common
practices and emerging technologies. IEEE access, 8:58443–
58469, 2020. 2

[46] Gunilla Borgefors. Distance transformations in digital im-
ages. Computer vision, graphics, and image processing,
34(3):344–371, 1986. 5

[47] Michael Grupp. evo: Python package for the evalua-
tion of odometry and slam. https://github.com/
MichaelGrupp/evo, 2017. 6

[48] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawl-
ings, and Moritz Diehl. CasADi – A software framework for
nonlinear optimization and optimal control. Mathematical
Programming Computation, 11(1):1–36, 2019. 7

[49] Andreas Wächter and Lorenz T Biegler. On the implementa-
tion of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Mathematical programming,
106(1):25–57, 2006. 7

3215

